The Out-of-Equilibrium Anderson impurity model :
a numerically exact approach whith Diagrammatic Quantum Quasi Monte-Carlo

Calculating Feynman diagrams analytically is impractical beyond the first few orders. In this talk, I will discuss recent numerical algorithms that allow one to calculate all diagrams up to order 20 or more. I will show how this technique can be used to
study the Anderson model, including for parameters deep into the Kondo regime both at
equilibrium (in precise agreemeent with other techniques) and in out-ofequilibrium situations
that were not accessible so far.

Correlations and computational quantum transport: automatic calculation of Feynman diagrams at large orders.

While numerical simulations of quantum transport at the mean field level are by now standard, including even the simplest effects of correlations such as Coulomb blockade is a struggle and one almost always has to resort to uncontroled approximations or drastic simplifications to account for more complexe effects such as Kondo physics.
Feynman diagrams are a natural formalism to express correlations and they circonvoluate working at the raw Hilbert space level with many-body wavefunctions as is often done numerically (either in quantum Monte-Carlo or tensor network techniques). An immense litterature study different ways to find the most important classes of diagrams and calculate them analytically. In this talk, I will discuss the current effort done in my group to design algorithms that numerically sum all diagrams in a systematic way, order by order up to order 20 or more. I will showcase how this technique can capture out-ofequilibrium effects deep in the Kondo regime.

# CORRELATIONS AND COMPUTATIONAL QUANTUM TRANSPORT: AN APPROACH FOR CALCULATING FEYNMAN DIAGRAMS AT LARGE ORDERS 

Xavier WAINTAL, CEA Grenoble, Pheliqs IRIG With CORENTINN BERTRAND, MARJAAN MACEK, PHILIIPP DUIMITRESCU, Olivier Parcollet, Bill Triggs and Serge Florens

## TOOLS FOR QUANTUM TRANSPORT

$$
\begin{aligned}
& \hat{H}=\sum_{i j} H_{i j} c_{i}^{\dagger} c_{j} \\
& \hat{H}(t)=\sum_{i j} H_{i j}(t) c_{i}^{+} c_{j}
\end{aligned}
$$



## HTTP://KWANT-PROJECT.ORG

With TU Delft (Akhmerov, Wimmer et al.)


## HTTP://TKWANT.KWANT-PROJECT.ORG

$$
\hat{\mathbf{H}}(t)=\hat{\mathbf{H}}_{0}(t)+U \hat{\mathbf{H}}_{\mathrm{int}}(t)
$$

$\hat{\mathbf{H}}_{\text {int }}(t)=\sum_{i j k l} \mathbf{v}_{i j k l}(t) \hat{\mathbf{c}}_{i}^{\hat{e}_{\mathbf{j}}} \hat{\mathbf{j}}_{\mathbf{k}} \hat{\mathbf{c}}_{\mathbf{l}}$.

?

- Kondo physics
- Coulomb blockade, Fermi edge singularity
- 0.7 anomaly
- FQHE
- Quantum computers


## KWANT GALLERY

With TU Delft (Akhmerov, Wimmer et al.)

## HTTP://KWANT-PROJECT.ORG



## T-KWANT



HTTP://TKWANT.KWANT-PROJECT.ORG


## $\hat{\mathbf{H}}(t)=\hat{\mathbf{H}}_{0}(t)+U \hat{\mathbf{H}}_{\mathrm{int}}(t)$

$\hat{\mathbf{H}}_{i n t}(t)=\sum_{i j k l} \mathbf{v}_{i j k l}(t) \hat{\mathbf{c}}_{\mathbf{i}}^{\dagger} \hat{\mathbf{c}}_{j}^{\hat{c}} \hat{\mathbf{c}}_{\boldsymbol{k}} \hat{\mathbf{c}}_{l}$.


$$
Q(U)=\sum_{n=0}^{+\infty} Q_{n} U^{n}
$$


$\therefore$ lead 1

## A VERY DIRECT APPROACH:

## CALCULATING ALL THE FEYNMAN DIAGRAMS UP TO A GIVEN (LARGE) ORDER



$$
\sim U^{2} \int d u_{1} d u_{2} g_{0}\left(t, u_{1}\right) g_{0}\left(u_{1}, u_{2}\right) g_{0}\left(u_{2}, u_{1}\right) g_{0}\left(u_{1}, t^{\prime}\right) g_{0}\left(u_{2}, u_{2}\right)
$$

## A VERY DIRECT APPROACH:



## CALCULATING ALL THE FEYNMAN DIAGRAMS UP TO A GIVEN (LARGE) ORDER

- PROBLEM \#1: There are $n$ ! diagrams.

$$
F(U)=\sum_{n} F_{n} U^{\prime \prime}
$$

- PROBLEM \#2 How to calculate n dimensional integrals
- PROBLEM \#3 How to reconstruct $F(U)$ from the $F_{n}$.


# THE OUT-OF-EQUILIBRIUM ANDERSON IMPURITY 



$$
\hat{\mathbf{H}}=\sum_{i=-\infty}^{+\infty} \sum_{\sigma} \gamma_{i} \hat{\mathbf{c}}_{i, \sigma}^{\dagger} \hat{\mathbf{c}}_{i+1, \sigma}+\text { h.c. }+\epsilon_{d}\left(\hat{\mathbf{n}}_{\uparrow}+\hat{\mathbf{n}}_{\downarrow}\right)+U \theta(t)\left(\hat{\mathbf{n}}_{\uparrow}-\frac{1}{2}\right)\left(\hat{\mathbf{n}}_{\downarrow}-\frac{1}{2}\right) .
$$

## COULOMB BLOCKADE 101



$$
E(N)=\frac{U}{2} N^{2}+\left(\epsilon_{d}-U\right) N+\frac{U}{2}
$$

$$
E(N+1)-E(N)=\left(\epsilon_{d}-U\right)+(2 N+1) \frac{U}{2}
$$

## COULOMB BLOCKADE 101

(a)



Hofheinz et al. arXiv:cond-mat/0609245

## KONDO 101



## $\mathbf{U} \quad \gamma^{2} / \mathbf{U}$ <br> $\underset{\text { REPULSIVE }}{\text { INTERACTION }} \longrightarrow \underset{\text { COUPLING }}{\text { ANTIFERROMAGNETIC }} \longrightarrow \underset{\text { INTERACTION }}{ } \rightarrow$ ATTRACTIVE

## KONDO 101



Nature Physics 5, 208 (2009)

## TEASER: AT EQUILIBRIUM



$$
\hat{\mathbf{H}}=\sum_{i=-\infty}^{+\infty} \sum_{\sigma} \gamma_{i} \hat{\mathbf{c}}_{i, \sigma}^{\dagger} \hat{\mathbf{c}}_{i+1, \sigma}+\text { h.c. }+\epsilon_{d}\left(\hat{\mathbf{n}}_{\uparrow}+\hat{\mathbf{n}}_{\downarrow}\right)+U \theta(t)\left(\hat{\mathbf{n}}_{\uparrow}-\frac{1}{2}\right)\left(\hat{\mathbf{n}}_{\downarrow}-\frac{1}{2}\right) .
$$

## TEASER: OUT-OF-EQUILIBRIUM



$$
\hat{\mathbf{H}}=\sum_{i=-\infty}^{+\infty} \sum_{\sigma} \gamma_{i} \hat{\mathbf{c}}_{i, \sigma}^{\dagger} \hat{\mathbf{c}}_{i+1, \sigma}+h . c .+\epsilon_{d}\left(\hat{\mathbf{n}}_{\uparrow}+\hat{\mathbf{n}}_{\downarrow}\right)+U \theta(t)\left(\hat{\mathbf{n}}_{\uparrow}-\frac{1}{2}\right)\left(\hat{\mathbf{n}}_{\downarrow}-\frac{1}{2}\right) .
$$

## PROBLEM \#1: THE N! DIAGRAMS







## KELDYSH FORMALLSM IN A NUTSHELL

$$
\begin{gathered}
\langle\mathcal{O}(t)\rangle=\left\langle\mathcal{U}^{\dagger}(t) \mathcal{O} \mathcal{U}(t)\right\rangle \\
\frac{U_{-}(t)=T \exp \left(-i \int_{0}^{t} \hat{H}_{\mathrm{int}}(u) d u\right)}{t_{+}+t_{-}^{\prime} \quad \mathcal{C}} t \\
\langle\mathcal{O}(t)\rangle=\left\langle T_{\mathcal{C}} \hat{\mathcal{O}}(t) \exp \left(-i \int_{\mathcal{C}} \hat{H}_{\mathrm{int}}(u) d u\right)\right\rangle
\end{gathered}
$$

## WICK DETERNINANTS

$$
\left\langle C_{1}^{+} C_{1} C_{2}^{+} C_{2} C_{3}^{+} C_{3} C_{4}^{+} C_{4} C_{5}^{+} C_{5}\right\rangle=\sum_{P}(-1)^{P \mid}\left\langle C_{1}^{+} C_{P(1)}\right\rangle\left\langle C_{2}^{+} C_{P(2)}\right\rangle\left\langle C_{3}^{+} C_{P(3)}\right\rangle\left\langle C_{4}^{+} C_{P(4)}\right\rangle\left\langle C_{5}^{+} C_{P(5)}{ }_{P}\right.
$$

## WICK DETERMINANTS

$$
\begin{aligned}
& \left\langle c_{1}^{+} c_{1} c_{2}^{+} c_{2} c_{3}^{+} c_{3} c_{4}^{+} c_{4} c_{5}^{+} c_{5}\right\rangle=\operatorname{det}\left\langle c_{i}^{+} c_{j}\right\rangle
\end{aligned}
$$

## A « VERY SIMPLE » FORMMULA

$G_{i j}^{c}\left(\bar{t}, \bar{t}^{\prime}\right)=\sum_{n=0}^{+\infty} \frac{i^{n}}{n!} U^{n} \sum_{\left\{a_{i}\right\}}(-1)^{\sum_{i} a_{i}} \int d u_{1} d u_{2} \ldots d u_{n} \sum_{i_{1} j_{1} k_{1} l_{1}} V_{i_{1} j_{1} k_{1} l_{1}}\left(u_{1}\right) \cdots \sum_{i_{n} j_{n} k_{n} l_{n}} V_{i_{n} j_{n} k_{n} l_{n}}\left(u_{n}\right) \operatorname{det} \mathbf{M}_{n}$


Known non-interacting functions.


## Kernel expansion

Expand the determinant over the last raw.

## (all times in a single calculation)

$$
G_{x x^{\prime}}^{a a^{\prime}}\left(t, t^{\prime}\right)=g_{x x^{\prime}}^{a a^{\prime}}\left(t, t^{\prime}\right)+\int d u \sum_{b, y}(-1)^{b} g_{x y}^{a b}(t, u) K_{y x^{\prime}}^{b a^{\prime}}\left(u, t^{\prime}\right)
$$

BARE DATA


## PROBLEM \#2 THE N DIMENSIONAL INTEGRAL

$\rightarrow$ The dimensionality curse
$F(U)=\sum_{n=0}^{\infty} F_{n} U^{n}$,

$F_{n}=\int d^{n} \boldsymbol{u} f_{n}\left(u_{1}, u_{2}, \ldots, u_{n}\right)$
The standard approach: Metropolis Monte-Carlo.
$\rightarrow$ Intrinsic very slow convergence $\mathrm{N}^{-1 / 2}$ (in one dimension: $1 / \mathrm{N}^{15}$ or even exponential)
$\rightarrow$ We do not build any knowledge of $f(u)$

## MACHINE LEARNING THE INTEGRAND

$$
f_{n}\left(u_{1} . . u_{n}\right) \approx p_{n}\left(u_{1} \ldots u_{n}\right)
$$

Special class of warper functions that we know how to integrate

Construct a change of variable $\boldsymbol{U}(\boldsymbol{X})$ such that $\quad \frac{\partial \mathbf{u}}{\partial \mathbf{x}}=\frac{1}{p_{n}\left(u_{1} \ldots u_{n}\right)}$

$$
F_{n}=\int_{[0,1]^{n}} d^{n} \boldsymbol{x} f_{n}[\boldsymbol{u}(\boldsymbol{x})]\left|\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{x}}\right|
$$

And get an almost constant integrand

$$
p_{n}(\mathbf{u})=\prod_{i=1}^{n} h^{(i)}\left(v_{i}\right), \quad 20
$$

Coming up soon: $\quad p_{n}(\boldsymbol{u})=h_{a}^{(1)}\left(v_{1}\right) h_{a b}^{(2)}\left(v_{2}\right) \cdots h_{c d}^{(n-1)}\left(v_{n-1}\right) h_{d}^{(n)}\left(v_{n}\right)$

## USE QUASI RANDOM NUMBERS TO ESTIMATE THE INTEGRAL



## ENJOY THE SPEED-UP




## PROBLEM \#3: RECONSTRUCTION.

$$
\frac{1}{1+U}=\sum_{n}(-1)^{n} U^{n}
$$




## PROBLEMM \#3: RECONSTRUCTRING F(U) FROM F $\mathrm{F}_{\mathrm{N}}$

$$
F(U)=\sum_{n} F_{n} U^{n}
$$

## SEPARATION PROPERTY HYPOTHESIS




## 1) FIND THE POLES / ZEROS OF THE INVERSE




## 1) FIND THE POLES / ZEROS OF THE INVERSE




## 2) DESIGN THE CONFORMAL TRANSFORM



$F(U(W))=\sum_{n} \bar{F}_{n} W^{n}$
W(U): exact U(W): truncated

$$
F(U)=\sum_{n} \bar{F}_{n}[W(U)]^{n}
$$

## 3) ADD BAYESIAN INFERENCE



## 3) ADD BAYESIAN INFERENCE




## 3) ADD BAYESIAN INFERENCE



(Rq: NRG changed not QMC)

## SOME EQULLBBIUMM BENCHMARKS




## SOME EQULLBRIUMM BENCHMARKS




## SOME EQUILIBRIUM BENCHMARKS



## SOME EQUILIBRIUM BENCHMARKS





## AND BACK TO NON-EQULLBRIUM




Igor Krivenko, ${ }^{1}$ Joseph Kleinhenz, ${ }^{1}$ Guy Cohen, ${ }^{2, *}$ and Emanuel Gull arXiv:1904.11527v1

(PRELIMINARY COMPARAISON DIFFERENT BATH AND TIMES)

## AND BACK TO NON-EQUILBRIUM




## AND BACK TO NON-EQUILBRIUM



## AND BACK TO NON-EQUILBRIUM




## NON-EQUILIBRIUM DISTRIBUTION FUNCTION

$$
n(\omega)=\frac{i G^{<}(\omega)}{2 \operatorname{Im}\left[G^{R}(\omega)\right]}
$$



## CONCLUSION

## MORE TECHNICAL PROGRESS NEEDED

- Improved sampling \& implementation (coming up soon)
- Terms and Counter-terms

MORE APPLCATIONS

- Lattice (in progress)
- DMFT (also in progress)
- Nanoelectronics (0.7 anomaly)
- Few qubits \& their baths
- Eventually an open source software

PHYSICAL REVIEW LETTERS 125, 047702 (2020)
PHYSICAL REVIEW X 9, 041008 (2019)
PHYSICAL REVIEW B 100, 125129 (2019)
PHYSICAL REVIEW B 91, 245154 (2015)

## A WARNING ON CONVERGENCE RADIUS



We work directly in the stationary limit
$\lim _{n \rightarrow \infty} \lim _{t \rightarrow \infty} O_{n}(t) \neq \lim _{t \rightarrow \infty} \lim _{n \rightarrow \infty} O_{n}(t)$

