Magnetic impurities manipulation by chiral spin exchange interactions

Dipole moment

Yossi Paltiel Applied Physics, Hebrew University of Jerusalem

Quantum Nano-Engineering Lab

te Harvey M. Krueger Family Cente

THANKS

Our Current Group: Dr. Shira Yochelis

Prof. Yossi Paltiel,, Nir Sukenik, Amir Ziv, Tzuriel Metzger, Hammam Al Bustami, Hen Alpern, Eitan Avigad, Yuval Koldny, Avi Schneider, Naama Goren, Lior Bezen, Chana Fridman

Dr. Oren Ben Dor, Dr. Eran Katzir, Dr. Guy Koplovitch

Special thanks to:

The Quantum Impurity Meeting organizers Mikhail Zvonarev Claire gay Universite-paris-saclay

Collaborators; Ron Naaman, Dave Waldack, Oded Millo, Nir Keren

Quantum Nano Engineering Laboratory

Chiral induced spin selectivity effect

Quantum photon sensors

β155 is exposed to the environment

Surface superconductivity

3

Quantum Nano Engineering Lab

Spintronics

Motivation

Motivation

scale

A. Hiroata, et al. Journal of Magnetism and Magnetic Materials 2020, 509.

6 L

The CISS Effect

What about the electron spin?

O. Ben Dor, et al. Nano Lett. 2014, 14; P. C. Mondal, et al. Nano Lett. 2016, 16; J. M. Abendoth, et al. ACS Nano 2017, 11

Quantum Nano Engineering Lab

Electrical CISS Nano Memory

Quantum Nano Engineering Lab

Vertical Memristor Device

Bottom electrode

Adsorb AHPA-L or AHPA-D and multiple FMNPs

Al₂O₃ tunnel barrier

Top electrode

AHPA chiral molecules-[H]-CAAAAKAAAAKAAAAKAAAAKAAAAKAAAAK AAAAKAAAAK-[OH]

Quantum Nano Engineering Lab

Single FMNP device

Fabricating metal iangular electrodes Distance of ~10nm Tip width of ~10nm **Adsorb AHPA** molecules 300nm **Adsorb FMNPs**

Single nanoparticle magnetic spin memristor H. Al Bustami, G. Koplovitz, D. Primc, S.Yochelis, E. Capua, D. Porath, R. Naaman, and Y. Paltiel Small 1801249 (2018).

E

N

10

Quantum Nano Er 200 ky 13 pA 2.3 mm SE 249 888 x TLD 1.19 µm

Single FMNP device Results – 2 states logic device

Magnetic impurities

• Skyrmions chiral impurities....

Sketch of chiral "Bloch skyrmion" Scientific Reports **10**, 8657 (2020). Nature communication **11**, 1115 (2020).

E

N

Hybrid chiral domain walls and skyrmions in magnetic multilayers William Legrand , Jean-Yves Chauleau*, Davide Maccariello , Nicolas Reyren, Sophie Collin, Karim Bouzehouane, Nicolas Jaouen , Vincent Cros, Albert Fert

Chiral spintronics S Reviews Physics, 3 Can the CISS be utilized To control, and manipulate magnetic impurities?

P. Parkin; Nature

Exchange Interactions

The Role of Exchange Interactions in the Magnetic Response and Inter-Molecular Recognition of Chiral Molecules, <u>Nano Letters</u>, **10**, 7077–7086 (2020).

Quantum Nano Engineering Lab

Selective adsorption -> Selective magnetization

Selective adsorption of α helix polyalanine results in selective magnetization of a ferromagnet

O. Ben Dor, et al. Nat. Commun. 2017, 8.

N

14

E

Quantum Nano Engineering Lab

Magnetization with no current

- The current density required for the spin-transfer torque (STT) is of the order of 10⁶ A/cm²
- STT current density equals 10²⁵ electrons/ s cm²
- Adsorption of molecules 10¹³ molecules/cm²
- Here if 1 electron is transfer per molecule10¹³ molecules/cm²

Magnetize substrate enantioselectivity

Magnetization of a ferromagnet results in selective adsorption of α helix polyalanine

Banerjee-Ghosh et al. Science. 2018, 360.

Does this brake time reversal?!

Quantum Nano Engineering Lab

NV centres

- NV centers- Local highly sensitive magnetic sensor
- Can measure both direction and magnitude
- Consists of a substitutional nitrogen atom and a vacancy on adjacent lattice sites

In collaboration with Nir Bar-Gill lab @ HUJI

Quantum Nano Engineering Lab

NV centres manipulation

Quantum Nano Engineering Lab

NV centres magnetization measurement

Zeeman Splitting- proportional to external magnetic field

Quantum Nano Engineering Lab

NV centres magnetization measurement

Using NV centers can give us the <u>magnitude & direction</u> of magnetization

N

20

Time evolution of the magnetization reorientation

I. Meirzada^v, N. Sukenik^v et al. 'Long-Timescale Magnetization Ordering Induced by an Adsorbed Chiral Monolayer on Ferromagnets' **ACS Nano**. 2021, 15.

Quantum Nano Engineering Lab

E

N

21

Time evolution of the magnetization reorientation

I. Meirzada^v, N. Sukenik^v et al. 'Long-Timescale Magnetization Ordering Induced by an Adsorbed Chiral Monolayer on Ferromagnets' **ACS Nano**. 2021, 15.

Quantum Nano Engineering Lab

E

N

22

Magnetization time evolution

I. Meirzada[⊽], N. Sukenik[⊽] et al. 'Long-Timescale Magnetization Ordering Induced by an Adsorbed Chiral Monolayer on Ferromagnets' **ACS Nano**. 2021, 15.

Time evolution of the magnetization reorientation

Both tilt angle and magnetization angle increase over time

I. Meirzada^v, N. Sukenik^v et al. 'Long-Timescale Magnetization Ordering Induced by an Adsorbed Chiral Monolayer on Ferromagnets' **ACS Nano**. 2021, 15.

Quantum Nano Engineering Lab

The magnetization is metastable and seems to break T due to thermal fluctuations !!!

But we are on a magnet - does break T in any case and we have dissipation

Artem G. Volosniev, Hen Alpern, Yossi Paltiel, Oded Millo, Mikhail Lemeshko, and Areg Ghazaryan, *Interplay between friction and spin-orbit coupling as a source of spin polarization;* Phys. Rev. B **104**, 024430 (2021).

Quantum Nano Engineering Lab

AFM-Based Spin-Exchange Microscopy Using Chiral Molecules

By adsorbing a chiral molecule on an AFM tip, magnetic sensing is possible. Spacer P 63 nm AFM tip AHPA nm Measure directly the exchange force

> Amir Ziv, Abhijit Saha, Hen Alpern, Nir Sukenik, Lech Tomasz Baczewski, Shira Yochelis, Meital Reches,* and Yossi Paltiel*; *AFM-Based Spin Exchange Microscopy Using Chiral Molecules*, <u>Advanced Materials</u> (2019).

> > Quantum Nano Engineering Lab

E

N

ର

26

Chiral spin AFM Measure directly the exchange force

Quantum Nano Engineering Lab

27

CISS on Tip

E

N

28

In order to isolate the specific interface-molecule interaction:

- A spacer molecule is placed between the tip and the molecule of interest, to reduce VDW and electrostatic interaction.
- The measurement if perform in a liquid environment to avoid capillary forces
- The measured sample is an MBE grown sample to avoid discrepancies between the composition and topography.

Results

Control experiments were made with gold alone and with an achiral molecule with the same linkers.

A force difference of 13.98 \pm 6.67 [*pN*] was measured.

Ziv, A, Saha, A. et al. AFM-Based Spin-Exchange Microscopy Using Chiral Molecules. Advanced Materials 0, 1904206

Suggested Mechanism

Ziv, A, Saha, A. et al. AFM-Based Spin-Exchange Microscopy Using Chiral Molecules. Advanced Materials 0, 1904206

E

N

ର

31

Interaction Energy

Calculating the energy difference between the down and up magnetization yielded a difference of $152 \pm 52[meV]$ which corresponds to first principle calculations.

Amir Ziv, Abhijit Saha, Hen Alpern, Nir Sukenik, Lech Tomasz Baczewski, Shira Yochelis, Meital Reches,* and Yossi Paltiel*; *AFM-Based Spin Exchange Microscopy Using Chiral Molecules*, <u>Advanced Materials</u> (2019).

Using Chiral molecules to achieve nano scale magnetic mapping

ର

32

Work function results

Quantum Nano Engineering Lab

33

Spin exchange delocalization

QNE 34 L a b

Quantum Nano Engineering Lab

Bio recognition forces Protein folding and bio recognition

Evident for New Enantiospecific Interaction Force in Chiral Biomolecules Yael Kapon,⁺ Abhijit Saha,⁺ Thijs Stuyver, Amir Ziv, Shira Yochelis, Sason Shaik, Ron Naaman,^{*} Meital Reches,^{*} and Yossi Paltiel^{*}

35

Relation to spin

E

N

ର

36

Quantum Nano Engineering Lab

Protein folding and bio recognition

The calculated potential energies from the toy model for interaction of two molecules with spin polarized either antiparallel (blue) or parallel (red) to each other

E

N

ର

37

Quantum Nano Engineering Lab

Can chiral molecules alter an swave superconductor Not a magnetic system!!!

STM tip

molecule-free area

Quantum Nano Engineering Lab

D wave and P wave spectra

Quantum Nano Engineering Lab

39

Fits to the three types of spectra

Combination of *s*-wave, *d*-wave and chiral *p*-wave pairing potentials.

chiral *p*-wave :

N

ର

40

 $\Delta_{\uparrow\uparrow} = \Delta_0 \sin \theta (\cos \phi + i \sin \phi)$ $(p_x + ip_v, triplet)$

d-wave ($d_{x^2-v^2} = \Delta = \Delta_0 \cos(2\theta)$ (singlet or odd-frequency triplet)

Non Splitting ZBCP

low resistance junction, T-dependence

Yu - Shiba - Rusinov (YSR) States

E

N

42

magnetic impurities form discrete low energy spin-polarized bound states within the superconducting gap

Ménard, G. C. et al. Coherent long-range magnetic bound states in a superconductor. Nat. Phys. 11, 1013–1016 (2015).

Ji, S.-H. *et al.* High-Resolution Scanning Tunneling Spectroscopy of Magnetic Impurity Induced Bound States in the Superconducting Gap of Pb Thin Films. *Phys. Rev. Lett.* **100**, 226801 (2008).

Sub gap states (YSR-like) which diverge with applied magnetic field

Comparison between measurement and simulation of an array of YSR states

Quantum Nano Engineering Lab

Possible Scenario

Li, J. et al. Two-dimensional chiral topological superconductivity in Shiba lattices. Nat. Commun. 7, 12297 (2016).

Quantum Nano Engineering Lab

SC order parameter change by chiral molecules

the junction measured consists of a Nb substrate, chiral polyalanine molecules, conductive graphene flakes and a top gold electrode. The measurement is done between the gold electrodes.

Proximity Effect through Chiral Molecules in Nb–Graphene-Based Devices Nir Sukenik, Hen Alpern, Eran Katzir, Shira Yochelis, Oded Millo, and Yossi Paltiel Adv. Mater. Technol. 2018, 1700300

μ**SR Muon Spin Rotation/Relaxation** Paul Scherrer Institute

Principle of a \muSR experiment

ର

48

Depth dependent μ SR measurements

\rightarrow Magnetic field profile B(z) over nm scale

30nm Nb sample under 300G

N

 \bigcirc

50

Quantum Nano Engineering Lab

Inducing magnetic impurities

New Journal of Physics 2016

μn

Nature Communication 2017

JPC letters 2019

In collaboration with Mathias Kläui

Future ideas

- Paramagnets
- Ferromagnets
- Anti-ferromagnets

- Superconducting and magnetics
- Multi-gated devices

Long Range Spin exchange interactions in chiral molecules can be used to control measure and manipulate quantum magnetic impurities.

Ron Naaman, Yossi Paltiel, David H. Waldeck; *Chiral molecules and the electron spin*; <u>Nature Review Chemistry</u> DOI: 10.1038/s41570-019-0087-1 (2019).

