High-order diagrammatic expansion around BCS

Polarized superfluid phase of the attractive Hubbard model

Gabriele Spada
ENS \rightarrow Trento

Kris Van Houcke \& Félix Werner
ENS

Riccardo Rossi
Flatiron Institute \rightarrow EPFL

Fedor Simkovic, Renaud Garioud \& Michel Ferrero
Collège de France \& École Polytechnique

High-order diagrammatic expansion around BCS

Polarized superfluid phase of the attractive Hubbard model

High-order diagrammatic expansion around BCS

Polarized superfluid phase of the attractive Hubbard model

"Quantum 2021"

- superconductivity: Kamerlingh Onnes, 1911
-BCS theory: 1957
- 2021: BCS theory \rightarrow exact

Unbiased approaches for fermionic \mathcal{N}-body problems

strongly interacting fermions: solids \& molecules, nuclei \& neutron stars, QCD Challenge: large \mathcal{N}, thermo. lim. $\mathcal{N} \rightarrow \infty$

Unbiased approaches for fermionic \mathcal{N}-body problems

strongly interacting fermions: solids \& molecules, nuclei \& neutron stars, QCD
Challenge: large \mathcal{N}, thermo. lim. $\mathcal{N} \rightarrow \infty$ analytics

1D, small \mathcal{N}, weakly correlated limits

Tensor network

```
1D: ;)
2D: harder (bond dimension }->\infty\mathrm{ )
3D:?
continuous space: ?
```


"bulk" Monte Carlo approaches

quantum
 d dim.
 volume L^{d}

"classical"
 $d+1$ dim.
 "volume" $L^{d} \times \beta$

- path integral $\mathbf{r}_{1}(\tau), \ldots, \mathbf{r}_{\mathcal{N}}(\tau)$
- Auxiliary Field QMC (lattice QCD)
- Determinental Diagrammatic MC (CT-INT)

"bulk" Monte Carlo approaches

quantum
 d dim.
 volume L^{d}

"classical"

$d+1$ dim.
"volume" $L^{d} \times \beta$

- path integral $\mathbf{r}_{1}(\tau), \ldots, \mathbf{r}_{\mathcal{N}}(\tau)$
- Auxiliary Field QMC (lattice QCD)
- Determinental Diagrammatic MC (CT-INT)
except in special cases
fermion sign problem: $t_{\mathrm{CPU}} \sim e^{\# \beta \mathcal{N}}$

$$
Q=\frac{\sum_{\mathcal{C}} \mathcal{Q}(\mathcal{C}) w(\mathcal{C})}{\sum_{\mathcal{C}} w(\mathcal{C})}
$$

L

fermion sign problem: $t_{\mathrm{CPU}} \sim e^{\# \beta \mathcal{N}}$

$$
Q=\frac{\sum_{\mathcal{C}} \mathcal{Q}(\mathcal{C}) w(\mathcal{C})}{\sum_{\mathcal{C}} w(\mathcal{C})}
$$

fermion sign problem: $t_{\mathrm{CPU}} \sim e^{\# \beta \mathcal{N}}$

$$
Q=\frac{\sum_{\mathcal{C}} \mathcal{Q}(\mathcal{C}) w(\mathcal{C})}{\sum_{\mathcal{C}} w(\mathcal{C})}
$$

fermion sign problem: $t_{\mathrm{CPU}} \sim e^{\# \beta \mathcal{N}}$

$$
Q=\frac{\sum_{\mathcal{C}} \mathcal{Q}(\mathcal{C}) w(\mathcal{C})}{\sum_{\mathcal{C}} w(\mathcal{C})}
$$

BUT: physics is local

intensive Q are well-defined for $L=\infty$

BUT: physics is local
intensive Q are well-defined for $L=\infty$

BUT: physics is local

intensive Q are well-defined for $L=\infty$
even in presence of long-range order

BUT: physics is local
intensive Q are well-defined for $L=\infty$
even in presence of long-range order

$$
\begin{aligned}
& 3 D \quad X Y \text {-model } \quad \quad T<T_{c} . \\
& \langle\vec{S}(\vec{r})\rangle=\overrightarrow{0} \\
& \lim _{r \rightarrow \infty}\left(\begin{array}{l}
\left.\lim _{L \rightarrow \infty}\right)\langle\vec{S}(\vec{r}) \cdot \vec{S}(\overrightarrow{0})\rangle=M^{2}
\end{array}\right\} \Rightarrow \begin{array}{l}
\vec{S}(\vec{r}) \text { and } \vec{S}(\overrightarrow{0}) \\
\text { CORRELATED }
\end{array}
\end{aligned}
$$

Broken -symmetry fount of riew : external field $\vec{\eta} \cdot \vec{u}_{x}$

$$
\begin{aligned}
& \mid\left\langle\langle \rangle:=\lim _{\eta \rightarrow 0} \lim _{L \rightarrow \infty}\langle \rangle\right. \\
& \langle\langle\vec{S}(\vec{r})\rangle\rangle=M \cdot \vec{\mu}_{r} \\
& \lim _{r \rightarrow \infty}\langle\langle\vec{S}(\vec{r}) \cdot \vec{S}(\overrightarrow{0})\rangle\rangle=M^{2}=\langle\vec{S}(\vec{x})\rangle \cdot\langle\langle\vec{S}(\overrightarrow{0})\rangle\rangle \\
& \Rightarrow \text { UN CORRELAT ED }
\end{aligned}
$$

Diagrammatic MC with connected diagrams

Diagrammatic MC with connected diagrams

sum all connected Feynman diagrams of order $N \leq N_{\max }$

$$
\text { truncation error } \quad \epsilon_{\text {sys }} \underset{N_{\max } \rightarrow \infty}{\longrightarrow} 0
$$

Diagrammatic MC with connected diagrams

sum all connected Feynman diagrams of order $N \leq N_{\max }$

$$
\text { truncation error } \quad \epsilon_{\text {sys }} \underset{N_{\max } \rightarrow \infty}{\longrightarrow} 0
$$

```
works directly in thermodynamic limit \mathcal{N}=\infty
```


Diagrammatic MC with connected diagrams

sum all connected Feynman diagrams of order $N \leq N_{\max }$

$$
\text { truncation error } \quad \epsilon_{\text {sys }} \underset{N_{\max } \rightarrow \infty}{\longrightarrow} 0
$$

works directly in thermodynamic limit $\mathcal{N}=\infty$
flexibility of diagrammatic technique:

- change the starting point (order zero)
- reorganize expansion (use dressed propagators / vertices)
\Rightarrow non-perturbative
\Rightarrow low orders already ~OK

Diagrammatic MC with connected diagrams

sum all connected Feynman diagrams of order $N \leq N_{\max }$

$$
\text { truncation error } \quad \epsilon_{\text {sys }} \underset{N_{\max } \rightarrow \infty}{\longrightarrow} 0
$$

```
works directly in thermodynamic limit \mathcal{N}=\infty
```

flexibility of diagrammatic technique:

- change the starting point (order zero)
- reorganize expansion (use dressed propagators / vertices)
\Rightarrow non-perturbative
\Rightarrow low orders already ~OK
fermionic sign helps:
strong cancellations between diagrams
\Rightarrow large orders contributions reduced

Diagrammatic MC with connected diagrams

$$
\begin{gathered}
S \sim S_{\xi} \quad \text { such that }\left\{\begin{array}{l}
S_{\xi=0} \text { quadratic } \\
S_{\xi=1}=S \\
\xi \mapsto S_{\xi} \text { analytic }
\end{array}\right. \\
Q=\langle\hat{Q}\rangle_{S} \leadsto \backsim Q(\xi)=\langle\hat{Q}\rangle_{S_{\xi}}=\sum_{N=0}^{\infty} Q_{N} \xi^{N} \\
Q=Q(\xi=1)=\sum_{N=0}^{\infty} Q_{N} \quad \text { (if series converges) }
\end{gathered}
$$

sum of all order-N connected Feynman diag. well-defined in thermos. $\operatorname{limit} \mathcal{N}=\infty$

$$
Q_{N}=\sum_{\substack{\text { connected } \\
\text { topologies } \mathcal{T}}} \int d X_{1} \ldots d X_{N} \underbrace{\mathcal{D}\left(\mathcal{T} ; X_{1} \ldots X_{N}\right)}_{\underset{\left|X_{i}\right| \rightarrow \infty}{ } 0} \left\lvert\, \begin{gathered}
X:=(\vec{r}, \tau) \\
\int d X:=\sum_{\vec{r}} \int_{0}^{\beta} d \tau
\end{gathered}\right.
$$

Freedom in choosing S_{0}

- Mean-field • DMFT • Fully dressed G ("bold")
- add field (bosonic): sum ladders ($p p$ or $p h$)

Diagrammatic MC with connected diagrams

$$
\begin{gathered}
S \leadsto S_{\xi} \quad \text { such that }\left\{\begin{array}{l}
S_{\xi=0} \text { quadratic } \\
S_{\xi=1}=S \\
\xi \mapsto S_{\xi} \text { analytic }
\end{array}\right. \\
\langle\hat{Q}\rangle_{S} \backsim \sim Q(\xi)=\langle\hat{Q}\rangle_{S_{\xi}}=\sum_{N=0}^{\infty} Q_{N} \xi^{N} \\
Q=Q(\xi=1)=\sum_{N=0}^{\infty} Q_{N} \quad \text { (if series converges) }
\end{gathered}
$$

sum of all order-N connected Feynman diag. well-defined in thermos. $\operatorname{limit} \mathcal{N}=\infty$

$$
Q_{N}=\sum_{\substack{\text { connected } \\
\text { topologies } \mathcal{T}}} \int d X_{1} \ldots d X_{N} \underbrace{\mathcal{D}\left(\mathcal{T} ; X_{1} \ldots X_{N}\right)}_{\underset{\left|X_{i}\right| \rightarrow \infty}{ } 0} \left\lvert\, \begin{gathered}
X:=(\vec{r}, \tau) \\
\int d X:=\sum_{\vec{r}} \int_{0}^{\beta} d \tau
\end{gathered}\right.
$$

Freedom in choosing S_{0}

- Mean-field • DMFT • Fully dressed $G \quad$ ("bold")
- add field (bosonic): sum ladders ($p p$ or $p h$)
- symmetry breaking

$$
\begin{aligned}
& Q=\sum_{N=0}^{\infty} Q_{N} \\
& \text { (if series converges) } \\
& Q_{N}=\sum_{\substack{\text { connected } \\
\text { topologies } \mathcal{T}}} \int d X_{1} \ldots d X_{N} \mathcal{D}\left(\mathcal{T} ; X_{1} \ldots X_{N}\right) \\
& X d X:=(\vec{r}, \tau) \\
& \int d X \sum_{\vec{r}} \int_{0}^{\beta} d \tau
\end{aligned}
$$

Monte Carlo algorithms

- DiagMC [Van Houcke et al. 2010]
configuration: $\mathcal{C}=\left(\mathcal{T}, X_{1}, \ldots, X_{N}\right) \quad$ probability: $P(\mathcal{C}) \propto\left|\mathcal{D}\left(\mathcal{T} ; X_{1} \ldots X_{N}\right)\right|$
- CDet [Rossi 2017, Rossi et al. 2020]

$$
\mathcal{C}=\left(X_{1}, \ldots, X_{N}\right)
$$

$$
P(\mathcal{C}) \propto\left|\sum_{\mathcal{T}} \mathcal{D}\left(\mathcal{T} ; X_{1} \ldots X_{N}\right)\right|
$$

Monte Carlo algorithms

- DiagMC [Van Houcke et al. 2010] configuration: $\mathcal{C}=\left(\mathcal{T}, X_{1}, \ldots, X_{N}\right) \quad$ probability: $P(\mathcal{C}) \propto\left|\mathcal{D}\left(\mathcal{T} ; X_{1} \ldots X_{N}\right)\right|$
- CDet [Rossi 2017, Rossi et al. 2020]

$$
\mathcal{C}=\left(X_{1}, \ldots, X_{N}\right)
$$

$$
P(\mathcal{C}) \propto\left|\sum_{\mathcal{T}} \mathcal{D}\left(\mathcal{T} ; X_{1} \ldots X_{N}\right)\right|
$$

Polaron:

- DiagMC [Prokof'ev \& Svistunov 1998 \& 2008 (bosonic \& fermionic)
- PDet [Van Houcke et al. 2020]
see talks by
K. Van Houcke \& N. Prokof'ev

$$
Q=\sum_{N=0}^{\infty} Q_{N} \quad(\text { if series converges })
$$

$$
Q_{N}=\sum_{\substack{\text { connected } \\
\text { topologies } \mathcal{T}}} \int d X_{1} \ldots d X_{N} \mathcal{D}\left(\mathcal{T} ; X_{1} \ldots X_{N}\right) \left\lvert\, \begin{gathered}
X:=(\vec{r}, \tau) \\
\int d X:=\sum_{\vec{r}} \int_{0}^{\beta} d \tau
\end{gathered}\right.
$$

Monte Carlo algorithms

- DiagMC [Van Houcke et al. 2010]
configuration: $\mathcal{C}=\left(\mathcal{T}, X_{1}, \ldots, X_{N}\right) \quad$ probability: $P(\mathcal{C}) \propto\left|\mathcal{D}\left(\mathcal{T} ; X_{1} \ldots X_{N}\right)\right|$
- CDet [Rossi 2017, Rossi et al. 2020]

$$
\mathcal{C}=\left(X_{1}, \ldots, X_{N}\right)
$$

$$
P(\mathcal{C}) \propto\left|\sum_{\mathcal{T}} \mathcal{D}\left(\mathcal{T} ; X_{1} \ldots X_{N}\right)\right|
$$

Polaron:

- DiagMC [Prokof'ev \& Svistunov 1998 \& 2008 (bosonic \& fermionic)
- PDet [Van Houcke et al. 2020]
see talks by K. Van Houcke \& N. Prokof'ev

Real-time (Anderson impurity):

- "Keldysh Det" [Profumo et al. 2015]
see talk by X. Waintal

Monte Carlo algorithms

- DiagMC [Van Houcke et al. 2010]
configuration: $\mathcal{C}=\left(\mathcal{T}, X_{1}, \ldots, X_{N}\right) \quad$ probability: $P(\mathcal{C}) \propto\left|\mathcal{D}\left(\mathcal{T} ; X_{1} \ldots X_{N}\right)\right|$
- CDet [Rossi 2017, Rossi et al. 2020]

$$
\mathcal{C}=\left(X_{1}, \ldots, X_{N}\right)
$$

$$
P(\mathcal{C}) \propto\left|\sum_{\mathcal{T}} \mathcal{D}\left(\mathcal{T} ; X_{1} \ldots X_{N}\right)\right|
$$

Monte Carlo algorithms

- DiagMC [Van Houcke et al. 2010] configuration: $\mathcal{C}=\left(\mathcal{T}, X_{1}, \ldots, X_{N}\right) \quad$ probability: $P(\mathcal{C}) \propto\left|\mathcal{D}\left(\mathcal{T} ; X_{1} \ldots X_{N}\right)\right|$
- CDet [Rossi 2017, Rossi et al. 2020]

$$
\mathcal{C}=\left(X_{1}, \ldots, X_{N}\right)
$$

$$
P(\mathcal{C}) \propto\left|\sum_{\mathcal{T}} \mathcal{D}\left(\mathcal{T} ; X_{1} \ldots X_{N}\right)\right|
$$

Computational complexity

- $t_{\mathrm{CPU}} \sim\left\{\begin{array}{lr}(N!)^{2} & (\text { DiagMC }) \\ e^{\# N} & \text { (CDet) }\end{array}\right.$
- counteracted by convergence: $\left|a_{N}\right| \sim e^{-\# N}$

\Longrightarrow| $t(\epsilon) \sim \epsilon^{-\# \ln \left(\ln \epsilon^{-1}\right)}$ | $($ DiagMC $)$, |
| :--- | :--- | | where $\epsilon=$ total error | |
| :--- | :--- |
| $t(\epsilon) \sim \epsilon^{-\alpha}$ | $($ CDet $)$. |$\quad($ statistical + truncation $)$

a hunting board of diagrammatic MC...
repulsive Hubbard model 2D square lattice
supercond. phase diagram (d-\& p-wave) $T \rightarrow 0$ in Fermi-liq regime [Deng et al. 2015] crossover to AF insulator at half-filling diagonal hopping \rightarrow pseudogap physics
[Simkovic et al. 2020 ; Kim et al. 2020]
[Wu et al. 2017 ; Rossi et al. 2020]
graphene Dirac liquid $\quad \mathrm{T}=0$
[Tupitsyn \& Prokof'ev 2017]
phonons+electrons with Coulomb interactions phonon spectrum (Kohn anomaly)

3D cubic lattice
[Tupitsyn et al. 2016]
unitary Fermi gas contact interactions, 3D cospace (cold atoms) eq. of state, contact, non-Fermi-liq $n(k) \quad$ [Van Houcke et al. 2012 ; Rossi et al. 2018] electron gas Coulomb interactions, 3D co space static response, Fermi-liq params
[Chen \& Haule 2019 / 2020]
frustrated spins AF Heisenberg model, triangular \& pyrochlore lattices quantum \leftrightarrow classical correspondence [Kulagin et al. 2013 ; Huang et al. 2016]

$$
\text { (...) all in normal phases }\left(T>T_{c}\right)
$$

Haldane model 2D honeycomb, magnetic field $\mathrm{T}=0$: topological phases, magnetically ordered \quad [Tupitsyn \& Prokof'ev 2019] here: superfluid / superconducting phase

Hubbard model - 3D cubic lattice

$$
H=H_{\mathrm{kin}}-\sum_{\sigma} \mu_{\sigma} N_{\sigma}+H_{\mathrm{int}}
$$

$$
\begin{aligned}
& H_{\mathrm{kin}}=-t \sum_{\langle\mathbf{i}, \mathbf{j}\rangle \sigma}\left(c_{\mathbf{i} \sigma}^{\dagger} c_{\mathbf{j} \sigma}+\text { h.c. }\right) \\
& H_{\mathrm{int}}=U \sum_{\mathbf{i}} n_{\mathbf{i} \uparrow} n_{\mathbf{i} \downarrow} \quad U<0
\end{aligned}
$$

Hubbard model - 3D cubic lattice

$$
H=H_{\mathrm{kin}}-\sum_{\sigma} \mu_{\sigma} N_{\sigma}+H_{\mathrm{int}}
$$

$$
\begin{aligned}
& H_{\mathrm{kin}}=-t \sum_{\langle\mathbf{i}, \mathbf{j}\rangle \sigma}\left(c_{\mathbf{i} \sigma}^{\dagger} c_{\mathbf{j} \sigma}+\text { h.c. }\right) \\
& H_{\mathrm{int}}=U \sum_{\mathbf{i}} n_{\mathbf{i} \uparrow} n_{\mathbf{i} \downarrow} \quad U<0
\end{aligned}
$$

Diag. expansion in superfluid (superconducting) phase $\mathcal{O}:=\left\langle c_{\mathbf{0} \uparrow} c_{\mathbf{0} \downarrow}\right\rangle$
unperturbed quadratic Hamiltonian: breaks U(1) symmetry

$$
H_{0}=H_{\text {kin }}-\sum_{\sigma} \mu_{0, \sigma} N_{\sigma}+H_{\text {pair }}^{\left(\Delta_{0}\right)}
$$

Hubbard model - 3D cubic lattice

$$
H=H_{\mathrm{kin}}-\sum_{\sigma} \mu_{\sigma} N_{\sigma}+H_{\mathrm{int}}
$$

$$
\begin{aligned}
& H_{\mathrm{kin}}=-t \sum_{\langle\mathbf{i}, \mathbf{j}\rangle \sigma}\left(c_{\mathbf{i} \sigma}^{\dagger} c_{\mathbf{j} \sigma}+\text { h.c. }\right) \\
& H_{\mathrm{int}}=U \sum_{\mathbf{i}} n_{\mathbf{i} \uparrow} n_{\mathbf{i} \downarrow} \quad U<0
\end{aligned}
$$

Diag. expansion in superfluid (superconducting) phase $\mathcal{O}:=\left\langle c_{\mathbf{0} \uparrow} c_{\mathbf{0} \downarrow}\right\rangle$
unperturbed quadratic Hamiltonian:
breaks $U(1)$ symmetry

$$
H_{0}=H_{\text {kin }}-\sum_{\sigma} \mu_{0, \sigma} N_{\sigma}+H_{\text {pair }}^{\left(\Delta_{0}\right)} \quad H_{\text {pair }}^{\left(\Delta_{0}\right)}:=\Delta_{0} \sum_{\mathbf{i}} c_{\mathbf{i} \uparrow \uparrow}^{\dagger} \uparrow_{\mathbf{i} \downarrow}^{\dagger}+h . c .
$$

$$
H_{\xi}:=(1-\xi) H_{0}+\xi H \quad Q(\xi):=\langle\hat{Q}\rangle_{H_{\xi}} \hat{=} \sum_{N=0}^{\infty} Q_{N} \xi^{N}
$$

$$
\text { pressure: } P=-\Omega / L^{3}, \quad \Omega=-T \ln \operatorname{Tr} \exp (-\beta H)
$$

$$
P(\xi):=\frac{T}{L^{3}} \ln \operatorname{Tr} \exp \left(-\beta H_{\xi}\right) \hat{=} \sum_{N=0}^{\infty} P_{N} \xi^{N}
$$

$$
\begin{array}{ll}
\hline \frac{\text { unperturbed quadratic Hamiltonian: }}{H_{0}=H_{\text {kin }}-\sum_{\sigma} \mu_{0, \sigma} N_{\sigma}+H_{\text {pair }}^{\left(\Delta_{0}\right)}} \quad & \begin{array}{c}
\text { breaks } U(1) \text { symmetry } \\
H_{\text {pair }}^{\left(\Delta_{0}\right)}:=\Delta_{0} \sum_{\mathbf{i}} c_{\mathbf{i} \uparrow}^{\dagger} c_{\mathbf{i} \downarrow}^{\dagger}+h . c .
\end{array} \\
H_{\xi}:=(1-\xi) H_{0}+\xi H \quad Q(\xi):=\langle\hat{Q}\rangle_{H_{\xi}} \hat{=} \sum_{N=0}^{\infty} Q_{N} \xi^{N}
\end{array}
$$

$$
H_{0}=H_{\text {kin }}-\sum_{\sigma} \mu_{0, \sigma} N_{\sigma}+H_{\text {pair }}^{\left(\Delta_{0}\right)} \quad H_{\text {pair }}^{\left(\Delta_{0}\right)}:=\Delta_{0} \sum_{\mathbf{i}} c_{\mathbf{i} \uparrow \uparrow}^{\dagger} c_{\mathbf{i} \downarrow}^{\dagger}+h . c .
$$

$$
H_{\xi}:=(1-\xi) H_{0}+\xi H \quad Q(\xi):=\langle\hat{Q}\rangle_{H_{\xi}} \hat{=} \sum_{N=0}^{\infty} Q_{N} \xi^{N}
$$

$$
H_{0}=H_{\mathrm{kin}}-\sum_{\sigma} \mu_{0, \sigma} N_{\sigma}+H_{\mathrm{pair}}^{\left(\Delta_{0}\right)} \quad H_{\mathrm{pair}}^{\left(\Delta_{0}\right)}:=\Delta_{0} \sum_{\mathbf{i}} c_{\mathbf{i} \uparrow}^{\dagger} c_{\mathbf{i} \downarrow}^{\dagger}+h . c .
$$

$$
\begin{gathered}
H_{\xi}:=(1-\xi) H_{0}+\xi H \\
(1-\xi) \Delta_{0} \Leftrightarrow \begin{array}{c}
\text { symmetry } \\
\text { breaking } \\
\text { field }
\end{array} \\
H_{\xi} \ni(1-\xi) H_{\text {pair }}^{\left(\Delta_{0}\right)}=H_{\text {pair }}^{\left((1-\xi) \Delta_{0}\right)}
\end{gathered}
$$

unperturbed quadratic Hamiltonian:
breaks $U(1)$ symmetry

$$
H_{0}=H_{\mathrm{kin}}-\sum_{\sigma} \mu_{0, \sigma} N_{\sigma}+H_{\mathrm{pair}}^{\left(\Delta_{0}\right)} \quad H_{\mathrm{pair}}^{\left(\Delta_{0}\right)}:=\Delta_{0} \sum_{\mathbf{i}} c_{\mathbf{i} \uparrow}^{\dagger} c_{\mathbf{i} \downarrow}^{\dagger}+h . c .
$$

$$
H_{\xi}:=(1-\xi) H_{0}+\xi H
$$

$$
Q(\xi):=\langle\hat{Q}\rangle_{H_{\xi}} \hat{=} \sum_{N=0}^{\infty} Q_{N} \xi^{N}
$$

$$
\left.(1-\xi) \Delta_{0} \Leftrightarrow \begin{array}{c}
\text { symmetry } \\
\text { breaking } \\
\text { field }
\end{array}\right\} H_{\xi} \ni(1-\xi) H_{\text {pair }}^{\left(\Delta_{0}\right)}=H_{\text {pair }}^{\left((1-\xi) \Delta_{0}\right)}
$$

unperturbed quadratic Hamiltonian:
breaks $U(1)$ symmetry

$$
H_{0}=H_{\mathrm{kin}}-\sum_{\sigma} \mu_{0, \sigma} N_{\sigma}+H_{\mathrm{pair}}^{\left(\Delta_{0}\right)} \quad H_{\mathrm{pair}}^{\left(\Delta_{0}\right)}:=\Delta_{0} \sum_{\mathbf{i}} c_{\mathbf{i} \uparrow}^{\dagger} c_{\mathbf{i} \downarrow}^{\dagger}+h . c .
$$

$$
H_{\xi}:=(1-\xi) H_{0}+\xi H
$$

$$
Q(\xi):=\langle\hat{Q}\rangle_{H_{\xi}} \hat{=} \sum_{N=0}^{\infty} Q_{N} \xi^{N}
$$

$$
\left.(1-\xi) \Delta_{0} \Leftrightarrow \begin{array}{c}
\text { symmetry } \\
\text { breaking } \\
\text { field }
\end{array}\right\} H_{\xi} \ni(1-\xi) H_{\text {pair }}^{\left(\Delta_{0}\right)}=H_{\text {pair }}^{\left((1-\xi) \Delta_{0}\right)}
$$

unperturbed quadratic Hamiltonian:
breaks $U(1)$ symmetry

$$
H_{0}=H_{\mathrm{kin}}-\sum_{\sigma} \mu_{0, \sigma} N_{\sigma}+H_{\mathrm{pair}}^{\left(\Delta_{0}\right)} \quad H_{\mathrm{pair}}^{\left(\Delta_{0}\right)}:=\Delta_{0} \sum_{\mathbf{i}} c_{\mathrm{i} \uparrow}^{\dagger} \uparrow_{\mathbf{i} \downarrow}^{\dagger}+h . c .
$$

$$
H_{\xi}:=(1-\xi) H_{0}+\xi H
$$

$$
Q(\xi):=\langle\hat{Q}\rangle_{H_{\xi}} \hat{=} \sum_{N=0}^{\infty} Q_{N} \xi^{N}
$$

$$
\left.(1-\xi) \Delta_{0} \Leftrightarrow \begin{array}{c}
\text { symmetry } \\
\text { breaking } \\
\text { field }
\end{array}\right\} H_{\xi} \ni(1-\xi) H_{\text {pair }}^{\left(\Delta_{0}\right)}=H_{\text {pair }}^{\left((1-\xi) \Delta_{0}\right)}
$$

unperturbed quadratic Hamiltonian:
breaks $U(1)$ symmetry

$$
H_{0}=H_{\mathrm{kin}}-\sum_{\sigma} \mu_{0, \sigma} N_{\sigma}+H_{\mathrm{pair}}^{\left(\Delta_{0}\right)} \quad H_{\mathrm{pair}}^{\left(\Delta_{0}\right)}:=\Delta_{0} \sum_{\mathbf{i}} c_{\mathbf{i} \uparrow}^{\dagger} \uparrow_{\mathbf{i} \downarrow}^{\dagger}+h . c .
$$

$$
H_{\xi}:=(1-\xi) H_{0}+\xi H
$$

$$
Q(\xi):=\langle\hat{Q}\rangle_{H_{\xi}} \hat{=} \sum_{N=0}^{\infty} Q_{N} \xi^{N}
$$

$$
\left.(1-\xi) \Delta_{0} \Leftrightarrow \begin{array}{c}
\text { symmetry } \\
\text { breaking } \\
\text { field }
\end{array}\right\} H_{\xi} \ni(1-\xi) H_{\text {pair }}^{\left(\Delta_{0}\right)}=H_{\text {pair }}^{\left((1-\xi) \Delta_{0}\right)}
$$

unperturbed quadratic Hamiltonian:
breaks $U(1)$ symmetry

$$
H_{0}=H_{\mathrm{kin}}-\sum_{\sigma} \mu_{0, \sigma} N_{\sigma}+H_{\mathrm{pair}}^{\left(\Delta_{0}\right)} \quad H_{\mathrm{pair}}^{\left(\Delta_{0}\right)}:=\Delta_{0} \sum_{\mathbf{i}} c_{\mathbf{i} \uparrow}^{\dagger} \uparrow_{\mathbf{i} \downarrow}^{\dagger}+h . c .
$$

$$
H_{\xi}:=(1-\xi) H_{0}+\xi H
$$

$$
Q(\xi):=\langle\hat{Q}\rangle_{H_{\xi}} \hat{=} \sum_{N=0}^{\infty} Q_{N} \xi^{N}
$$

$$
\left.(1-\xi) \Delta_{0} \Leftrightarrow \begin{array}{c}
\text { symmetry } \\
\text { breaking } \\
\text { field }
\end{array}\right\} H_{\xi} \ni(1-\xi) H_{\text {pair }}^{\left(\Delta_{0}\right)}=H_{\text {pair }}^{\left((1-\xi) \Delta_{0}\right)}
$$

unperturbed quadratic Hamiltonian:
breaks $U(1)$ symmetry

$$
H_{0}=H_{\mathrm{kin}}-\sum_{\sigma} \mu_{0, \sigma} N_{\sigma}+H_{\mathrm{pair}}^{\left(\Delta_{0}\right)} \quad H_{\mathrm{pair}}^{\left(\Delta_{0}\right)}:=\Delta_{0} \sum_{\mathbf{i}} c_{\mathbf{i} \uparrow}^{\dagger} c_{\mathbf{i} \downarrow}^{\dagger}+\text { h.c. }
$$

$$
H_{\xi}:=(1-\xi) H_{0}+\xi H
$$

$$
Q(\xi):=\langle\hat{Q}\rangle_{H_{\xi}} \hat{=} \sum_{N=0}^{\infty} Q_{N} \xi^{N}
$$

$$
(1-\xi) \Delta_{0} \Leftrightarrow \underset{\substack{\text { symmetry } \\ \text { breaking } \\ \text { field }}}{\substack{\text { and }}}
$$

$$
H_{\xi} \ni(1-\xi) H_{\mathrm{pair}}^{\left(\Delta_{0}\right)}=H_{\mathrm{pair}}^{\left((1-\xi) \Delta_{0}\right)}
$$

unperturbed quadratic Hamiltonian:
breaks $U(1)$ symmetry

$$
H_{0}=H_{\text {kin }}-\sum_{\sigma} \mu_{0, \sigma} N_{\sigma}+H_{\mathrm{pair}}^{\left(\Delta_{0}\right)} \quad H_{\mathrm{pair}}^{\left(\Delta_{0}\right)}:=\Delta_{0} \sum_{\mathbf{i}} c_{\mathbf{i} \uparrow}^{\dagger} c_{\mathbf{i} \downarrow}^{\dagger}+\text { h.c. }
$$

$$
H_{\xi}:=(1-\xi) H_{0}+\xi H
$$

$$
Q(\xi):=\langle\hat{Q}\rangle_{H_{\xi}} \hat{=} \sum_{N=0}^{\infty} Q_{N} \xi^{N}
$$

$$
(1-\xi) \Delta_{0} \Leftrightarrow \underset{\substack{\text { symmetry } \\ \text { breaking } \\ \text { field }}}{\substack{\text { s. }}}
$$

$$
H_{\xi} \ni(1-\xi) H_{\mathrm{pair}}^{\left(\Delta_{0}\right)}=H_{\mathrm{pair}}^{\left((1-\xi) \Delta_{0}\right)}
$$

$$
H_{0}=H_{\text {kin }}-\sum_{\sigma} \mu_{0, \sigma} N_{\sigma}+H_{\mathrm{pair}}^{\left(\Delta_{0}\right)} \quad H_{\mathrm{pair}}^{\left(\Delta_{0}\right)}:=\Delta_{0} \sum_{\mathbf{i}} c_{\mathbf{i} \uparrow \uparrow}^{\dagger} \uparrow_{\mathbf{i} \downarrow}^{\dagger}+h . c .
$$

$$
H_{\xi}:=(1-\xi) H_{0}+\xi H \quad Q(\xi):=\langle\hat{Q}\rangle_{H_{\xi}} \hat{=} \sum_{N=0}^{\infty} Q_{N} \xi^{N}
$$

$$
(1-\xi) \Delta_{0} \Leftrightarrow \stackrel{\begin{array}{c}
\text { symmetry } \\
\text { breaking } \\
\text { field }
\end{array}}{\text {. }}
$$

$$
H_{\xi} \ni(1-\xi) H_{\mathrm{pair}}^{\left(\Delta_{0}\right)}=H_{\mathrm{pair}}^{\left((1-\xi) \Delta_{0}\right)}
$$

$$
H_{0}=H_{\text {kin }}-\sum_{\sigma} \mu_{0, \sigma} N_{\sigma}+H_{\mathrm{pair}}^{\left(\Delta_{0}\right)} \quad H_{\mathrm{pair}}^{\left(\Delta_{0}\right)}:=\Delta_{0} \sum_{\mathbf{i}} c_{\mathbf{i} \uparrow \uparrow}^{\dagger} \uparrow_{\mathbf{i} \downarrow}^{\dagger}+h . c .
$$

$$
H_{\xi}:=(1-\xi) H_{0}+\xi H
$$

$$
Q(\xi):=\langle\hat{Q}\rangle_{H_{\xi}} \hat{=} \sum_{N=0}^{\infty} Q_{N} \xi^{N}
$$

$$
(1-\xi) \Delta_{0} \Leftrightarrow \underset{\substack{\text { symmetry } \\ \text { breaking } \\ \text { field }}}{\substack{\text { s. }}}
$$

$$
H_{\xi} \ni(1-\xi) H_{\text {pair }}^{\left(\Delta_{0}\right)}=H_{\text {pair }}^{\left((1-\xi) \Delta_{0}\right)}
$$

unperturbed quadratic Hamiltonian:
breaks $U(1)$ symmetry

$$
H_{0}=H_{\mathrm{kin}}-\sum_{\sigma} \mu_{0, \sigma} N_{\sigma}+H_{\mathrm{pair}}^{\left(\Delta_{0}\right)} \quad H_{\mathrm{pair}}^{\left(\Delta_{0}\right)}:=\Delta_{0} \sum_{\mathbf{i}} c_{\mathbf{i} \uparrow}^{\dagger} c_{\mathbf{i} \downarrow}^{\dagger}+\text { h.c. }
$$

$$
H_{\xi}:=(1-\xi) H_{0}+\xi H
$$

$$
Q(\xi):=\langle\hat{Q}\rangle_{H_{\xi}} \hat{=} \sum_{N=0}^{\infty} Q_{N} \xi^{N}
$$

$$
(1-\xi) \Delta_{0} \Leftrightarrow \underset{\substack{\text { symmetry } \\ \text { breaking } \\ \text { field }}}{ }
$$

$$
H_{\xi} \ni(1-\xi) H_{\text {pair }}^{\left(\Delta_{0}\right)}=H_{\text {pair }}^{\left((1-\xi) \Delta_{0}\right)}
$$

order parameter $: \mathcal{O}(\xi):=\left\langle c_{\mathbf{0} \uparrow} c_{\mathbf{0} \downarrow}\right\rangle_{H_{\xi}} \underset{\xi \rightarrow 1^{-}}{ } \mathcal{O} \neq 0$ spontaneous symmetry breaking - thermodynamic limit $L \rightarrow \infty$ before $\xi \rightarrow 1^{-}$

$$
\mathcal{O}(\xi)=\sum_{N=0}^{\infty} \mathcal{O}_{N} \xi^{N} \quad \mathcal{O}=\mathcal{O}\left(\xi \rightarrow 1^{-}\right)=\sum_{N=0}^{\infty} \mathcal{O}_{N}
$$

$$
H_{0}=H_{\text {kin }}-\sum_{\sigma} \mu_{0, \sigma} N_{\sigma}+H_{\text {pair }}^{\left(\Delta_{0}\right)} \quad H_{\text {pair }}^{\left(\Delta_{0}\right)}:=\Delta_{0} \sum_{\mathbf{i}} c_{\mathbf{i} \uparrow \uparrow}^{\dagger} c_{\mathbf{i} \downarrow}^{\dagger}+h . c .
$$

$$
H_{\xi}:=(1-\xi) H_{0}+\xi H \quad Q(\xi):=\langle\hat{Q}\rangle_{H_{\xi}} \hat{=} \sum_{N=0}^{\infty} Q_{N} \xi^{N}
$$

unperturbed quadratic Hamiltonian:

breaks $U(1)$ symmetry
$H_{\text {pair }}^{\left(\Delta_{0}\right)}:=\Delta_{0} \sum_{\mathbf{i}} c_{\mathbf{i} \uparrow}^{\dagger} c_{\mathbf{i} \downarrow}^{\dagger}+h . c$.

$$
H_{\xi}:=(1-\xi) H_{0}+\xi H \quad Q(\xi):=\langle\hat{Q}\rangle_{H_{\xi}} \hat{=} \sum_{N=0}^{\infty} Q_{N} \xi^{N}
$$

natural choice: BCS mean-field theory

$$
\begin{gathered}
\mu_{0, \sigma}=\mu_{\sigma}-U\left\langle n_{\mathbf{0},-\sigma}\right\rangle_{H_{0}} \\
\Delta_{0}=\Delta_{\mathrm{MF}}:=-U\left\langle c_{\mathbf{0} \uparrow} c_{\mathbf{0} \downarrow}\right\rangle_{H_{0}}
\end{gathered}
$$

unperturbed quadratic Hamiltonian:

breaks $U(1)$ symmetry
$H_{\text {pair }}^{\left(\Delta_{0}\right)}:=\Delta_{0} \sum_{\mathbf{i}} c_{\mathbf{i} \uparrow}^{\dagger} c_{\mathbf{i} \downarrow}^{\dagger}+h . c$.

$$
H_{\xi}:=(1-\xi) H_{0}+\xi H \quad Q(\xi):=\langle\hat{Q}\rangle_{H_{\xi}} \hat{=} \sum_{N=0}^{\infty} Q_{N} \xi^{N}
$$

natural choice:
BCS mean-field theory $\quad \Delta_{0}=\Delta_{\mathrm{MF}}:=-U\left\langle c_{\mathbf{0} \uparrow} c_{\mathbf{0} \downarrow}\right\rangle_{H_{0}}$
also $\Delta_{0} \neq \Delta_{\mathrm{MF}}$

unperturbed quadratic Hamiltonian:

breaks $U(1)$ symmetry
$H_{0}=H_{\text {kin }}-\sum_{\sigma} \mu_{0, \sigma} N_{\sigma}+H_{\text {pair }}^{\left(\Delta_{0}\right)} \quad H_{\text {pair }}^{\left(\Delta_{0}\right)}:=\Delta_{0} \sum_{\mathbf{i}} c_{\mathbf{i} \uparrow}^{\dagger} c_{\mathbf{i} \downarrow}^{\dagger}+h . c$.

$$
H_{\xi}:=(1-\xi) H_{0}+\xi H \quad Q(\xi):=\langle\hat{Q}\rangle_{H_{\xi}} \hat{=} \sum_{N=0}^{\infty} Q_{N} \xi^{N}
$$

natural choice:

$$
\begin{gathered}
\mu_{0, \sigma}=\mu_{\sigma}-U\left\langle n_{\mathbf{0},-\sigma}\right\rangle_{H_{0}} \\
{ }_{0}=\Delta_{\mathrm{MF}}:=-U\left\langle c_{\mathbf{0} \uparrow} c_{\mathbf{0} \downarrow}\right\rangle_{H_{0}}
\end{gathered}
$$

also $\Delta_{0} \neq \Delta_{\mathrm{MF}}$ BCS mean-field theory $\quad \Delta_{0}=\Delta_{\mathrm{MF}}:=-U\left\langle c_{\mathbf{0} \uparrow} c_{\mathbf{0} \downarrow}\right\rangle_{H_{0}}$

unperturbed quadratic Hamiltonian:
breaks $U(1)$ symmetry

$$
H_{0}=H_{\mathrm{kin}}-\sum_{\sigma} \mu_{0, \sigma} N_{\sigma}+H_{\mathrm{pair}}^{\left(\Delta_{0}\right)} \quad H_{\mathrm{pair}}^{\left(\Delta_{0}\right)}:=\Delta_{0} \sum_{\mathbf{i}} c_{\mathbf{i} \uparrow \uparrow}^{\dagger} \uparrow_{\mathbf{i} \downarrow}^{\dagger}+h . c .
$$

$$
H_{\xi}:=(1-\xi) H_{0}+\xi H \quad Q(\xi):=\langle\hat{Q}\rangle_{H_{\xi}} \hat{=} \sum_{N=0}^{\infty} Q_{N} \xi^{N}
$$

$$
\begin{array}{ll}
\quad \text { natural choice: } & \mu_{0, \sigma}=\mu_{\sigma}-U\left\langle n_{\mathbf{0},-\sigma}\right\rangle_{H_{0}} \\
\text { BCS mean-field theory } & \Delta_{0}=\Delta_{\mathrm{MF}}:=-U\left\langle c_{\mathbf{0} \uparrow} c_{\mathbf{0} \downarrow}\right\rangle_{H_{0}}
\end{array}
$$

large distances: small contribution
broken symmetry

algorithm: CDet [Rossi 2017] with Nambu propagators

$$
\binom{\mathcal{G}_{00}\left(X-X^{\prime}\right) \mathcal{G}_{01}\left(X-X^{\prime}\right)}{\mathcal{G}_{10}\left(X-X^{\prime}\right) \mathcal{G}_{11}\left(X-X^{\prime}\right)}:=-\left(\begin{array}{ll}
\left\langle\mathrm{T} c_{\uparrow}^{\dagger}(X) c_{\uparrow}\left(X^{\prime}\right)\right\rangle_{H_{0}} & \left\langle\mathrm{~T} c_{\uparrow}^{\dagger}(X) c_{\downarrow}^{\dagger}\left(X^{\prime}\right)\right\rangle_{H_{0}} \\
\left\langle\mathrm{~T} c_{\downarrow}(X) c_{\uparrow}\left(X^{\prime}\right)\right\rangle_{H_{0}} & \left\langle\mathrm{~T} c_{\downarrow}(X) c_{\downarrow}^{\dagger}\left(X^{\prime}\right)\right\rangle_{H_{0}}
\end{array}\right)
$$

algorithm: CDet [Rossi 2017] with Nambu propagators

$$
\binom{\mathcal{G}_{00}\left(X-X^{\prime}\right) \mathcal{G}_{01}\left(X-X^{\prime}\right)}{\mathcal{G}_{10}\left(X-X^{\prime}\right) \mathcal{G}_{11}\left(X-X^{\prime}\right)}:=-\left(\begin{array}{l}
\left\langle\mathrm{T} c_{\uparrow}^{\dagger}(X) c_{\uparrow}\left(X^{\prime}\right)\right\rangle_{H_{0}}\left\langle\mathrm{~T} c_{\uparrow}^{\dagger}(X) c_{\downarrow}^{\dagger}\left(X^{\prime}\right)\right\rangle_{H_{0}} \\
\left\langle\mathrm{~T} c_{\downarrow}(X) c_{\uparrow}\left(X^{\prime}\right)\right\rangle_{H_{0}}
\end{array}\left\langle\mathrm{~T} c_{\downarrow}(X) c_{\downarrow}^{\dagger}\left(X^{\prime}\right)\right\rangle_{H_{0}} .4\right)
$$

$$
\begin{array}{rlc}
\mathcal{O}_{N}=-\frac{(-U)^{N}}{N!} \int d X_{1} \ldots d X_{N} \operatorname{cdet}(A) & X=(\mathbf{i}, \tau) \\
\operatorname{cdet}(A) & =\operatorname{det}(A)-\sum(\text { disconnected diagrams }) & \binom{\text { recursively }}{3^{N} \text { operations }}
\end{array}
$$

$$
A:=\left(\begin{array}{cccccc}
0 & \delta_{\mathrm{sh}} & \ldots & \mathcal{G}_{00}\left(X_{1}-X_{N}\right) & \mathcal{G}_{01}\left(X_{1}-X_{N}\right) & \mathcal{G}_{0 \alpha}\left(X_{1}\right) \\
\delta_{\mathrm{sh}} & 0 & \cdots & \mathcal{G}_{10}\left(X_{1}-X_{N}\right) & \mathcal{G}_{11}\left(X_{1}-X_{N}\right) & \mathcal{G}_{1 \alpha}\left(X_{1}\right) \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
\mathcal{G}_{00}\left(X_{N}-X_{1}\right) & \mathcal{G}_{01}\left(X_{N}-X_{1}\right) & \ldots & 0 & \delta_{\mathrm{sh}} & \mathcal{G}_{0 \alpha}\left(X_{N}\right) \\
\mathcal{G}_{10}\left(X_{N}-X_{1}\right) & \mathcal{G}_{11}\left(X_{N}-X_{1}\right) & \ldots & \delta_{\mathrm{sh}} & 0 & \mathcal{G}_{1 \alpha}\left(X_{N}\right) \\
\mathcal{G}_{\alpha^{\prime} 0}\left(-X_{1}\right) & \mathcal{G}_{\alpha^{\prime} 1}\left(-X_{1}\right) & \ldots & \mathcal{G}_{\alpha^{\prime} 0}\left(-X_{N}\right) & \mathcal{G}_{\alpha^{\prime} 11}\left(-X_{N}\right) & \mathcal{G}_{\alpha^{\prime} \alpha}(0)
\end{array}\right)
$$

algorithm: CDet [Rossi 2017] with Nambu propagators

$$
\left(\begin{array}{ll}
\mathcal{G}_{00}\left(X-X^{\prime}\right) \mathcal{G}_{01}\left(X-X^{\prime}\right) \\
\mathcal{G}_{10}\left(X-X^{\prime}\right) & \mathcal{G}_{11}\left(X-X^{\prime}\right)
\end{array}\right):=-\left(\begin{array}{ll}
\left\langle\mathrm{T} c_{\uparrow}^{\dagger}(X) c_{\uparrow}\left(X^{\prime}\right)\right\rangle_{H_{0}} & \left\langle\mathrm{~T} c_{\uparrow}^{\dagger}(X) c_{\downarrow}^{\dagger}\left(X^{\prime}\right)\right\rangle_{H_{0}} \\
\left\langle\mathrm{~T} c_{\downarrow}(X) c_{\uparrow}\left(X^{\prime}\right)\right\rangle_{H_{0}} & \left\langle\mathrm{~T} c_{\downarrow}(X) c_{\downarrow}^{\dagger}\left(X^{\prime}\right)\right\rangle_{H_{0}}
\end{array}\right)
$$

$$
\mathcal{O}_{N}=-\frac{(-U)^{N}}{N!} \int d X_{1} \ldots d X_{N} \operatorname{cdet}(A) \quad X=(\mathbf{i}, \tau)
$$

$$
\operatorname{cdet}(A)=\operatorname{det}(A)-\sum(\text { disconnected diagrams }) \quad\binom{\text { recursively }}{3^{N} \text { operations }}
$$

$$
A:=\left(\begin{array}{cccccc}
0 & \delta_{\mathrm{sh}} & \ldots & \mathcal{G}_{00}\left(X_{1}-X_{N}\right) & \mathcal{G}_{01}\left(X_{1}-X_{N}\right) & \mathcal{G}_{0 \alpha}\left(X_{1}\right) \\
\delta_{\mathrm{sh}} & 0 & \cdots & \mathcal{G}_{10}\left(X_{1}-X_{N}\right) & \mathcal{G}_{11}\left(X_{1}-X_{N}\right) & \mathcal{G}_{1 \alpha}\left(X_{1}\right) \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
\mathcal{G}_{00}\left(X_{N}-X_{1}\right) & \mathcal{G}_{01}\left(X_{N}-X_{1}\right) & \cdots & 0 & \vdots & \delta_{\mathrm{sh}}
\end{array}\right.
$$

$$
\delta_{\mathrm{sh}}=0 \text { if } \Delta_{0}=\Delta_{\mathrm{MF}}
$$

$$
\left(\alpha=1, \alpha^{\prime}=0\right)
$$

implementation: Fast Feynman Diagrammatics library [Rossi \& Simkovic] with Many Configuration MC
[Simkovic \& Rossi 2021]

RESULTS

$$
\mu_{\uparrow}=\mu+h, \quad \mu_{\downarrow}=\mu-h
$$

$$
\begin{aligned}
& t \equiv 1, U=-5 \\
& \mu=-3.38 \Rightarrow\left\langle n_{\uparrow}+n_{\downarrow}\right\rangle \simeq 0.5(\text { quarter filling })
\end{aligned}
$$

$T_{c}(h=0)=: T_{c}^{0}$

$\mathrm{h}=0$:
 sign-free AFQMC
 [Sewer et al, 2002]

$$
T=1 / 8 \approx T_{c}^{0} / 2, \quad h=0
$$

$$
T=1 / 8 \approx T_{c}^{0} / 2, \quad h=0
$$

$$
T=1 / 8 \approx T_{c}^{0} / 2, \quad h=0
$$

$$
T=1 / 8 \approx T_{c}^{0} / 2, \quad h=0
$$

$$
T=1 / 8 \approx T_{c}^{0} / 2, \quad h=0
$$

$$
T=1 / 8 \approx T_{c}^{0} / 2, \quad h=0
$$

benchmark vs.
Determinant Diagrammatic MC [Burovski's code]

Polarized regime

$$
h \neq 0 \quad\left(h \equiv \frac{\mu_{\uparrow}-\mu_{\downarrow}}{2}\right)
$$

no unbiased results available (sign problem)
expected phase-diagram topology (U not very large \& discarding FFLO) from BCS-MF; DMFT [Dao et al. 2008; Koga \& Werner 2010] \& cold-atom experiments in c° space [ENS \& MIT, 2008-2010]

Polarized regime

$$
h \neq 0 \quad\left(h \equiv \frac{\mu_{\uparrow}-\mu_{\downarrow}}{2}\right)
$$

no unbiased results available (sign problem)
expected phase-diagram topology (U not very large \& discarding FFLO) from BCS-MF; DMFT [Dao et al. 2008; Koga \& Werner 2010] \& cold-atom experiments in c° space [ENS \& MIT, 2008-2010]

$$
T \approx T_{c}^{0} / 4
$$

$T=1 / 16 \approx T_{c}^{0} / 4$

Metastable regime: slowly divergent series
near ($1^{\text {st }}$ order) transition point large energy barrier
\rightarrow weak essential singularity

Polarized superfluid

Polarized superfluid

Polarized superfluid

Polarized superfluid

Polarized superfluid
Quasi-particle description

Polarized superfluid
Quasi-particle description

$$
\begin{aligned}
& H_{\text {eff }}=\sum_{\substack{\vec{k} \\
\sigma= \pm 1}}\left(E_{\vec{k}}-h \cdot \sigma\right) \underbrace{b_{k \sigma}^{+} b_{k+\sigma}^{k}}_{\text {Fermionic }} \\
& \text { 岁 }\left[b_{k, \sigma} ; N_{\uparrow}-N_{\downarrow}\right]=\sigma \cdot b_{k, \sigma} \\
& n_{\uparrow}-n_{\downarrow}=\frac{1}{L^{3}} \sum_{\vec{k}}\left[\frac{1}{e^{\beta\left(E_{k}-h\right)}+1}-\frac{1}{e^{\beta\left(E_{k}+h\right)}+1}\right]
\end{aligned}
$$

Polarized superfluid
Quasi-particle description

$$
\begin{aligned}
& H_{\text {eff }}=\sum_{\substack{\vec{k} \\
\sigma= \pm 1}}\left(E_{\vec{k}}-h \cdot \sigma\right) \underbrace{b_{k \sigma}^{+} b_{k+\sigma}^{k}}_{\text {Fermionic }} \\
& \stackrel{\Delta}{4}\left[b_{k, \sigma} ; N_{\uparrow}-N_{\downarrow}\right]=\sigma \cdot b_{k, \sigma} \\
& n_{\uparrow}-n_{\downarrow}=\frac{1}{L^{3}} \sum_{\vec{k}}\left[\frac{1}{e^{\beta\left(E_{k}-h\right)}+X}-\frac{1}{e^{\beta\left(E_{k}+h\right)}+X}\right]
\end{aligned}
$$

Polarized superfluid
Quasi-particle description

$$
\begin{aligned}
& \stackrel{\Delta}{U}\left[b_{k, \sigma} ; N_{\uparrow}-N_{\downarrow}\right]=\sigma \cdot b_{k, \sigma} \\
n_{\uparrow}-n_{\downarrow}= & \frac{1}{L^{3}} \sum_{\vec{k}}\left[\frac{1}{e^{\beta\left(E_{k}-h\right)}+X}-\frac{1}{e^{\beta\left(E_{k}+k\right)}+X}\right] \\
= & \underbrace{\left(\frac{1}{L^{3}} \sum_{\vec{k}} e^{-\beta E_{k}}\right)\left(e^{\beta h}-e^{-\beta h}\right)}_{n_{9 p}(T)}
\end{aligned}
$$

Polarized superfluid
Quasi-particle description

$$
H_{\text {eff }}=\sum_{\substack{k \\ \sigma= \pm 1}} \underbrace{\left(E_{\vec{k}}-h \cdot \sigma\right) \underbrace{b_{k} \sigma}_{\text {Fermionic }} b_{k, k}^{+}}_{\Delta h \text {-independent }}
$$

$$
\begin{aligned}
& \leftrightharpoons\left[b_{k, \sigma} ; N_{\uparrow}-N_{\downarrow}\right]=\sigma \cdot b_{k, \sigma} \\
& n_{\uparrow}-n_{\downarrow}=\frac{1}{L^{3}} \sum_{\vec{k}}\left[\frac{1}{e^{\beta\left(E_{k 2}^{2}-h\right)}+X}-\frac{1}{e^{\beta\left(E_{k 2}+h\right)}+X}\right] \\
& =\left(\frac{1}{L^{3}} \sum_{k} e^{-\beta E_{k}}\right)\left(e^{\beta h}-e^{-\beta h}\right) \\
& \begin{aligned}
& \quad E_{k \sim} \geqslant E_{g} \quad\left(g_{g f}\right) \\
& \Rightarrow \quad n_{q p}(T)<e^{-\beta} E_{g}
\end{aligned}
\end{aligned}
$$

$$
\text { Fit: } \begin{aligned}
m & =n_{q p} \cdot\left(e^{\beta h}-e^{-\beta h}\right) \\
n_{q p} & \simeq 0,0036
\end{aligned}
$$

$$
\text { Fit: } \begin{aligned}
m & =n_{9 p} \cdot\left(e^{\beta h}-e^{-\beta h}\right) \\
n_{9 p} & \simeq 0,0036 \Rightarrow E_{g}<1,07
\end{aligned}
$$

Large-order behavior of SF expansion

$$
(1-\xi) \Leftrightarrow \underset{\substack{\text { symmetry } \\ \text { breaking } \\ \text { field }}}{\substack{\text { and } \\ \hline}}
$$

Goldstone singularity [Patashinskii-Pokrovskii / Brézin-Wallace, 1973]

$$
\mathcal{O}(\xi) \underset{\xi \rightarrow 1^{-}}{=} \mathcal{O}+\operatorname{cst} \sqrt{1-\xi}+\ldots \quad\left(T<T_{c}\right)
$$

Large-order behavior of SF expansion

$$
(1-\xi) \Leftrightarrow \underset{\substack{\text { symmetry } \\ \text { breaking } \\ \text { field }}}{ }
$$

Goldstone singularity [Patashinskii-Pokrovskii / Brézin-Wallace, 1973]

$$
\mathcal{O}(\xi) \underset{\xi \rightarrow 1^{-}}{=} \mathcal{O}+\operatorname{cst} \sqrt{1-\xi}+\ldots \quad\left(T<T_{c}\right)
$$

$$
\begin{gathered}
\frac{T}{\pi}\left(\frac{\mathcal{O}}{2 D_{s}}\right)^{3 / 2} \sqrt{\Delta_{0}} \\
\text { SF stiffness }
\end{gathered}
$$

Large-order behavior of SF expansion

$$
(1-\xi) \Leftrightarrow \underset{\substack{\text { symmetry } \\ \text { breaking } \\ \text { field }}}{ }
$$

Goldstone singularity [Patashinskii-Pokrovskii / Brézin-Wallace, 1973]

$$
\mathcal{O}(\xi) \underset{\xi \rightarrow 1^{-}}{=} \mathcal{O}+\text { cst } \sqrt{1-\xi}+\ldots \quad\left(T<T_{c}\right)
$$

$$
\begin{gathered}
\frac{T}{\pi}\left(\frac{\mathcal{O}}{2 D_{s}}\right)^{3 / 2} \sqrt{\Delta_{0}} \\
\text { SF stiffness }
\end{gathered}
$$

$$
\begin{gathered}
\Rightarrow \quad \mathcal{O}_{N} \underset{N \rightarrow \infty}{\sim} \frac{\mathrm{cst}}{N^{3 / 2}} \\
P_{N} \underset{N \rightarrow \infty}{\sim} \frac{\mathrm{cst}}{N^{5 / 2}}
\end{gathered}
$$

Large-order behavior of SF expansion

$(1-\xi) \Leftrightarrow \underset{\substack{\text { symmetry } \\ \text { breaking }}}{\substack{\text { and }}}$ field

Goldstone singularity [Patashinskii-Pokrovskii / Brézin-Wallace, 1973]

$$
\mathcal{O}(\xi) \underset{\xi \rightarrow 1^{-}}{=} \mathcal{O}+\text { cst } \sqrt{1-\xi}+\ldots \quad\left(T<T_{c}\right)
$$

Large-order behavior of SF expansion

Goldstone singularity [Patashinskii-Pokrovskii / Brézin-Wallace, 1973]

$$
\mathcal{O}(\xi) \underset{\xi \rightarrow 1^{-}}{=} \mathcal{O}+\operatorname{cst} \sqrt{1-\xi}+\ldots \quad\left(T<T_{c}\right)
$$

OUTLOOK

- bare vertex $U \rightarrow$ ladders
[CDet, Normal: Simkovic et al. 2020]
\rightarrow strong coupling polarized SF at T=0? (gapless SF, "breached-pair phase")
- FFLO? MF: yes $H_{0} \quad \exists \sum_{\vec{i}} \Delta_{0}(\vec{r}) c_{\vec{i} \uparrow}^{+} c_{\vec{i} \downarrow}^{+}+h . c$.
- 2D: BKT, algebraic order

- co space: unitary gas
- filling $\rightarrow 0$
- directly in C^{0} :
zero convergence radius, but resummable as in Normal phase [Rossi et al. 2018] ?
- nuclear phys: expansion around Hartree-Fock-Bogolioubov (~BCS-MF) yields promising results already at $\mathrm{N}_{\max }=3 \quad$ [Tichai et al. 2018]
our suggestion: MC in position-representation
[\neq Li-Wallenberger-Gull 2020]

