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The Out-of-Equilibrium Anderson impurity model :
a numerically exact approach whith Diagrammatic Quantum Quasi Monte-Carlo

Calculating Feynman diagrams analytically is impractical beyond the first
few orders. In this talk, I will discuss recent numerical algorithms that allow one to
calculate all diagrams up to order 20 or more. I will show how this technique can be
used to
study the Anderson model, including for parameters deep into the Kondo regime
both at
equilibrium (in precise agreemeent with other techniques) and in out-of-
equilibrium situations
that were not accessible so far.
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Correlations and computational quantum transport: automatic calculation of 
Feynman diagrams at large orders.

While numerical simulations of quantum transport at 
the mean field level are by now standard, including
even the simplest effects of correlations such as 
Coulomb blockade is a struggle and one almost always
has to resort to uncontroled approximations or 
drastic simplifications to account for more complexe 
effects such as Kondo physics. 
Feynman diagrams are a natural formalism to express 
correlations and they circonvoluate working at the 
raw Hilbert space level with many-body wave-
functions as is often done numerically (either in 
quantum Monte-Carlo or tensor network techniques). 
An immense litterature study different ways to find
the most important classes of diagrams and calculate
them analytically. In this talk, I will discuss the 
current effort done in my group to design algorithms
that numerically sum all diagrams in a systematic
way, order by order up to order 20 or more. I will
showcase how this technique can capture out-of-
equilibrium effects deep in the Kondo regime. 
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be used for the computation not to be plagued by the sign
problem [25,26]. For instance in Ref. [20] the algorithm
fluctuates wildly away from ασ = 1/2. Here, we find that the
convergence of the series for Q(U ) depends strongly on the
value of ασ . Note that this is a property of the perturbation
series and therefore independent of the procedure used to
obtain the Qn coefficients. In practice, the dependence of the
radius of convergence on the ασ parameters can be used to
access larger values of the interaction: we add (to Ĥ0) and
substract (to Ĥint) an on-site potential to our Hamiltonian such
that the full Hamiltonian is unchanged but the series acquires
a larger radius of convergence. This step allows us to tackle
systems away from the particle-hole symmetry point. It is not
linked to the QMC technique per se but to the choice of the
initial quadratic Hamiltonian around which one performs the
interaction expansion.

III. MODELS AND BASIC FORMALISM

A. Models

We consider a general time-dependent model for a confined
nanoelectronic system connected to metallic electrodes, fol-
lowing the approach of Ref. [27]. A sketch of a generic system
is given in Fig. 1. The Hamiltonian consists of a quadratic term
and an electron-electron interacting term,

Ĥ(t) = Ĥ0(t) + UĤint(t) (3)

where the parameter U controls the magnitude of the inter-
action. The noninteracting Hamiltonian takes the following
form:

Ĥ0(t) =
∑

i,j

H0
ij (t)ĉ†i ĉj , (4)

where c
†
i (cj ) are the usual fermionic creation (annihilation)

operators of a one-particle state on the site i (j ). The site
index i is general and can include different kinds of degrees
of freedom such as space, spin or orbitals. A crucial aspect is
that the number of “sites” is infinite so that the noninteracting
system has a well-defined density of states (as opposed to a
sum of delta functions for a finite system) while interactions
only take place in a finite region. Typically, the system will
consist of a central part connected to semi-infinite periodic
noninteracting leads. The dynamics of such noninteracting

T1, μ1 T3, μ3

T2, μ2

FIG. 1. (Color online) Sketch of a typical mesoscopic system: a
central interacting region (red) is connected to several (semi-infinite)
noninteracting electrodes (blue) with finite temperatures Ti and
chemical potentials µi .

systems is well known and mature techniques exist to calculate
both their stationary [23] and time-dependent properties [28].
The interaction Hamiltonian reads

Ĥint(t) =
∑

ijkl

Vijkl(t)ĉ
†
i ĉ

†
j ĉk ĉl . (5)

In contrast to the noninteracting part, it is confined to a finite
region. We also supposed that the interaction vanishes for
negative time and is slowly or abruptly switched on at t = 0.
A typical system described by Eq. (3) is a quantum dot where
electrostatic gates confine the electrons in a small, highly
interacting, region while the electrodes have high electronic
density, hence weak interactions.

The techniques described below are rather general and will
be discussed within the framework of Eq. (3). The practical
calculations however will be performed on the following
Anderson impurity models. Model A corresponds to one
interacting site, “0” inside an infinite one-dimensional chain,

ĤA =
+∞∑

i=−∞

∑

σ

γi ĉ
†
i,σ ĉi+1,σ + H.c. + εd (n̂↑ + n̂↓)

−h(n̂↑ − n̂↓) + Uθ (t)n̂↑n̂↓, (6)

where

n̂σ = ĉ†0σ ĉ0σ . (7)

εd is the level on-site energy, h the (Zeeman) magnetic field
and θ (t) is the Heaviside function so that the interaction is
switched on at t = 0. The hopping parameter γi is equal to
unity γi = 1 for all sites except γ−1 = γ0 = γ . We apply a
bias voltage Vb between the two (left and right) electrodes,
which are characterized by their chemical potential µL = Vb

and µR = 0 and temperature T . Model B is very close to model
A with additional parameters α↑, α↓,

ĤB =
+∞∑

i=−∞

∑

σ

γi ĉ
†
i,σ ĉi+1,σ + H.c. + εd (n̂↑ + n̂↓)

−h(n̂↑ − n̂↓) + Uθ (t)(n̂↑ − α↑)(n̂↓ − α↓). (8)

One easily realizes that the two models are in fact equiva-
lent in the stationary limit for α↑ = α↓ = α: ĤB(εd,U,α) =
ĤA(εd − Uα,U ) + Uα2. However, they have very different
large U limit at fixed (small) εd : model A corresponds
to the degeneracy point between 0 and 1 electrons on the
impurity (where Coulomb blockade is lifted), while model
B corresponds to the Kondo regime. More importantly, the
perturbation series in powers of U of the same observable
will be different between these two models, with different
convergence radius for fixed εd . The α parameters have been
introduced in Ref. [12], to improve the sign problem in
imaginary-time quantum Monte Carlo. An important energy
scale for these models is the (noninteracting) tunneling rate
from the impurity to the reservoirs. It is given by & = &L + &R

with &L/R = 2γ 2
√

1 − (µL/R/2)2.

B. Interaction expansion

Our starting point for this work is a formal expansion of
the out-of-equilibrium (Keldysh) Green’s function in powers
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be used for the computation not to be plagued by the sign
problem [25,26]. For instance in Ref. [20] the algorithm
fluctuates wildly away from ασ = 1/2. Here, we find that the
convergence of the series for Q(U ) depends strongly on the
value of ασ . Note that this is a property of the perturbation
series and therefore independent of the procedure used to
obtain the Qn coefficients. In practice, the dependence of the
radius of convergence on the ασ parameters can be used to
access larger values of the interaction: we add (to Ĥ0) and
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where the parameter U controls the magnitude of the inter-
action. The noninteracting Hamiltonian takes the following
form:
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systems is well known and mature techniques exist to calculate
both their stationary [23] and time-dependent properties [28].
The interaction Hamiltonian reads

Ĥint(t) =
∑
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Vijkl(t)ĉ
†
i ĉ

†
j ĉk ĉl . (5)

In contrast to the noninteracting part, it is confined to a finite
region. We also supposed that the interaction vanishes for
negative time and is slowly or abruptly switched on at t = 0.
A typical system described by Eq. (3) is a quantum dot where
electrostatic gates confine the electrons in a small, highly
interacting, region while the electrodes have high electronic
density, hence weak interactions.

The techniques described below are rather general and will
be discussed within the framework of Eq. (3). The practical
calculations however will be performed on the following
Anderson impurity models. Model A corresponds to one
interacting site, “0” inside an infinite one-dimensional chain,
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where

n̂σ = ĉ†0σ ĉ0σ . (7)

εd is the level on-site energy, h the (Zeeman) magnetic field
and θ (t) is the Heaviside function so that the interaction is
switched on at t = 0. The hopping parameter γi is equal to
unity γi = 1 for all sites except γ−1 = γ0 = γ . We apply a
bias voltage Vb between the two (left and right) electrodes,
which are characterized by their chemical potential µL = Vb

and µR = 0 and temperature T . Model B is very close to model
A with additional parameters α↑, α↓,

ĤB =
+∞∑
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One easily realizes that the two models are in fact equiva-
lent in the stationary limit for α↑ = α↓ = α: ĤB(εd,U,α) =
ĤA(εd − Uα,U ) + Uα2. However, they have very different
large U limit at fixed (small) εd : model A corresponds
to the degeneracy point between 0 and 1 electrons on the
impurity (where Coulomb blockade is lifted), while model
B corresponds to the Kondo regime. More importantly, the
perturbation series in powers of U of the same observable
will be different between these two models, with different
convergence radius for fixed εd . The α parameters have been
introduced in Ref. [12], to improve the sign problem in
imaginary-time quantum Monte Carlo. An important energy
scale for these models is the (noninteracting) tunneling rate
from the impurity to the reservoirs. It is given by & = &L + &R

with &L/R = 2γ 2
√

1 − (µL/R/2)2.

B. Interaction expansion

Our starting point for this work is a formal expansion of
the out-of-equilibrium (Keldysh) Green’s function in powers
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le ! ðVm=tÞ$2; (7)

where we have explicitly restored the hopping amplitude t
(our energy unit) in order to get numbers. The ballistic
results are essentially unaffected for systems smaller than
le, while the edge states become localized for larger sys-
tems. In the context of a QSH phase induced by adatoms
(using, for instance, the indium atoms proposed by Weeks
et al. [16]), a possible source of Vm-like disorder comes
from the SO coupling induced by the adatoms themselves.
Typical values for Vm are smaller than 1 meV, which
translates into extremely large intraedge mean free paths
le > 1 mm. Hence, we estimate that this perturbation
should be largely irrelevant in realistically sized samples.

To summarize, all of our results are essentially unaf-
fected by the presence of disorder, except when the Fermi
energy lies in the vicinity of the QSH-QH transition, in
which case strong disorder can give rise to a random net-
work of QH and QSH regions through which a percolating
cluster connecting opposite edges can therefore lead to
backscattering [32].

VI. TOPOLOGICAL HETEROJUNCTION

We take advantage of the above-described topological
quantum phase transition as a function of the Fermi energy
to propose a setup that allows for a direct junction between
two different topological phases in the same sample. Let us
consider the case in which an additional electrostatic gate
enables one to split the system in two parts: one in which
the Fermi level is in the QSH phase, and the other in
which the Fermi level is in the QH phase [Fig. 1(c)].
This constitutes a QSH-QH junction, which shares some
similarities with quantum Hall n-p junctions previously
fabricated in graphene [34,35]. Indeed, the incoming un-
happy spin at the junction has no choice but to propagate
along the interface in order to reach the only other avail-
able channels that lie on the opposite edge. This is remi-
niscent of the situation both spin channels must face in the
QH regimewhen theymust cross a n-p junction, since their
direction of propagation on a given edge is reversed for
negative energies. Various theoretical models have been
proposed in the latter setup [36–39], but they all fail to
explain the experimental observations [34,35], probably
due to some dephasing mechanism taking place in the
vicinity of the Dirac point which is obscured by charge-
density fluctuations (so-called electron-hole puddles). The
system we consider could therefore provide a new perspec-
tive for solving this puzzle, as the QSH-QH transition takes
place at a value of energy which can be far away from
the Dirac point [40] for realistic values of SO-induced
QSH gap.

More generally, our proposal offers the possibility of
studying the nature of the state that propagates at the
interface between QSH and QH phases, which are charac-
terized by different topological invariants [11,29]. What

we usually refer to as QSH (or QH) edge states are states
propagating between QSH (or QH) insulators and a trivial
insulator (the vacuum, typically). As the QSH insulator is
characterized by a Z2 number, there is only one QSH
topological phase: Junctions between QSH phases with
different Fermi energies (including n-p junctions) have
no effect on transport, as the spin-polarized states can
propagate through these junctions. On the other hand, the
QH topological invariant is a Z number, which counts the
number of edge channels, and the notion of QH junctions
therefore makes sense. In this case, one expects the exis-
tence of chiral propagating states, localized at the interface
corresponding to the Landau level crossing. For QH n-n0

junctions, these states are ‘‘bubbling’’ states [39], which
simply follow the drifting Hall motion of charge carriers
subjected to crossed electric and magnetic fields. For QH
n-p junctions, these states are ambipolar snake states [19],
which can be seen as classical skipping orbits of mixed
electron-‘‘hole’’ character. The characteristics of the state
propagating at the interface between QSH and QH insu-
lators, on the other hand, are still unclear as far as we know.

FIG. 5. Heterostructure in a four-terminal Z-shape sample as
depicted in Fig. 1(c). Transmission probabilities from lead 0,
where the current is injected, to outgoing leads 1 (dotted lines),
2 (dashed lines), and 3 (solid lines) as a function of the top gate
voltage Vg. When Vg < ð!so $ EFÞ, such that left and right

regions are in the QSH phase, current is perfectly transmitted
by the QSH edge states, as shown in the current-density plot in
the left inset. When Vg is high enough [Vg > ð!so $ EFÞ] that the
right part of the sample enters the QH phase, a QSH-QH junction
is created, characterized by a chiral state propagating along the
interface. This is illustrated in the current-density plot shown in
the right inset. Once it has reached the opposite edge, this chiral
state is partially transmitted in lead 2 and partially transmitted in
lead 3, with proportions shown in the main plot. The light red
curves correspond to an abrupt voltage change across the junc-
tion region while the dark blue curves correspond to a smooth
transition. Parameters are EF=!so ¼ 0:58 (in the left half of the
sample), !so ¼ 0:02, lB ’ 8, and widths W0 ¼ Wc ¼ 40
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the leads and central region.
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Fig. 2: (Color online) Non-local conductance G21 (solid black)
for a device with quantum point contacts (W ≈ λF /2). The
magnetic field is given in units of the focusing field Bfocus =
0.406T. The plot of GCAR21 (dashed red line) demonstrates that
the negative peaks in G21 at integer multiples of B/Bfocus are
a direct consequence of GCAR21 >GET21 in eq. (2).

where p=−i!∇+ eA(r) is the momentum and m the
effective mass. The Hamiltonian (3) is extended it to
Nambu space [25]

H =

∫
drΨ†(r)

(
H(r) ∆(r)
∆∗(r) −H∗(r)

)
Ψ(r), (4)

where at the contact S the superconducting pair potential
∆(r) is assumed to vary abruptly on the scale of the Fermi
wavelength λF , and is therefore modelled as step function
which is non-zero only inside the center contact S. All
energies are measured from the chemical potential µ of the
superconductor. The Nambu spinor Ψ is defined in terms
of the field operators ψ as Ψ= (ψ,ψ†)T . A perpendicular
magnetic field B =∇×A=Bez is included everywhere
except in the superconductor [26]. We consider only elastic
scattering.
At zero temperature, quantum interference due to scat-

tering at the sharp boundaries close to the contacts
can mask the electron focusing effect [16]. We therefore
calculate the non-local differential conductance at finite
temperature, using the standard formula,

G21 =

∫
dεG21(ε)

(
−∂nF (ε)

∂ε

)
, (5)

where nF is the Fermi-Dirac distribution function.
We use the knitting algorithm presented in ref. [27]

to calculate the self-energies and retarded and advanced
Green functions. Standard expressions relate the conduc-
tance and current density to these quantities. The device
used in the simulations is sketched in the inset of fig. 1(a),
where the two auxiliary contacts N3 and N4 are drains for
the electrons that do not contribute to the resonances. All
edges cause specular electron scattering only.
Figure 2 shows the calculated non-local conductance

from eq. (5) as a function of perpendicular magnetic

(a) Non-superconducting center contact (∆ = 0)

(b) Superconducting center contact (∆ = 0)

Fig. 3: (Color online) Electronic current density in a perpen-
dicular magnetic field at T = 1K. Two skipping orbits,
corresponding to B ≈ 2Bfocus, are clearly visible. (a) With
a non-superconducting center contact S, a large portion of
the current injected through contact N1 leaves the struc-
ture through S. (b) When S is superconducting, the Andreev
reflected holes from S contribute to the current from S to N2.

field at a temperature T = 1K. The value chosen for
the pair potential ∆ corresponds to Pb, which has a
critical temperature Tc ≈ 7K% T [28]. Also, since T <
Tc/2, we disregard the temperature dependence of the pair
potential, ∆(T )≈∆(0) [29].
The injector N1, superconducting S, and collector N2

contacts are point contacts with width W ≈ λF /2, so that
only a single mode contributes to the current [23]. The
distance L= 500 nm between the contacts corresponds
to a focusing field of Bfocus = (0.39± 0.02)T, where the
uncertainty is due to the finite width W of the contacts
relative to L. The value found in the simulation agrees
with the expectations within this uncertainty.
In fig. 2 the total non-local conductance G21 is shown

together with the conductance contribution due to CAR.
The negative peaks in G21 at integer values of the focusing
field are consistent with the semi-classical interpretation
presented earlier, and demonstrate that ET is completely
dominated by CAR for such fields. The expected enhance-
ment of ET at half-integer B/Bfocus is somewhat masked
by quantum interference, but positive peaks in G21 when
B/Bfocus equals 1/2 and 3/2 are clearly visible. The field
associated with focusing can easily be adjusted to be
well separated from the scale of quantum interference
by changing the distance L between the contacts. As
the magnetic field increases beyond 2.5Bfocus, the system
gradually enters the QH regime.
The enhancement of CAR at B/Bfocus = 1, 2 can be

visualized by calculating the charge current density due to
electrons injected from contact N1. This is shown in fig. 3,
where we have set B ≈ 2Bfocus. A skipping orbit between
N1 and S is clearly visible. Also visible is the diffraction
of the incoming current through N1, which leads to a
broadening of the skipping orbit trajectories. In fig. 3(a)

67005-p3

2

FIG. 1. DC characterization of a quasi one dimensional sys-
tem in presence of magnetic field. The system is discretized
on a square lattice with a constant a = 1. Left: color map of
the transmission as a function of magnetic field and energy.
Middle: energy as a function of the transmission of the sys-
tem. Right: band structure. The middle and right plots are
obtained for � = 0.07h/e.

FIG. 2. Normalized number of transmitted particles as a func-
tion of the time step of the numerical scheme.
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Fig. 7: Same figure as 6, but with a di↵erent
scattering region. The system is chaotic,
therefore a propagating mode in the lead

suppress the existence of any bound state in the
scattering region.

Fig. 8: Square of the bound state wavefunction
of a system whose scattering region has 104

sites.

bound states of figure 6 overlap with the density of
states of the system, that is, eventhough there is a
propagating mode in the lead, the bound states do
not leak in the lead. A second propagating mode
open at E ' 0.15, marked by a discontinuity in the
density of states. We can see that it a also coincides
with the suppression of the last bound states.

It is important to emphasize that the bound states
in the continuum cannot be seen by direct diagonal-
ization, as there is no di↵erence between an eigen-
states that will join the continuum and another one
that form a bound state in the limit of an infinite
system.

On the other hand, for a more chaotic system, the
bound states are suppressed as the first propagating
mode of the lead appear. However, even for a chaotic
system like 9, there is a bound state exactly at the
middle of the band. This is caused by the bipartite

Fig. 9: (a): in blue, the local density of states,
summed on the sites in the transverse direction
with respect to the lead, is plotted in function
of the direction of the lead), and the energy.

The Hamiltonian is described in 28, with t = 1
and ✏d = �1. In red, the lines correspond to

energies where a bound state was detected. The
presence of a bound state in the middle of the
band can be surprising as the system is chaotic.
This bound state is actually due to the bipartite
symmetry, and is exactly in the middle of the
band (at E = 3 here). (b) Chaotic system.

symmetry. One can always write a Hamiltonian of a
bipartite system as:

H =

✓
0 T

†

T 0

◆
(29)

In our system, the Schrödinger equation can be
written as eq.29 in the middle of the band as the diag-
onal elements are null. If the matrix T is not square
(which means that there is more orbitals on one sub-
lattice than on the other) then the matrix H � E is
not invertible and a bound state is therefore located
in the scattering region. Criterions to find this zero
energy modes are discussed in more details in [20] or
in [21].

VI. SUMMARY

In this paper, we derived a robust and e�cient algo-
rithm to compute the energies and the wavefunctions
of bound states of infinite systems driven by a general
tight-binding Hamiltonian. Using Kwant toolbox [1]
to compute the evanescent and propagating modes,
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FIG. 3.

The quantum dynamics of discrete levels is by now so well
understood that systems of several qubits (and photonic
modes) are routinely engineered and addressed using

microwave signals. In contrast, very little is known about the
continuum, that is, the dynamics of degrees of freedom, which are
allowed to propagate inside a system. A few works propose setups
for ‘flying qubits’1–6 that encode the quantum information into
the paths taken by the electrons. Those systems could be realized
in Mach–Zehnder interferometers in the quantum Hall regime7–9

or Aharonov–Bohm geometries10. Before designing any of those
circuits, however, a necessary step is the understanding of the
basic, potentially new, physics associated with the time-resolved
dynamics in delocalized nanoelectronic systems.

Two competing kinds of dynamical excitations have emerged
to inject electrons in nanoelectronic devices. In the first, one fills
up the state of a small quantum dot and then rapidly increases its
energy to release the electron inside the system11. This setup
allows the electrons to be injected one by one with a rather well-
defined energy, but badly defined releasing time. In the second—
on which we shall focus—one simply uses an Ohmic contact to
apply a voltage pulse V(t) to the device (well defined in time but
ill defined in energy). In a single-mode device, such a voltage
creates a current I(t)¼ (e2/h)V(t) which injects

!n¼
Z

dt
eVðtÞ

h
ð1Þ

electrons inside the system. A voltage pulse will be said to be in
the quantum regime when roughly !n $ 1 electron is injected and
the electronic temperature is smaller than the energy scales
associated with the height VP and duration tP of the pulse ‘=tPð Þ.

In a series of seminal works, Levitov et al.12–15 studied the
properties of pulses of Lorentzian shape. While they found a
featureless time-dependent current, they predicted that, in
contrast, the current noise could oscillate with the amplitude of
the pulse, with the possibility to build noiseless quantum
excitations for the particular Lorentzian shape. Recent
experiments are beginning to address these proposals16–18. In
particular, the quantum regime was reported recently by Dubois

and colleagues et al.18 Here we report on the new non-trivial
physics that emerges when those voltage pulses are used to inject
charge excitations in an electronic interferometer. We find that
ultra-fast pulses permit the dynamical control of the relative
phases of the different paths taken by the electrons, therefore
providing means to dynamically engineer the coherent
superposition of the travelling waves. We first focus on a
simple Fabry–Perot interferometer in one dimension followed
by full-scale simulations of a two-dimensional Mach–Zehnder
interferometer in the quantum Hall regime.

Results
Fabry–Perot cavity. Figure 1a,b shows our model Fabry–Perot
system: it consists of a quantum wire connected to two metallic
electrodes. The quantum wire is made into a Fabry–Perot inter-
ferometer by means of two barriers (A and B), which can be
defects in the wire, gates (as in the sketch) or simply the Schottky
barriers that naturally form at the wire–electrode interfaces. Such
Fabry–Perot interferometers are standard devices of nanoelec-
tronics and their DC properties have been extensively mea-
sured19–21. The basic properties of this interferometer can be
understood within an elementary theory. Each barrier A (and B)
is described by the amplitude of probability dA (rA) for an
incident electron to be transmitted (reflected). Summing up the
probability amplitudes for all the trajectories (direct transmission:
dBdA, one back and forth bouncing: dBrArBdA...), the total
amplitude of probability for an electron to be transmitted reads,

dABðEÞ ¼
dAdB

1% rArBz
: ð2Þ

The factor z corresponds to the phase z¼ ei2kL accumulated by
the electron during the time between two collisions (L distance
between the scatterers, k electron momentum). z can also be
rewritten as z ¼ ei2tF E=‘ , where tF is the time of flight between A
and B, and E is the incident energy (our analytical treatment
ignores the small energy dependence of tF, dA,dB but our
numerics fully account for it). When E is at resonance with the
eigenenergies En¼ ndþ eVg of the cavity formed by A and B

VA

VA

V (t )

V (t )

Vg

VB

VB

BA

Path 1

Path 2

Path 3

dA

rA rB

!

L

dB

2"
n

Figure 1 | Schematic of the Fabry–Perot cavity and of the main physical mechanism. (a,b) Schematic of our setup, a quantum wire connected to two
electrodes. Two barriers A and B separated by a distance L are placed along the wire and a Gaussian voltage pulse V(t) is sent from the left. The barriers are
characterized by the barrier heights (VA and VB) or equivalently by their reflection and transmission amplitudes denoted, respectively, rA,rB and dA,dB. A
gate voltage Vg allows one to shift the position of the resonant levels of the cavity. The mean level spacing between the discrete levels of the cavity is
d ¼ h= 2tFð Þ where tF is the ballistic time of flight from A to B. (c) Schematic of the physical mechanism for the dynamical control of the interference: as the
pulse propagates along the different trajectories, a phase difference 2p!n appears between the front (blue) and the rear (red) resulting in a modification of
the interference pattern. (d) Graphical representation of equation (5) that gives the structure of a voltage pulse in terms of a ‘phase domain wall’.
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a

b

Fig. 18. Propagation of a voltage pulse within the coupled wire system. The figures show snapshots of the difference of the local charge density from
equilibriumat different points in time. Figures (a) and (b) correspond to twodifferent values of the tunneling gate voltage, 0.24mVand0.34mV respectively.
These results were produced with a Gaussian voltage pulse as described in the main text. Each of these two runs corresponds to a computing time per
energy and per channel of 30 min on one computing core (a = 0.5, 7250 sites and 400000 time steps).

Fig. 19. The number of transmitted particles through lead 2 (orange triangles) and lead 3 (blue circles) (n# and n" , collectively n� ) normalized by the
number of injected particles in lead 0 (n̄) as a function of the time at which the coupling between the two wires of the flying Qubit system are cut, tcut . The
lines are cosine fits to the results from the numerics to guide the eye. These results were produced with a Gaussian voltage pulse as described in the main
text.
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be used for the computation not to be plagued by the sign
problem [25,26]. For instance in Ref. [20] the algorithm
fluctuates wildly away from ασ = 1/2. Here, we find that the
convergence of the series for Q(U ) depends strongly on the
value of ασ . Note that this is a property of the perturbation
series and therefore independent of the procedure used to
obtain the Qn coefficients. In practice, the dependence of the
radius of convergence on the ασ parameters can be used to
access larger values of the interaction: we add (to Ĥ0) and
substract (to Ĥint) an on-site potential to our Hamiltonian such
that the full Hamiltonian is unchanged but the series acquires
a larger radius of convergence. This step allows us to tackle
systems away from the particle-hole symmetry point. It is not
linked to the QMC technique per se but to the choice of the
initial quadratic Hamiltonian around which one performs the
interaction expansion.

III. MODELS AND BASIC FORMALISM

A. Models

We consider a general time-dependent model for a confined
nanoelectronic system connected to metallic electrodes, fol-
lowing the approach of Ref. [27]. A sketch of a generic system
is given in Fig. 1. The Hamiltonian consists of a quadratic term
and an electron-electron interacting term,

Ĥ(t) = Ĥ0(t) + UĤint(t) (3)

where the parameter U controls the magnitude of the inter-
action. The noninteracting Hamiltonian takes the following
form:

Ĥ0(t) =
∑

i,j

H0
ij (t)ĉ†i ĉj , (4)

where c
†
i (cj ) are the usual fermionic creation (annihilation)

operators of a one-particle state on the site i (j ). The site
index i is general and can include different kinds of degrees
of freedom such as space, spin or orbitals. A crucial aspect is
that the number of “sites” is infinite so that the noninteracting
system has a well-defined density of states (as opposed to a
sum of delta functions for a finite system) while interactions
only take place in a finite region. Typically, the system will
consist of a central part connected to semi-infinite periodic
noninteracting leads. The dynamics of such noninteracting

T1, μ1 T3, μ3

T2, μ2

FIG. 1. (Color online) Sketch of a typical mesoscopic system: a
central interacting region (red) is connected to several (semi-infinite)
noninteracting electrodes (blue) with finite temperatures Ti and
chemical potentials µi .

systems is well known and mature techniques exist to calculate
both their stationary [23] and time-dependent properties [28].
The interaction Hamiltonian reads

Ĥint(t) =
∑

ijkl

Vijkl(t)ĉ
†
i ĉ

†
j ĉk ĉl . (5)

In contrast to the noninteracting part, it is confined to a finite
region. We also supposed that the interaction vanishes for
negative time and is slowly or abruptly switched on at t = 0.
A typical system described by Eq. (3) is a quantum dot where
electrostatic gates confine the electrons in a small, highly
interacting, region while the electrodes have high electronic
density, hence weak interactions.

The techniques described below are rather general and will
be discussed within the framework of Eq. (3). The practical
calculations however will be performed on the following
Anderson impurity models. Model A corresponds to one
interacting site, “0” inside an infinite one-dimensional chain,

ĤA =
+∞∑

i=−∞

∑

σ

γi ĉ
†
i,σ ĉi+1,σ + H.c. + εd (n̂↑ + n̂↓)

−h(n̂↑ − n̂↓) + Uθ (t)n̂↑n̂↓, (6)

where

n̂σ = ĉ†0σ ĉ0σ . (7)

εd is the level on-site energy, h the (Zeeman) magnetic field
and θ (t) is the Heaviside function so that the interaction is
switched on at t = 0. The hopping parameter γi is equal to
unity γi = 1 for all sites except γ−1 = γ0 = γ . We apply a
bias voltage Vb between the two (left and right) electrodes,
which are characterized by their chemical potential µL = Vb

and µR = 0 and temperature T . Model B is very close to model
A with additional parameters α↑, α↓,

ĤB =
+∞∑

i=−∞

∑

σ

γi ĉ
†
i,σ ĉi+1,σ + H.c. + εd (n̂↑ + n̂↓)

−h(n̂↑ − n̂↓) + Uθ (t)(n̂↑ − α↑)(n̂↓ − α↓). (8)

One easily realizes that the two models are in fact equiva-
lent in the stationary limit for α↑ = α↓ = α: ĤB(εd,U,α) =
ĤA(εd − Uα,U ) + Uα2. However, they have very different
large U limit at fixed (small) εd : model A corresponds
to the degeneracy point between 0 and 1 electrons on the
impurity (where Coulomb blockade is lifted), while model
B corresponds to the Kondo regime. More importantly, the
perturbation series in powers of U of the same observable
will be different between these two models, with different
convergence radius for fixed εd . The α parameters have been
introduced in Ref. [12], to improve the sign problem in
imaginary-time quantum Monte Carlo. An important energy
scale for these models is the (noninteracting) tunneling rate
from the impurity to the reservoirs. It is given by & = &L + &R

with &L/R = 2γ 2
√

1 − (µL/R/2)2.

B. Interaction expansion

Our starting point for this work is a formal expansion of
the out-of-equilibrium (Keldysh) Green’s function in powers
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value of ασ . Note that this is a property of the perturbation
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substract (to Ĥint) an on-site potential to our Hamiltonian such
that the full Hamiltonian is unchanged but the series acquires
a larger radius of convergence. This step allows us to tackle
systems away from the particle-hole symmetry point. It is not
linked to the QMC technique per se but to the choice of the
initial quadratic Hamiltonian around which one performs the
interaction expansion.

III. MODELS AND BASIC FORMALISM

A. Models

We consider a general time-dependent model for a confined
nanoelectronic system connected to metallic electrodes, fol-
lowing the approach of Ref. [27]. A sketch of a generic system
is given in Fig. 1. The Hamiltonian consists of a quadratic term
and an electron-electron interacting term,

Ĥ(t) = Ĥ0(t) + UĤint(t) (3)

where the parameter U controls the magnitude of the inter-
action. The noninteracting Hamiltonian takes the following
form:
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ij (t)ĉ†i ĉj , (4)

where c
†
i (cj ) are the usual fermionic creation (annihilation)

operators of a one-particle state on the site i (j ). The site
index i is general and can include different kinds of degrees
of freedom such as space, spin or orbitals. A crucial aspect is
that the number of “sites” is infinite so that the noninteracting
system has a well-defined density of states (as opposed to a
sum of delta functions for a finite system) while interactions
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consist of a central part connected to semi-infinite periodic
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noninteracting electrodes (blue) with finite temperatures Ti and
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systems is well known and mature techniques exist to calculate
both their stationary [23] and time-dependent properties [28].
The interaction Hamiltonian reads

Ĥint(t) =
∑

ijkl

Vijkl(t)ĉ
†
i ĉ

†
j ĉk ĉl . (5)

In contrast to the noninteracting part, it is confined to a finite
region. We also supposed that the interaction vanishes for
negative time and is slowly or abruptly switched on at t = 0.
A typical system described by Eq. (3) is a quantum dot where
electrostatic gates confine the electrons in a small, highly
interacting, region while the electrodes have high electronic
density, hence weak interactions.

The techniques described below are rather general and will
be discussed within the framework of Eq. (3). The practical
calculations however will be performed on the following
Anderson impurity models. Model A corresponds to one
interacting site, “0” inside an infinite one-dimensional chain,

ĤA =
+∞∑

i=−∞

∑

σ

γi ĉ
†
i,σ ĉi+1,σ + H.c. + εd (n̂↑ + n̂↓)

−h(n̂↑ − n̂↓) + Uθ (t)n̂↑n̂↓, (6)

where

n̂σ = ĉ†0σ ĉ0σ . (7)

εd is the level on-site energy, h the (Zeeman) magnetic field
and θ (t) is the Heaviside function so that the interaction is
switched on at t = 0. The hopping parameter γi is equal to
unity γi = 1 for all sites except γ−1 = γ0 = γ . We apply a
bias voltage Vb between the two (left and right) electrodes,
which are characterized by their chemical potential µL = Vb

and µR = 0 and temperature T . Model B is very close to model
A with additional parameters α↑, α↓,

ĤB =
+∞∑

i=−∞

∑

σ

γi ĉ
†
i,σ ĉi+1,σ + H.c. + εd (n̂↑ + n̂↓)

−h(n̂↑ − n̂↓) + Uθ (t)(n̂↑ − α↑)(n̂↓ − α↓). (8)

One easily realizes that the two models are in fact equiva-
lent in the stationary limit for α↑ = α↓ = α: ĤB(εd,U,α) =
ĤA(εd − Uα,U ) + Uα2. However, they have very different
large U limit at fixed (small) εd : model A corresponds
to the degeneracy point between 0 and 1 electrons on the
impurity (where Coulomb blockade is lifted), while model
B corresponds to the Kondo regime. More importantly, the
perturbation series in powers of U of the same observable
will be different between these two models, with different
convergence radius for fixed εd . The α parameters have been
introduced in Ref. [12], to improve the sign problem in
imaginary-time quantum Monte Carlo. An important energy
scale for these models is the (noninteracting) tunneling rate
from the impurity to the reservoirs. It is given by & = &L + &R

with &L/R = 2γ 2
√

1 − (µL/R/2)2.

B. Interaction expansion

Our starting point for this work is a formal expansion of
the out-of-equilibrium (Keldysh) Green’s function in powers
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nected to leads or a quantum impurity in a (possibly self-
consistently determined) bath. Our method can be ap-
plied in various non-equilibrium contexts, either at short
time after a quench, or in the long-time steady-state. In
particular, it can easily reach the steady-state limit, even
at zero temperature, as well as any intermediate time. It
is also not limited to particle-hole symmetric case. The
software developed can be seen as an extension of the
Kwant package25 to tackle electron-electron interactions,
or of the Triqs package26 to deal with non-equilibrium sit-
uations. Second, we discuss the issue of the summation
of the perturbative series of the physical quantity, which
is well-known to be a prominent topic in the quantum
many-body problem. We will show that in the out-of-
equilibrium Anderson model, for the parameters studied
here, the current through the dot or the density on it
have a finite apparent radius of convergence as a func-
tion of U . We will also show that by simply modify-
ing the quadratic part of the action (i.e. playing with
the so-called ↵ term in14), one can significantly extend
the radius of convergence, hence in practice compute for
higher values of the interaction. Finally, we show that
extrapolation technique for divergent series, e.g. Lin-
delöf method, can also significantly improve the range of
applicability of our method.

In section I, we summarize our method and explain the
main di↵erences between our work and previous ones.
This short section is mostly for QMC experts and can
be skipped for people new to the field. Section II in-
troduces our models and notations as well as the ba-
sic many-body perturbation expression that forms our
starting point. This expression relates the interacting
observables (such as current or magnetization) to the
non-interacting Green’s function of the system. Section
III discusses how to obtain the latter one, a prerequi-
site to any QMC scheme. While this step is relatively
straightforward for simple impurity problems (the vast
majority of the systems considered so far), its general-
ization to non-trivial geometries requires some care, or
can become a computationally prohibitive task. Section
IV discusses a direct calculation of the first few orders
of the interaction expansion by a brute force numerical
integration. The discussion of the structure of the func-
tions to be integrated will lead to a key insight for the
Monte-Carlo. Section V describes our QMC algorithm.
In Section VI we use the QMC algorithm to calculate the
first 10-15 terms in the expansion in powers of the inter-
action strength of the local charge on an Anderson impu-
rity in equilibrium. We analyze the radius of convergence
of the series in presence/absence of a mean-field term in
the non-interacting Hamiltonian. In section VII, we use
the method in the ouf-of-equilibrium regime, to obtain
some results associated with the Kondo e↵ect. The ar-
ticle ends with a discussion and various appendices that
contain some proofs or technical details.

I. SUMMARY OF THE APPROACH

Let us briefly sketch our algorithm and its proper-
ties. Non-QMC experts can skip this part, since its con-
tent will be detailed and explained in the next sections.
We start with a general Hamiltonian Ĥ(t) = Ĥ0(t) +
UĤint(t) where Ĥ0(t) is a non-interacting quadratic
Hamiltonian of an infinite system (typically a nano-
electronic system connected to several electrodes) and
Ĥint(t) contains the interacting part which is switched
on at t = 0. We aim at calculating the expansion of an
observable Q (say the current or the local occupation of
an orbital) in powers of U :

Q(U) =
+1X

n=0

QnU
n (1)

The Qn are given by many-body perturbation theory in
the Keldysh formalism in the form of a multi-dimensional
integral of a determinant, according to Wick’s theorem:

Qn =
X

Cn

W (Cn) detMn(Cn) (2)

The sum
P

Cn
contains an n-dimensional integral over in-

ternal times ui 2 [0, t] as well as a sum over n Keldysh in-
dices ai 2 {0, 1} and a sum over the di↵erent interaction
matrix elements. W (Cn) contains interaction matrix ele-
ments. detMn(Cn) is the determinant of a matrix built
up with the non-interacting Green’s function of Ĥ0(t).
Our algorithm works as follows:

(1) We compute directly the Qn. In contrast, the
imaginary-time or real-time19,20,22 continuous-time algo-
rithms sample the partition function of the problem Z. In
the real-time Keldysh formalism however, the partition
function is Z = 1 by construction and as we shall see, its
sampling is not well suited for obtaining the Qn. Techni-
cally, the integrand detMn(Cn) is concentrated around
times ui which are close to t while in the sampling of Z
the ui are spread over the full interval [0, t]. This first
step ensures that our technique converges well as t ! 1
and that this limit can be taken order by order in U .

(2) In the Keldysh formalism, one typically starts from
a non interacting system, switches on the interaction,
let the system evolve for a time t, measures the observ-
able and then evolves back to the non-interacting ini-
tial state. The Keldysh indices ai are reminiscent of
the two evolutions [from 0 to t (ai = 0) and back to
0 (ai = 1)]. The time evolution is unitary. To keep
this unitarity order by order, we choose to sum explicitly
over the Keldysh indices. Hence our algorithm samples
directly |

P
{ai} W (Cn) detMn(Cn)|. Indeed, performing

the sum over the Keldysh indices only with the Monte-
Carlo Markov chain implies that unitarity is only re-
spected on average (i.e. not for a single configuration),
and in other words relies on the Monte-Carlo to perform
massive cancellations. Obviously the explicit sum comes
at an exponential cost: for each Monte-Carlo move one
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A VERY DIRECT APPROACH: 
CALCULATING ALL THE FEYNMAN DIAGRAMS UP TO A GIVEN (LARGE) ORDER

• PROBLEM #1: There are n! diagrams.

• PROBLEM #2 How to calculate n dimensional integrals

• PROBLEM #3 How to reconstruct F(U) from the Fn .

F (U ) = FnU
n

n
∑
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II. THE ANDERSON IMPURITY MODEL

In this paper, we focus on the single impurity Ander-
son model both at and out-of equilibrium. While origi-
nally formulated to describe the e↵ect of magnetic impu-
rities in metals, this model is widely used in theoretical
condensed matter, both as a simple model for quantum
dots in mesoscopic physics and as a building block of
“quantum embedding” approximations like DMFT and
its generalizations. At the core of the Anderson model
lies Kondo physics. The repulsive interaction on the
quantum dot leads to an e↵ective antiferromagnetic in-
teraction between the electronic reservoirs and the spin
of the (unique) electron trapped in the quantum dot in
the local moment regime. This interaction leads to the
formation of the Kondo resonance, a thin peak in the lo-
cal density of state pinned at the Fermi energy66. The
Anderson impurity Hamiltonian reads:

Ĥ =
+1X

i=�1

X

�

�iĉ
†

i,�
ĉi+1,� + h.c. + ✏d(n̂" + n̂#)

+U✓(t)

✓
n̂" �

1

2

◆ ✓
n̂# �

1

2

◆
. (1)

It connects an impurity on site 0 to two semi-infinite elec-
trodes i < 0 and i > 0. The model corresponds to a sin-
gle level artificial atom as sketched in the upper panel of
Fig. 1. Here ✏d is the on-site energy of the impurity (rela-
tive to the particle-hole symmetric point), n̂� = ĉ

†

0,�
ĉ0,�

is the impurity density of spin � electrons. ĉ
†

i,�
and ĉi,�

are the creation and annihilation operators for electrons
on site i with spin �. We use ~ = e = 1. ✓(t) is the
Heaviside function: We switch the interaction on at time
t = 0. Typical calculations will be performed for large
times so that the system has relaxed to its stationary
regime. The hopping parameters are given by �i = 1 ex-
cept for �0 = ��1 = � which connect the impurity to the
electrodes. The calculations can be performed for arbi-
trary values of �. However, since we are not interested
in the large energy physics of the electrodes, we suppose
that � ⌧ 1, i.e. that the tunneling rate from the impu-
rity to the electrodes is energy independent � = 2⇡�

2
⇢F

where ⇢F is the density of states of the electron reservoirs
at the Fermi level. The non-interacting retarded Green’s
function of the free impurity is given by

g
R(!) =

1

! � ✏d + i�
. (2)

The two electrodes have a chemical potential symmetric
with respect to zero ±Vb/2 which corresponds to a bias
voltage Vb. They share the same temperature that we
take very low T = 10�4�. Within the standard non-
equilibrium Keldysh formalism67, the non-interacting

lesser and upper Green’s functions are given by:

g
<(!) =

i�


nF

⇣
! + Vb

2

⌘
+ nF

⇣
! �

Vb
2

⌘�

(! � ✏d)2 + �2
, (3)

g
>(!) =

i�


nF

⇣
! + Vb

2

⌘
+ nF

⇣
! �

Vb
2

⌘
� 2

�

(! � ✏d)2 + �2
, (4)

where nF (!) = 1/(e!/T +1) is the Fermi function. g
>(!)

and g
<(!) are the starting point for the expansion in

power of U that will be performed with real-time dia-
grammatic quantum Monte-Carlo.

The quantities of interest in this article are the inter-
acting Green’s functions (denoted with capital letters),

G
R(t, t0) = �i✓(t � t

0)

⌧n
ĉ0"(t), ĉ

†

0"
(t0)

o�
, (5a)

G
<(t, t0) = i

D
ĉ

†

0"
(t0)ĉ0"(t)

E
, (5b)

G
>(t, t0) = �i

D
ĉ0"(t)ĉ

†

0"
(t0)

E
, (5c)

where the operators have been written in Heisenberg rep-
resentation. Since we will restrict ourselves to the sta-
tionary limit, these functions are a function of t� t

0 only
and can be studied in the frequency domain. Of partic-
ular interest is the spectral function (or interacting local
density of state) given by

A(!) = �
1

⇡
Im[GR(!)]. (6)

The equilibrium spectral function displays the important
features of Kondo physics: a sharp Kondo resonance at
the Fermi level, and satellite peaks around ! = ±U/2 in
the case of particle-hole symmetry.

The out of equilibrium spectral function can be used
for the computation of the current-voltage characteristic
using the Wingreen-Meir formula68,

I =
�

2

Z
A(!)

"
nF

✓
! +

Vb

2

◆
� nF

✓
! �

Vb

2

◆#
d!.

(7)
The retarded self energy ⌃R(!) is defined from the inter-
acting Green’s function by:

G
R(!) =

1

! � ✏d + i� � ⌃R(!)
. (8)

Physical quantities have systematic expansion in power
of U

G
R(t � t

0) =
+1X

n=0

G
R

n
(t � t

0)Un
, (9)

from which we obtain the corresponding quantity in the
frequency domain by Fourier transform,

G
R(!) =

+1X

n=0

G
R

n
(!)Un

. (10)
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its generalizations. At the core of the Anderson model
lies Kondo physics. The repulsive interaction on the
quantum dot leads to an e↵ective antiferromagnetic in-
teraction between the electronic reservoirs and the spin
of the (unique) electron trapped in the quantum dot in
the local moment regime. This interaction leads to the
formation of the Kondo resonance, a thin peak in the lo-
cal density of state pinned at the Fermi energy66. The
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It connects an impurity on site 0 to two semi-infinite elec-
trodes i < 0 and i > 0. The model corresponds to a sin-
gle level artificial atom as sketched in the upper panel of
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ĉ

†

0"
(t0)ĉ0"(t)
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where the operators have been written in Heisenberg rep-
resentation. Since we will restrict ourselves to the sta-
tionary limit, these functions are a function of t� t
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and can be studied in the frequency domain. Of partic-
ular interest is the spectral function (or interacting local
density of state) given by
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The equilibrium spectral function displays the important
features of Kondo physics: a sharp Kondo resonance at
the Fermi level, and satellite peaks around ! = ±U/2 in
the case of particle-hole symmetry.
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field theory. In weak coupling theories, a few orders are
su�cient to explain many physical phenomena, even
quantitatively, as e.g. in Quantum Electrodynamics
(QED). However, at intermediate or strong coupling,
this approach faces two main challenges: (i) the compu-
tation of the coe�cients for n large enough and (ii) the
reconstruction of the physical quantities as a function of
U from a finite number of coe�cients.

Using the standard Wick theorem, an explicit expres-
sion of Fn to order n can be written as n�dimensional
integrals. While the computation of Fn can hardly
been achieved analytically beyond a few orders, Quan-
tum Monte-Carlo (QMC) algorithms known as “diagram-
matic Monte-Carlo”44–59 are able to compute a finite
number of these coe�cients Fn for a general class of
quantum many-body problems, in practice up to 8 or
15 depending on the model and the physical quantity.
The first generation of these algorithms explicitly sam-
pled the Feynman diagrams one by one with a complex
Markov chain, moving from one diagram to another. A
second generation of algorithms handles the diagrams
collectively using combinations of determinants to cancel
disconnected diagrams in physical quantities. This was
achieved in the real time Schwinger-Keldysh formalism39,
and in the imaginary time Matsubara formalism60–63.

The resummation of the series is a non-trivial mathe-
matical task outside of the weak coupling regime, even
with a perfect knowledge of the coe�cients Fn. The issue
comes from the finite radius of convergence of the series.
When U is larger than this radius, the truncated series to
the first N -th terms does not converge with N and some
resummation technique must be used to compute F (U).
Moreover, there are two additional di�culties associated
with numerical methods: i) only a finite number of coef-
ficients Fn can be computed since the computation cost
is exponential in n and ii) the Fn are only known with a
finite precision, typically of a few digits in QMC.

In this paper, we approach this problem from the angle
of complex analysis. Indeed, the divergence of the series
originates from the singularity structure of the function
F (U) in the complex plane U (lower left panel in Fig. 1).
We discuss how to locate the singularities closest to 0,
and how to construct an analytic change of variable to
resum the series beyond weak coupling (lower right panel
in Fig. 1). We also introduce a Bayesian technique to
take into account the amplification of the Monte-Carlo
noise in the resummation process using some simple non-
perturbative additional information on the model.

While our approach is quite general, we will focus
here on the non-equilibrium Anderson quantum impurity
model in the quantum dot configuration (upper panel
in Fig. 1). Our starting point is an expansion of the
Green’s function in power of the Hubbard interaction U ,
using an extension of the algorithm of Ref.39. The algo-
rithm is discussed in details in a companion paper64, its
implementation is based on the TRIQS library65. This
algorithm provides a numerically exact computation of
the perturbative series of physical quantities in power of

FIG. 1. Upper panel: the Anderson quantum impurity model
describing a single level quantum dot. The level with energy
✏d is subject to a finite Coulomb interaction U , and is hy-
bridized with a tunnel coupling � to two leads that are biased
with voltage Vb. Lower left panel: illustration of the gen-
eral computation scheme developed in this work. A physical
quantity F (e.g. the current through the dot) presents sin-
gularities in the U complex plane, such as poles (stars) or
branch cuts (dashed line), hampering proper convergence of
perturbative approaches for values of U outside the conver-
gence disk (grey area). After defining a broad singularity-free
contour C (red line) that encircles both U = 0 and a targeted
U0 value, a conformal map U ! W (U) is defined in order to
bring W0 = W (U0) inside the convergence disk of F [U(W )]
(lower right panel). Resummation techniques can then be
applied in a controlled way.

the interaction U , at a cost which is uniform in time but
exponential with the expansion order. Hence it allows
to compute in a transient regime as well as directly in a
long time steady state, a regime in which most competing
methods have severe limitations.

This paper is organized as follows. Section II intro-
duces our notations for the single impurity Anderson
model. Section III develops the resummation technique
and illustrates it on the Kondo temperature. Section IV
performs a benchmark of the method against NRG for the
equilibrium dynamics. Section V presents new results in
the non-equilibrium regime, including the voltage-split
spectral function, extended-range current-voltage char-
acteristics, and a non-trivial dot distribution function.
Section VI concludes this article and presents perspec-
tives for our conformal approach to the perturbative ex-
pansions of strongly interacting quantum systems.
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collectively using combinations of determinants to cancel
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is exponential in n and ii) the Fn are only known with a
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originates from the singularity structure of the function
F (U) in the complex plane U (lower left panel in Fig. 1).
We discuss how to locate the singularities closest to 0,
and how to construct an analytic change of variable to
resum the series beyond weak coupling (lower right panel
in Fig. 1). We also introduce a Bayesian technique to
take into account the amplification of the Monte-Carlo
noise in the resummation process using some simple non-
perturbative additional information on the model.

While our approach is quite general, we will focus
here on the non-equilibrium Anderson quantum impurity
model in the quantum dot configuration (upper panel
in Fig. 1). Our starting point is an expansion of the
Green’s function in power of the Hubbard interaction U ,
using an extension of the algorithm of Ref.39. The algo-
rithm is discussed in details in a companion paper64, its
implementation is based on the TRIQS library65. This
algorithm provides a numerically exact computation of
the perturbative series of physical quantities in power of

FIG. 1. Upper panel: the Anderson quantum impurity model
describing a single level quantum dot. The level with energy
✏d is subject to a finite Coulomb interaction U , and is hy-
bridized with a tunnel coupling � to two leads that are biased
with voltage Vb. Lower left panel: illustration of the gen-
eral computation scheme developed in this work. A physical
quantity F (e.g. the current through the dot) presents sin-
gularities in the U complex plane, such as poles (stars) or
branch cuts (dashed line), hampering proper convergence of
perturbative approaches for values of U outside the conver-
gence disk (grey area). After defining a broad singularity-free
contour C (red line) that encircles both U = 0 and a targeted
U0 value, a conformal map U ! W (U) is defined in order to
bring W0 = W (U0) inside the convergence disk of F [U(W )]
(lower right panel). Resummation techniques can then be
applied in a controlled way.

the interaction U , at a cost which is uniform in time but
exponential with the expansion order. Hence it allows
to compute in a transient regime as well as directly in a
long time steady state, a regime in which most competing
methods have severe limitations.

This paper is organized as follows. Section II intro-
duces our notations for the single impurity Anderson
model. Section III develops the resummation technique
and illustrates it on the Kondo temperature. Section IV
performs a benchmark of the method against NRG for the
equilibrium dynamics. Section V presents new results in
the non-equilibrium regime, including the voltage-split
spectral function, extended-range current-voltage char-
acteristics, and a non-trivial dot distribution function.
Section VI concludes this article and presents perspec-
tives for our conformal approach to the perturbative ex-
pansions of strongly interacting quantum systems.
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collectively using combinations of determinants to cancel
disconnected diagrams in physical quantities. This was
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matical task outside of the weak coupling regime, even
with a perfect knowledge of the coe�cients Fn. The issue
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the first N -th terms does not converge with N and some
resummation technique must be used to compute F (U).
Moreover, there are two additional di�culties associated
with numerical methods: i) only a finite number of coef-
ficients Fn can be computed since the computation cost
is exponential in n and ii) the Fn are only known with a
finite precision, typically of a few digits in QMC.

In this paper, we approach this problem from the angle
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originates from the singularity structure of the function
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We discuss how to locate the singularities closest to 0,
and how to construct an analytic change of variable to
resum the series beyond weak coupling (lower right panel
in Fig. 1). We also introduce a Bayesian technique to
take into account the amplification of the Monte-Carlo
noise in the resummation process using some simple non-
perturbative additional information on the model.

While our approach is quite general, we will focus
here on the non-equilibrium Anderson quantum impurity
model in the quantum dot configuration (upper panel
in Fig. 1). Our starting point is an expansion of the
Green’s function in power of the Hubbard interaction U ,
using an extension of the algorithm of Ref.39. The algo-
rithm is discussed in details in a companion paper64, its
implementation is based on the TRIQS library65. This
algorithm provides a numerically exact computation of
the perturbative series of physical quantities in power of

FIG. 1. Upper panel: the Anderson quantum impurity model
describing a single level quantum dot. The level with energy
✏d is subject to a finite Coulomb interaction U , and is hy-
bridized with a tunnel coupling � to two leads that are biased
with voltage Vb. Lower left panel: illustration of the gen-
eral computation scheme developed in this work. A physical
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branch cuts (dashed line), hampering proper convergence of
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exponential with the expansion order. Hence it allows
to compute in a transient regime as well as directly in a
long time steady state, a regime in which most competing
methods have severe limitations.

This paper is organized as follows. Section II intro-
duces our notations for the single impurity Anderson
model. Section III develops the resummation technique
and illustrates it on the Kondo temperature. Section IV
performs a benchmark of the method against NRG for the
equilibrium dynamics. Section V presents new results in
the non-equilibrium regime, including the voltage-split
spectral function, extended-range current-voltage char-
acteristics, and a non-trivial dot distribution function.
Section VI concludes this article and presents perspec-
tives for our conformal approach to the perturbative ex-
pansions of strongly interacting quantum systems.
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II. THE ANDERSON IMPURITY MODEL

In this paper, we focus on the single impurity Ander-
son model both at and out-of equilibrium. While origi-
nally formulated to describe the e↵ect of magnetic impu-
rities in metals, this model is widely used in theoretical
condensed matter, both as a simple model for quantum
dots in mesoscopic physics and as a building block of
“quantum embedding” approximations like DMFT and
its generalizations. At the core of the Anderson model
lies Kondo physics. The repulsive interaction on the
quantum dot leads to an e↵ective antiferromagnetic in-
teraction between the electronic reservoirs and the spin
of the (unique) electron trapped in the quantum dot in
the local moment regime. This interaction leads to the
formation of the Kondo resonance, a thin peak in the lo-
cal density of state pinned at the Fermi energy66. The
Anderson impurity Hamiltonian reads:
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It connects an impurity on site 0 to two semi-infinite elec-
trodes i < 0 and i > 0. The model corresponds to a sin-
gle level artificial atom as sketched in the upper panel of
Fig. 1. Here ✏d is the on-site energy of the impurity (rela-
tive to the particle-hole symmetric point), n̂� = ĉ
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is the impurity density of spin � electrons. ĉ
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are the creation and annihilation operators for electrons
on site i with spin �. We use ~ = e = 1. ✓(t) is the
Heaviside function: We switch the interaction on at time
t = 0. Typical calculations will be performed for large
times so that the system has relaxed to its stationary
regime. The hopping parameters are given by �i = 1 ex-
cept for �0 = ��1 = � which connect the impurity to the
electrodes. The calculations can be performed for arbi-
trary values of �. However, since we are not interested
in the large energy physics of the electrodes, we suppose
that � ⌧ 1, i.e. that the tunneling rate from the impu-
rity to the electrodes is energy independent � = 2⇡�
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where ⇢F is the density of states of the electron reservoirs
at the Fermi level. The non-interacting retarded Green’s
function of the free impurity is given by
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The two electrodes have a chemical potential symmetric
with respect to zero ±Vb/2 which corresponds to a bias
voltage Vb. They share the same temperature that we
take very low T = 10�4�. Within the standard non-
equilibrium Keldysh formalism67, the non-interacting
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where nF (!) = 1/(e!/T +1) is the Fermi function. g
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and g
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power of U that will be performed with real-time dia-
grammatic quantum Monte-Carlo.
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where the operators have been written in Heisenberg rep-
resentation. Since we will restrict ourselves to the sta-
tionary limit, these functions are a function of t� t

0 only
and can be studied in the frequency domain. Of partic-
ular interest is the spectral function (or interacting local
density of state) given by
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The equilibrium spectral function displays the important
features of Kondo physics: a sharp Kondo resonance at
the Fermi level, and satellite peaks around ! = ±U/2 in
the case of particle-hole symmetry.

The out of equilibrium spectral function can be used
for the computation of the current-voltage characteristic
using the Wingreen-Meir formula68,
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The retarded self energy ⌃R(!) is defined from the inter-
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and can be studied in the frequency domain. Of partic-
ular interest is the spectral function (or interacting local
density of state) given by
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The equilibrium spectral function displays the important
features of Kondo physics: a sharp Kondo resonance at
the Fermi level, and satellite peaks around ! = ±U/2 in
the case of particle-hole symmetry.

The out of equilibrium spectral function can be used
for the computation of the current-voltage characteristic
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TEASER: OUT-OF-EQUILIBRIUM
2

field theory. In weak coupling theories, a few orders are
su�cient to explain many physical phenomena, even
quantitatively, as e.g. in Quantum Electrodynamics
(QED). However, at intermediate or strong coupling,
this approach faces two main challenges: (i) the compu-
tation of the coe�cients for n large enough and (ii) the
reconstruction of the physical quantities as a function of
U from a finite number of coe�cients.

Using the standard Wick theorem, an explicit expres-
sion of Fn to order n can be written as n�dimensional
integrals. While the computation of Fn can hardly
been achieved analytically beyond a few orders, Quan-
tum Monte-Carlo (QMC) algorithms known as “diagram-
matic Monte-Carlo”44–59 are able to compute a finite
number of these coe�cients Fn for a general class of
quantum many-body problems, in practice up to 8 or
15 depending on the model and the physical quantity.
The first generation of these algorithms explicitly sam-
pled the Feynman diagrams one by one with a complex
Markov chain, moving from one diagram to another. A
second generation of algorithms handles the diagrams
collectively using combinations of determinants to cancel
disconnected diagrams in physical quantities. This was
achieved in the real time Schwinger-Keldysh formalism39,
and in the imaginary time Matsubara formalism60–63.

The resummation of the series is a non-trivial mathe-
matical task outside of the weak coupling regime, even
with a perfect knowledge of the coe�cients Fn. The issue
comes from the finite radius of convergence of the series.
When U is larger than this radius, the truncated series to
the first N -th terms does not converge with N and some
resummation technique must be used to compute F (U).
Moreover, there are two additional di�culties associated
with numerical methods: i) only a finite number of coef-
ficients Fn can be computed since the computation cost
is exponential in n and ii) the Fn are only known with a
finite precision, typically of a few digits in QMC.

In this paper, we approach this problem from the angle
of complex analysis. Indeed, the divergence of the series
originates from the singularity structure of the function
F (U) in the complex plane U (lower left panel in Fig. 1).
We discuss how to locate the singularities closest to 0,
and how to construct an analytic change of variable to
resum the series beyond weak coupling (lower right panel
in Fig. 1). We also introduce a Bayesian technique to
take into account the amplification of the Monte-Carlo
noise in the resummation process using some simple non-
perturbative additional information on the model.

While our approach is quite general, we will focus
here on the non-equilibrium Anderson quantum impurity
model in the quantum dot configuration (upper panel
in Fig. 1). Our starting point is an expansion of the
Green’s function in power of the Hubbard interaction U ,
using an extension of the algorithm of Ref.39. The algo-
rithm is discussed in details in a companion paper64, its
implementation is based on the TRIQS library65. This
algorithm provides a numerically exact computation of
the perturbative series of physical quantities in power of

FIG. 1. Upper panel: the Anderson quantum impurity model
describing a single level quantum dot. The level with energy
✏d is subject to a finite Coulomb interaction U , and is hy-
bridized with a tunnel coupling � to two leads that are biased
with voltage Vb. Lower left panel: illustration of the gen-
eral computation scheme developed in this work. A physical
quantity F (e.g. the current through the dot) presents sin-
gularities in the U complex plane, such as poles (stars) or
branch cuts (dashed line), hampering proper convergence of
perturbative approaches for values of U outside the conver-
gence disk (grey area). After defining a broad singularity-free
contour C (red line) that encircles both U = 0 and a targeted
U0 value, a conformal map U ! W (U) is defined in order to
bring W0 = W (U0) inside the convergence disk of F [U(W )]
(lower right panel). Resummation techniques can then be
applied in a controlled way.

the interaction U , at a cost which is uniform in time but
exponential with the expansion order. Hence it allows
to compute in a transient regime as well as directly in a
long time steady state, a regime in which most competing
methods have severe limitations.

This paper is organized as follows. Section II intro-
duces our notations for the single impurity Anderson
model. Section III develops the resummation technique
and illustrates it on the Kondo temperature. Section IV
performs a benchmark of the method against NRG for the
equilibrium dynamics. Section V presents new results in
the non-equilibrium regime, including the voltage-split
spectral function, extended-range current-voltage char-
acteristics, and a non-trivial dot distribution function.
Section VI concludes this article and presents perspec-
tives for our conformal approach to the perturbative ex-
pansions of strongly interacting quantum systems.

3

II. THE ANDERSON IMPURITY MODEL

In this paper, we focus on the single impurity Ander-
son model both at and out-of equilibrium. While origi-
nally formulated to describe the e↵ect of magnetic impu-
rities in metals, this model is widely used in theoretical
condensed matter, both as a simple model for quantum
dots in mesoscopic physics and as a building block of
“quantum embedding” approximations like DMFT and
its generalizations. At the core of the Anderson model
lies Kondo physics. The repulsive interaction on the
quantum dot leads to an e↵ective antiferromagnetic in-
teraction between the electronic reservoirs and the spin
of the (unique) electron trapped in the quantum dot in
the local moment regime. This interaction leads to the
formation of the Kondo resonance, a thin peak in the lo-
cal density of state pinned at the Fermi energy66. The
Anderson impurity Hamiltonian reads:

Ĥ =
+1X

i=�1

X
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i,�
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It connects an impurity on site 0 to two semi-infinite elec-
trodes i < 0 and i > 0. The model corresponds to a sin-
gle level artificial atom as sketched in the upper panel of
Fig. 1. Here ✏d is the on-site energy of the impurity (rela-
tive to the particle-hole symmetric point), n̂� = ĉ

†

0,�
ĉ0,�

is the impurity density of spin � electrons. ĉ
†

i,�
and ĉi,�

are the creation and annihilation operators for electrons
on site i with spin �. We use ~ = e = 1. ✓(t) is the
Heaviside function: We switch the interaction on at time
t = 0. Typical calculations will be performed for large
times so that the system has relaxed to its stationary
regime. The hopping parameters are given by �i = 1 ex-
cept for �0 = ��1 = � which connect the impurity to the
electrodes. The calculations can be performed for arbi-
trary values of �. However, since we are not interested
in the large energy physics of the electrodes, we suppose
that � ⌧ 1, i.e. that the tunneling rate from the impu-
rity to the electrodes is energy independent � = 2⇡�

2
⇢F

where ⇢F is the density of states of the electron reservoirs
at the Fermi level. The non-interacting retarded Green’s
function of the free impurity is given by

g
R(!) =

1

! � ✏d + i�
. (2)

The two electrodes have a chemical potential symmetric
with respect to zero ±Vb/2 which corresponds to a bias
voltage Vb. They share the same temperature that we
take very low T = 10�4�. Within the standard non-
equilibrium Keldysh formalism67, the non-interacting

lesser and upper Green’s functions are given by:
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where nF (!) = 1/(e!/T +1) is the Fermi function. g
>(!)

and g
<(!) are the starting point for the expansion in

power of U that will be performed with real-time dia-
grammatic quantum Monte-Carlo.

The quantities of interest in this article are the inter-
acting Green’s functions (denoted with capital letters),

G
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where the operators have been written in Heisenberg rep-
resentation. Since we will restrict ourselves to the sta-
tionary limit, these functions are a function of t� t

0 only
and can be studied in the frequency domain. Of partic-
ular interest is the spectral function (or interacting local
density of state) given by

A(!) = �
1

⇡
Im[GR(!)]. (6)

The equilibrium spectral function displays the important
features of Kondo physics: a sharp Kondo resonance at
the Fermi level, and satellite peaks around ! = ±U/2 in
the case of particle-hole symmetry.

The out of equilibrium spectral function can be used
for the computation of the current-voltage characteristic
using the Wingreen-Meir formula68,
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The retarded self energy ⌃R(!) is defined from the inter-
acting Green’s function by:

G
R(!) =

1
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. (8)

Physical quantities have systematic expansion in power
of U
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from which we obtain the corresponding quantity in the
frequency domain by Fourier transform,

G
R(!) =

+1X

n=0

G
R

n
(!)Un

. (10)

3

II. THE ANDERSON IMPURITY MODEL

In this paper, we focus on the single impurity Ander-
son model both at and out-of equilibrium. While origi-
nally formulated to describe the e↵ect of magnetic impu-
rities in metals, this model is widely used in theoretical
condensed matter, both as a simple model for quantum
dots in mesoscopic physics and as a building block of
“quantum embedding” approximations like DMFT and
its generalizations. At the core of the Anderson model
lies Kondo physics. The repulsive interaction on the
quantum dot leads to an e↵ective antiferromagnetic in-
teraction between the electronic reservoirs and the spin
of the (unique) electron trapped in the quantum dot in
the local moment regime. This interaction leads to the
formation of the Kondo resonance, a thin peak in the lo-
cal density of state pinned at the Fermi energy66. The
Anderson impurity Hamiltonian reads:
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PROBLEM #1: THE N! DIAGRAMS
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✏d is the level on-site energy, h the (Zeeman) magnetic
field and ✓(t) is the Heaviside function so that the inter-
action is switched on at t = 0. The hopping parameter �i
is equal to unity �i = 1 for all sites except ��1 = �0 = �.
We apply a bias voltage Vb between the two (Left and
Right) electrodes which are characterized by their chem-
ical potential µL = Vb and µR = 0 and temperature T .
Model B is very close to model A with additional param-
eters ↵", ↵#,

ĤB =
+1X

i=�1

X

�

�iĉ
†
i,�

ĉi+1,� + h.c+ ✏d(n̂" + n̂#)

�h(n̂" � n̂#) + U✓(t) (n̂" � ↵") (n̂# � ↵#) (8)

One easily realizes that the two models are in fact
equivalent in the stationary limit for ↵" = ↵# = ↵:

ĤB(✏d, U,↵) = ĤA(✏d � U↵, U) + U↵
2. However they

have very di↵erent large U limit at fixed (small) ✏d:
model A corresponds to the degeneracy point between 0
and 1 electrons on the impurity (where Coulomb blockade
is lifted) while model B corresponds to the Kondo regime.
More importantly, the perturbation series in powers of U
of the same observable will be di↵erent between these
two models, with di↵erent convergence radius for fixed
✏d. The ↵ parameters have been introduced in Ref. 14,
to improve the sign problem in imaginary-time Quan-
tum Monte-Carlo. An important energy scale for these
models is the (non-interacting) tunneling rate from the
impurity to the reservoirs. It is given by � = �L + �R

with �L/R = 2�2
p

1� (µL/R/2)2.

B. Interaction Expansion

Our starting point for this work is a formal expansion
of the out-of-equilibrium (Keldysh) Green’s function in
powers of electron-electron interactions. This is a stan-
dard step31 which we briefly sketch to introduce our no-
tations.

Using the interaction representation, one defines
ĉi(t) = Û0(0, t)ĉiÛ0(t, 0) where Û0(t0, t) is the evolu-
tion operator from t to t

0 associated with Ĥ0. Introduc-
ing the Keldysh index a = 0, 1, one defines the contour
ordering for pairs t̄ = (t, a): (t, 0) < (t0, 1) for all t, t0,
(t, 0) < (t0, 0) if t < t

0 and (t, 1) < (t0, 1) if t > t
0.

The contour ordering operator Tc acts on products of
fermionic operators A,B,C . . . labeled by various “con-
tour times” t̄A = (tA, aA), t̄B , t̄C . . . and reorder them
according to the contour ordering: Tc(A(t̄A)B(t̄B) = AB

if t̄A > t̄B and Tc(A(t̄A)B(t̄B) = �BA if t̄A < t̄B . The
non-interacting contour Green’s function is defined as

g
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†
j
(t̄0)i (9)

where ĉi(t̄) is just ĉi(t), the Keldysh index serving only to
define the position of the operator after contour ordering.
The contour Green’s function has a matrix structure in
a, a

0 which reads
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where gT
ij
(t, t0), g<

ij
(t, t0), g>

ij
(t, t0) and g

T̄

ij
(t, t0) are respec-

tively the time ordered, lesser, greater and anti-time or-
dered Green’s functions. E�cient techniques to obtain
these non-interacting objects for large systems will be
discussed in the next section. Last, one defines the full
Green’s function G

c

ij
(t̄, t̄0) with definitions identical to

the above except that Û0 is replaced by Û, the evolu-
tion operator associated to the full Hamiltonian Ĥ. The
fundamental expression for Gc

ij
(t̄, t̄0) reads

G
c

ij
(t̄, t̄0) = �ihTce

�i
R
dū UH̃int(ū)ĉi(t̄)ĉ

†
j
(t̄0)i (11)

where the integral over ū is taken along the Keldysh con-
tour, i.e. increasing u for a = 0 and decreasing for a = 1.
H̃int(ū) is equal to Ĥint(u) with the operators ĉi, ĉ

†
j
re-

placed by ĉi(ū), ĉ
†
j
(ū).

The expansion in powers of U can now be performed,

G
c

ij
(t̄, t̄0) = �i

+1X

n=0

(�i)n

n!
U

n
X

{ai}

(�1)
P

i ai
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du1du2 . . . dunhTcH̃int(ū1)H̃int(ū2) . . . H̃int(ūn)ĉi(t̄)ĉ

†
j
(t̄0)i (12)

Of particular interest to us are one-particle observables (say current or electronic density) which can be directly
expressed in terms of the lesser Green’s function at equal times:

Oij ⌘ hÛ(0, t)ĉ†
i
ĉjÛ(t, 0)i = �iG

<

ji
(t, t) (13)

Note at this stage that the following derivation is presented for the one particle correlator, but can be straightforwardly
generalized to higher correlators.

To proceed, one evaluates the average of the (large) products of creation/destruction operators using Wick theorem,
in a form of the determinant of a (2n+ 1)⇥ (2n+ 1) matrix,
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ij
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+1X
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n
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i ai
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i1j1k1l1

Vi1j1k1l1(u1) · · ·
X

injnknln

Vinjnknln(un) detMn (14) 5

where Mn is given by

Mn =
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(ūn, ū2) ... g

c

lnj
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(15)

and the zeroth order term is gc
ij
(t̄, t̄0).

Eq. (14) might look cumbersome at first sight, yet it is
a compact expression: provided one knows how to cal-
culate non-interacting Green’s functions (which will be
taken care of in the next section), Eq. (14) expresses
the full interacting Keldysh Green’s function, hence the
physical observables, in terms of integrals and sums of
determinant of known quantities. All that remains is to
find a suitable numerical way to perform those integrals
and sums. For a local interaction present on L sites,
calculating all contributions to order U

n in the station-
ary regime corresponds to a numerical complexity of the
order of Ln

t
n where the measurement time t has to be

large enough for the e↵ect of the electron-electron inter-
action to be well established. This can be performed us-
ing standard integration routines for the first few orders
(In section IV we calculate contributions n = 0, 1, 2, 3, 4
for model A) but becomes quickly prohibitive for larger
values of n. For larger orders, a stochastic sampling of
the integrals is compulsory.

To simplify the notations, we introduce the notion of
configuration Cn

Cn = (i1, j1, k1, l1, u1, . . . , in, jn, kn, ln, un) (16)

and note

X

Cn

=

Z

0<u1<···<un<max(t,t0)
du1du2 . . . dun

X

i1j1k1l1

· · ·
X

injnknln

(17)

Introducing,

V (Cn) =
nY

p=1

Vipjp,kplp (18)

we get the following compact expression:

G
c

ij
(t̄, t̄0) =

+1X

n=0

i
n
U

n
X

{ai}

(�1)
P

i ai ⇥

X

Cn

V (Cn) detMn(Cn, {ai}) (19)

where the n! factor has dropped out due to the ordering of
the ui. Note that in the Keldysh formalism the partition

function is unity which translates into

0 =
+1X

n=1

i
n
U

n
X

{ai}

(�1)
P

i ai
X

Cn

V (Cn) detPn(Cn, {ai})

(20)
where the 2n⇥2n matrix Pn is identical to Mn with the
last row and column deleted. Actually, a much stronger
statement can be made on Pn: for any n > 0 and con-
figuration Cn, one has,

X

{ai}

(�1)
P

i ai detPn(Cn, {ai}) = 0 (21)

The proof is straightforward and standard: one first lo-
cates the largest time in the configuration Cn, say un.
When an goes from 0 to 1, the ordering of ūn with re-
spect to the other times is unchanged (ūn is larger than
all the times on the upper part of the contour and smaller
than all those on the lower part of the contour), hence
the contour Green’s functions are unchanged and the ma-
trix Pn is also unchanged. As a result of the (�1)an sign
these two contributions cancel each other.

III. THE NON-INTERACTING GREEN’S
FUNCTION

In order to proceed with evaluating the interaction cor-
rections to observables, the first step is an e�cient way
to calculate the various real-time non-interacting Green’s
functions of the problem. For a small dot problem or
a DMFT model, this step is easy. For larger systems,
this question is more delicate, and it has been studied
extensively30 and we briefly summarize the main aspects
here. Note that in Ref. 30, only quantum transport was of
interest so that contributions coming from bound states
could have been omitted. Here however, they will have
to be taken into account properly.

A. General method

Our starting point for calculating non-interacting
Green’s functions is an expression that relates them to

6

the (Scattering) wave functions in the system30,

g
<

ij
(t, t0) = i

X

↵

Z
dE

2⇡
f↵(E) ↵E(t, i) 

⇤
↵E

(t0, j)

+ i

X

n

f(En) n(t, i) 
⇤
n
(t0, j) (22)

Here, ↵ labels the various propagating channels of the
leads,  ↵E(t, i) the scattering state at energy E (in the
electrode) and f↵(E) the corresponding Fermi distribu-
tion function. n labels a bound state of energy En and
wave functions  n. The greater Green’s function g

>

ij
(t, t0)

is obtained with an identical expression with the Fermi
functions f(E) replaced by f(E)�1. E�cient techniques
for calculating the scattering wave functions  ↵E(t, i)
have been designed so that these objects can be obtained
for large systems ( 105 sites32). The bound states contri-
bution was not considered in Ref. 30 and will be discussed
below. The actual calculations performed in this article
were restricted to a stationary non-interacting system,
where the above expression further simplifies into

g
<

ij
(t� t

0) = i

X

↵

Z
dE

2⇡
f↵(E) ↵E(i) 

⇤
↵E

(j)e�iE(t�t
0)

+ i

X

n

f(En) n(i) 
⇤
n
(j)e�iEn(t�t

0) (23)

Here again, the stationary wave functions  ↵E(i) are
standard objects. They are in fact direct outputs of
the Kwant software25 which we use for their calculations.
Once the lesser and greater Green’s functions are known,
one completes the 2⇥2 Keldysh matrix with the standard
relations

g
T

ij
(t, t0) = ✓(t� t

0)g>
ij
(t, t0) + ✓(t0 � t)g<

ij
(t, t0) (24)

g
T̄

ij
(t, t0) = ✓(t0 � t)g>

ij
(t, t0) + ✓(t� t

0)g<
ij
(t, t0) (25)

To obtain those Green’s function numerically, i.e. for
many values of t�t

0, one needs to perform the integration
over the energy E many times. In practice, the station-
ary wave functions are calculated once using Kwant and
cached. The integration itself is performed using stan-
dard numerical routines. For the single site model A or B,
the above technique in its full generality can be avoided:
one can simply compute the Green’s function in energy
analytically and perform a numerical Fourier transform.
We have checked explicitely that both techniques provide
identical non-interacting Green’s functions in this special
case.

B. Bound states contribution

The presence of the electrodes in the system is very
important physically: it provides the system with a re-
laxation mechanism. Mathematically, the integral in
Eq. (23) mixes nearby energies so that the resulting
non-interacting Green’s functions decay (and oscillate)

at large times. However, in presence of a large enough
confining energy (far from zero ✏d parameter in model
A), true bound states can appear in the system. They
have energies outside of the electrode bands and there-
fore cannot hybridize with the plane waves of the elec-
trodes. They satisfy the stationary Schrodinger equation
H

0 n = En n for the infinite system. Upon integrating
over the electrode degrees of freedom, they satisfy a sim-
pler (yet non-linear) equation for the interacting region
only:

H
0 n + ⌃(En) n = En n (26)

where ⌃(E) is the retarded self-energy due to the elec-
trode. For a practical calculation, we do as follows: first
we truncate H

0 and keep the interacting region plus a
rather large (yet finite) fraction of the electrodes. We di-
agonalize the corresponding finite matrix and locate the
eigenvalues that are outside the conducting bands of the
electrodes. These eigenvalues are used as initial guess
and we compute the bound states by iteratively solving
Eq. (26) until convergence. Note that there is an easy
check to make sure that one uses a complete basis of the
problem: one must have,

X

↵

Z
dE

2⇡
| ↵E(i)|2 +

X

n

| n(i)|2 = 1 (27)

which is not verified if some bound states are forgotten.
Note also that in most of this article, we focus on situa-
tions where there are no bound states in the system. This
can be easily achieved by using leads which have a larger
bandwidth than that of the central system, so that any
bound state that could take place there hybridize with
the continuum of the lead.

IV. ANALYSIS OF THE FIRST TERMS OF THE
PERTURBATIVE SERIES

Knowing how to get the non-interacting Green’s func-
tions, we are now ready to calculate the perturbation
series. A first, rather naive, technique would consist in
calculating the integrals in Eq. (14) using a simple dis-
cretization scheme (Simpson in our case). Only the first
few orders can be obtained that way, at large computa-
tional cost. Nevertheless, it is rather instructive and also
serves as a check for the QMC algorithms discussed in
the next section. We focus on model A and compute the
local charge Q(U) = hn" + n#i at various orders in U

n,

Q(U) =
+1X

n=0

QnU
n (28)

Fig. 2 shows the resulting Qn(✏d) for n = 0...3. With a
parallel implementation, results for Q4 can also be ob-
tained (not shown) at important computational cost and
Q5 is prohibitive. All these results will be reproduced
using the quantum Monte-Carlo sampling with a tiny

Known non-interacting functions.

A « VERY SIMPLE » FORMULA
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which is not verified if some bound states are forgotten.
Note also that in most of this article, we focus on situa-
tions where there are no bound states in the system. This
can be easily achieved by using leads which have a larger
bandwidth than that of the central system, so that any
bound state that could take place there hybridize with
the continuum of the lead.
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PERTURBATIVE SERIES

Knowing how to get the non-interacting Green’s func-
tions, we are now ready to calculate the perturbation
series. A first, rather naive, technique would consist in
calculating the integrals in Eq. (14) using a simple dis-
cretization scheme (Simpson in our case). Only the first
few orders can be obtained that way, at large computa-
tional cost. Nevertheless, it is rather instructive and also
serves as a check for the QMC algorithms discussed in
the next section. We focus on model A and compute the
local charge Q(U) = hn" + n#i at various orders in U

n,

Q(U) =
+1X
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QnU
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Fig. 2 shows the resulting Qn(✏d) for n = 0...3. With a
parallel implementation, results for Q4 can also be ob-
tained (not shown) at important computational cost and
Q5 is prohibitive. All these results will be reproduced
using the quantum Monte-Carlo sampling with a tiny

2n sum cancels
disconnected
diagrams
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fraction of the computational time. Note that the sta-
tionary results obtained for Qn do not mean that the se-
ries Eq. (28) is convergent, but only that its coe�cients
are well defined.
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FIG. 2. Qn as a function of ✏d for n = 0, 1, 2 and 3. The
calculations are performed using a direct evaluations of the
integrals in Eq. (14) using the Simpson rule for t = 20, � = 0.5
and T = 0.

It is very instructive to have a look at the quantity
which is actually integrated to obtain the Qn. Fig. 3
shows the integrand of Q2 for the 4 values of the pair
of Keldysh indices (a1, a2). We see that this integrand
decays slowly as a function of u1 � u2 and even more
slowly as u1 or u2 get away from the time t where the
charge is measured. The sign of the integrand changes as
one changes the Keldysh indices. Fig. 3 should be con-
trasted with Fig. 4 which shows the same integrand but
now summed over the four Keldysh indices. The inte-
grand shown in Fig. 4 now decays fast as u1 or u2 gets
away from t. This observation can be proven and gener-
alized for higher orders: the integrand decays to 0 when
a group of ui is far from the time t where the physical
observable is measured, Cf. Appendix B. Finally, Fig. 5
shows the same as Fig. 3 but for the matrix P2 associ-
ated with the partition function. Note that for P2, the
sum on the Keldysh indices simply vanishes, so there is
no analogous Figure as Fig. 4 for P2. In the next section,
we will use these observations to design a better sampling
strategy for the Monte-Carlo method.

V. QUANTUM MONTE-CARLO

The direct method of the previous section works in
principle but is limited in practice to very small orders
due to its prohibitive computational cost. Stochastic
methods, such as the Metropolis algorithm, can be ex-
tremely e�cient at calculating integrals in high dimen-
sions. In this section, we propose a new route to sample
the interacting series by constructing a Markov process

FIG. 3. Colorplot of the integrand of Q2 as a function of
the two times u1 and u2 for model A with µL = µR = 0,
✏d = 0, T = 0 and t = 10. The four panels correspond
to the 4 possible values of the two Keldysh indices a1 and
a2. The explicit form of the integrand is f(u1, u2, a1, a2) =
�=m(�1)

P
i ai detM2(u1, u2, a1, a2).

FIG. 4. Same parameters as in Fig. 3 but the integrand has
now been summed over Keldysh indices. The colorplot repre-
sents f(u1, u2) = i

P
a1,a2

(�1)
P

i ai detM2(u1, u2, a1, a2) (f
is real). Note that the integrand is now real, positive and
concentrated around u1 = u2 = t.

in the Fock configuration space (i.e. that not only sam-
ples the integrals themselves but also samples the various
orders n within one process).

A. Sampling strategy

Our algorithm is inspired by the conclusion of the pre-
vious section. It consists in i) sampling directly the phys-
ical quantity to be computed (and not the partition func-
tion, which is Z = 1 anyway in the Keldysh formalism),
and ii) summing explicitly over the Keldysh indices to re-
store unitarity (the symmetry between the two Keldysh
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✏d is the level on-site energy, h the (Zeeman) magnetic
field and ✓(t) is the Heaviside function so that the inter-
action is switched on at t = 0. The hopping parameter �i
is equal to unity �i = 1 for all sites except ��1 = �0 = �.
We apply a bias voltage Vb between the two (Left and
Right) electrodes which are characterized by their chem-
ical potential µL = Vb and µR = 0 and temperature T .
Model B is very close to model A with additional param-
eters ↵", ↵#,

ĤB =
+1X

i=�1

X

�

�iĉ
†
i,�

ĉi+1,� + h.c+ ✏d(n̂" + n̂#)

�h(n̂" � n̂#) + U✓(t) (n̂" � ↵") (n̂# � ↵#) (8)

One easily realizes that the two models are in fact
equivalent in the stationary limit for ↵" = ↵# = ↵:

ĤB(✏d, U,↵) = ĤA(✏d � U↵, U) + U↵
2. However they

have very di↵erent large U limit at fixed (small) ✏d:
model A corresponds to the degeneracy point between 0
and 1 electrons on the impurity (where Coulomb blockade
is lifted) while model B corresponds to the Kondo regime.
More importantly, the perturbation series in powers of U
of the same observable will be di↵erent between these
two models, with di↵erent convergence radius for fixed
✏d. The ↵ parameters have been introduced in Ref. 14,
to improve the sign problem in imaginary-time Quan-
tum Monte-Carlo. An important energy scale for these
models is the (non-interacting) tunneling rate from the
impurity to the reservoirs. It is given by � = �L + �R

with �L/R = 2�2
p

1� (µL/R/2)2.

B. Interaction Expansion

Our starting point for this work is a formal expansion
of the out-of-equilibrium (Keldysh) Green’s function in
powers of electron-electron interactions. This is a stan-
dard step31 which we briefly sketch to introduce our no-
tations.

Using the interaction representation, one defines
ĉi(t) = Û0(0, t)ĉiÛ0(t, 0) where Û0(t0, t) is the evolu-
tion operator from t to t

0 associated with Ĥ0. Introduc-
ing the Keldysh index a = 0, 1, one defines the contour
ordering for pairs t̄ = (t, a): (t, 0) < (t0, 1) for all t, t0,
(t, 0) < (t0, 0) if t < t

0 and (t, 1) < (t0, 1) if t > t
0.

The contour ordering operator Tc acts on products of
fermionic operators A,B,C . . . labeled by various “con-
tour times” t̄A = (tA, aA), t̄B , t̄C . . . and reorder them
according to the contour ordering: Tc(A(t̄A)B(t̄B) = AB

if t̄A > t̄B and Tc(A(t̄A)B(t̄B) = �BA if t̄A < t̄B . The
non-interacting contour Green’s function is defined as

g
c

ij
(t̄, t̄0) = �ihTcĉi(t̄)ĉ

†
j
(t̄0)i (9)

where ĉi(t̄) is just ĉi(t), the Keldysh index serving only to
define the position of the operator after contour ordering.
The contour Green’s function has a matrix structure in
a, a

0 which reads

g
c

ij
(t, t0) =

✓
g
T

ij
(t, t0) g

<

ij
(t, t0)

g
>

ij
(t, t0) g

T̄

ij
(t, t0)

◆
(10)

where gT
ij
(t, t0), g<

ij
(t, t0), g>

ij
(t, t0) and g

T̄

ij
(t, t0) are respec-

tively the time ordered, lesser, greater and anti-time or-
dered Green’s functions. E�cient techniques to obtain
these non-interacting objects for large systems will be
discussed in the next section. Last, one defines the full
Green’s function G

c

ij
(t̄, t̄0) with definitions identical to

the above except that Û0 is replaced by Û, the evolu-
tion operator associated to the full Hamiltonian Ĥ. The
fundamental expression for Gc

ij
(t̄, t̄0) reads

G
c

ij
(t̄, t̄0) = �ihTce

�i
R
dū UH̃int(ū)ĉi(t̄)ĉ

†
j
(t̄0)i (11)

where the integral over ū is taken along the Keldysh con-
tour, i.e. increasing u for a = 0 and decreasing for a = 1.
H̃int(ū) is equal to Ĥint(u) with the operators ĉi, ĉ

†
j
re-

placed by ĉi(ū), ĉ
†
j
(ū).

The expansion in powers of U can now be performed,

G
c

ij
(t̄, t̄0) = �i

+1X

n=0

(�i)n

n!
U

n
X

{ai}

(�1)
P

i ai

Z
du1du2 . . . dunhTcH̃int(ū1)H̃int(ū2) . . . H̃int(ūn)ĉi(t̄)ĉ

†
j
(t̄0)i (12)

Of particular interest to us are one-particle observables (say current or electronic density) which can be directly
expressed in terms of the lesser Green’s function at equal times:

Oij ⌘ hÛ(0, t)ĉ†
i
ĉjÛ(t, 0)i = �iG

<

ji
(t, t) (13)

Note at this stage that the following derivation is presented for the one particle correlator, but can be straightforwardly
generalized to higher correlators.

To proceed, one evaluates the average of the (large) products of creation/destruction operators using Wick theorem,
in a form of the determinant of a (2n+ 1)⇥ (2n+ 1) matrix,

G
c

ij
(t̄, t̄0) =

+1X

n=0

i
n

n!
U

n
X

{ai}

(�1)
P

i ai

Z
du1du2 . . . dun

X

i1j1k1l1

Vi1j1k1l1(u1) · · ·
X

injnknln

Vinjnknln(un) detMn (14)

2n sum cancels
disconnected
diagrams
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where Mn is given by

Mn =

0

BBBBBBBB@

g
<

k1i1
(ū1, ū1) g

<

k1j1
(ū1, ū1) g

c

k1i2
(ū1, ū2) ... g

c

k1j
(ū1, t̄

0)
g
<

l1i1
(ū1, ū1) g

<

l1j1
(ū1, ū1) g

c

l1i2
(ū1, ū2) ... g

c

l1j
(ū1, t̄

0)
g
c

k2i1
(ū2, ū1) g

c

k2j1
(ū2, ū1) g

<

k2i2
(ū2, ū2) ... g

c

k2j
(ū2, t̄

0)
... ... ... ... ...

g
c

kni1
(ūn, ū1) g

c

knj1
(ūn, ū1) g

c

kni2
(ūn, ū2) ... g

c

knj
(ūn, t̄

0)
g
c

lni1
(ūn, ū1) g

c

lnj1
(ūn, ū1) g

c

lni2
(ūn, ū2) ... g

c

lnj
(ūn, t̄

0)
g
c

ii1
(t̄, ū1) g

c

ij1
(t̄, ū1) g

c

ii2
(t̄, ū2) ... g

c

ij
(t̄, t̄0)

1

CCCCCCCCA

(15)

and the zeroth order term is gc
ij
(t̄, t̄0).

Eq. (14) might look cumbersome at first sight, yet it is
a compact expression: provided one knows how to cal-
culate non-interacting Green’s functions (which will be
taken care of in the next section), Eq. (14) expresses
the full interacting Keldysh Green’s function, hence the
physical observables, in terms of integrals and sums of
determinant of known quantities. All that remains is to
find a suitable numerical way to perform those integrals
and sums. For a local interaction present on L sites,
calculating all contributions to order U

n in the station-
ary regime corresponds to a numerical complexity of the
order of Ln

t
n where the measurement time t has to be

large enough for the e↵ect of the electron-electron inter-
action to be well established. This can be performed us-
ing standard integration routines for the first few orders
(In section IV we calculate contributions n = 0, 1, 2, 3, 4
for model A) but becomes quickly prohibitive for larger
values of n. For larger orders, a stochastic sampling of
the integrals is compulsory.

To simplify the notations, we introduce the notion of
configuration Cn

Cn = (i1, j1, k1, l1, u1, . . . , in, jn, kn, ln, un) (16)

and note

X

Cn

=

Z

0<u1<···<un<max(t,t0)
du1du2 . . . dun

X

i1j1k1l1

· · ·
X

injnknln

(17)

Introducing,

V (Cn) =
nY

p=1

Vipjp,kplp (18)

we get the following compact expression:

G
c

ij
(t̄, t̄0) =

+1X

n=0

i
n
U

n
X

{ai}

(�1)
P

i ai ⇥

X

Cn

V (Cn) detMn(Cn, {ai}) (19)

where the n! factor has dropped out due to the ordering of
the ui. Note that in the Keldysh formalism the partition

function is unity which translates into

0 =
+1X

n=1

i
n
U

n
X

{ai}

(�1)
P

i ai
X

Cn

V (Cn) detPn(Cn, {ai})

(20)
where the 2n⇥2n matrix Pn is identical to Mn with the
last row and column deleted. Actually, a much stronger
statement can be made on Pn: for any n > 0 and con-
figuration Cn, one has,

X

{ai}

(�1)
P

i ai detPn(Cn, {ai}) = 0 (21)

The proof is straightforward and standard: one first lo-
cates the largest time in the configuration Cn, say un.
When an goes from 0 to 1, the ordering of ūn with re-
spect to the other times is unchanged (ūn is larger than
all the times on the upper part of the contour and smaller
than all those on the lower part of the contour), hence
the contour Green’s functions are unchanged and the ma-
trix Pn is also unchanged. As a result of the (�1)an sign
these two contributions cancel each other.

III. THE NON-INTERACTING GREEN’S
FUNCTION

In order to proceed with evaluating the interaction cor-
rections to observables, the first step is an e�cient way
to calculate the various real-time non-interacting Green’s
functions of the problem. For a small dot problem or
a DMFT model, this step is easy. For larger systems,
this question is more delicate, and it has been studied
extensively30 and we briefly summarize the main aspects
here. Note that in Ref. 30, only quantum transport was of
interest so that contributions coming from bound states
could have been omitted. Here however, they will have
to be taken into account properly.

A. General method

Our starting point for calculating non-interacting
Green’s functions is an expression that relates them to

KERNEL EXPANSION

4

of the matrix,

(�1)i+j

s
A1 . . .⇢⇢Ai , . . . . . . , Am

B1, . . .��Bj , . . . , Bm

{
=

s
A1, . . . , Am

B1, . . . , Bm

{�1

ji

s
A1, . . . , Am

B1, . . . , Bm

{
(18)

C. Definition of the kernel K for the one-body
Green’s function

In Ref. 24, a QMC scheme was defined directly on
Eq. (8) so that a single QMC run could provide the value
of G

aa0

xx0(t, t0) for a single pair of times t and t
0. In order

to extend the technique and obtain a full curve (as a
function of t) in a single run, a di↵erent form must be
used. Performing the expansion of Eq. (17) on Eq. (8),
we obtain

G
aa0

xx0(t, t0) = g
aa0

xx0(t, t0) +
X

n�1

i
n
U

n

n!

Z nY

k=1

duk

X

{xk,yk}

X

{ak}

 
nY

k=1

(�1)akVxkyk(uk)

!
⇥

 
2nX

p=1

(�1)pg [(x, t, a), Up]

s
U1, . . . , U2n

(x0
, t

0
, a

0), U1, . . . ,��Up , . . . , U2n

{
+ g [(x, t, a), (x0

, t
0
, a

0)]

s
U1, . . . , U2n

U1, . . . , U2n

{!
(19)

The last term of the sum vanishes for n > 0 due to Eq. (15). Factorizing the g from the sum, we arrive at

G
aa0

xx0(t, t0) = g
aa0

xx0(t, t0) +

Z
du

X

b,y

(�1)bgabxy(t, u)Kba0

yx0(u, t
0) (20)

where the kernel K
ba0

yx0(u, t
0) = K(Y, X

0) with Y = (y, u, b) is defined by

K(Y, X
0) ⌘ (�1)b

X

n�1

i
n
U

n

n!

Z nY

k=1

duk

X

{xk,yk}

X

{ak}

 
nY

k=1

(�1)akVxkyk(uk)

!
2nX

p=1

(�1)p�c(Y, Up)

s
U1, . . . , U2n

X
0
, U1, . . . ,��Up , . . . , U2n

{

(21)

Equations (20) and (21) will be the basis of one of the method developed in this article. Eq. (21) will provide the mean
to get a full t-curve in a single calculation and Eq. (20) to relate the corresponding kernel to the Green’s function G,
the target of the calculation.

A symmetric kernel K̄ may be derived following the exact same route but now expanding the Wick determinant
along the first column using Eq. (16). We find

G
aa0

xx0(t, t0) = g
aa0

xx0(t, t0) +

Z
du

X

b,y

(�1)bK̄ab
xy(t, u)gba

0

yx0(u, t
0) (22)

where the kernel K̄ is defined by

K̄(X, Y ) ⌘ (�1)b
X

n�1

i
n
U

n

n!

Z nY

k=1

duk

X

{xk,yk}

X

{ak}

 
nY

k=1

(�1)akVxkyk(uk)

!
2nX

p=1

(�1)p�c(Y, Up)

s
X, U1, . . . ,��Up , . . . , U2n

U1, . . . , U2n

{

(23)

D. Definition of the kernel L of the F Green’s function

Let us define a new Green’s function with 4 operators, the F function. As we shall see, the F Green’s function
can also be represented in term of a kernel so that we will be able to design a direct QMC method to calculate it.
Its interest stems from the fact that it can be used to reconstruct G while the corresponding QMC technique will be
more precise at high frequency. It is defined as,

F
aa0

xx0z(t, t
0) ⌘ (�i)2

D
Tcĉ(x, t, a)ĉ†(x0

, t
0
, a

0)
h
ĉ

†(z, t
0
, a

0)ĉ(z, t
0
, a

0) � ↵z

iE
(24)

Expand the determinant over the last raw.
(all times in a single calculation)
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PROBLEM #2 THE N DIMENSIONAL INTEGRAL

interaction strength as parameters. This experimentally
relevant calculation was computationally unfeasible for
previous techniques.
Formalism.—In perturbative calculations, an observable

FðUÞ such as a current or susceptibility is expressed as a
power series in the interaction U:

FðUÞ ¼
X∞

n¼0

FnUn; ð1Þ

where the coefficients Fn are n-dimensional integrals

Fn ¼
Z

dnu fnðu1; u2;…; unÞ: ð2Þ

The integrands fnðuÞ are time-ordered correlators
expressed in terms of 2n determinants (Wick’s theorem),
in both Schwinger-Keldysh [10] and Matsubara formalisms
[17]. The exponential complexity of evaluating fnðuÞ leads
us to seek fast integration methods. Here the ui specify the
locations of interaction vertices in space and time. We
present the formalism generally and will specialize to a
concrete application later.
We will perform the integral Eq. (2) by direct sampling

using quasi-Monte Carlo simulations. The crucial step is to
warp the integral, i.e., to make a change of variables uðxÞ
that maps the hypercube x ∈ ½0; 1%n onto the u domain. The
integral Eq. (2) becomes

Fn ¼
Z

½0;1%n
dnx fn½uðxÞ%

!!!!
∂u
∂x

!!!!; ð3Þ

where j∂u=∂xj is the associated Jacobian.

The most important property of the warping is to make
the function f̄nðxÞ ¼ fn½uðxÞ%j∂u=∂xj as smooth as pos-
sible in the new variables x. If fn were positive, the perfect
change of variables would make f̄n constant and thus trivial
to integrate with a single sample. That would be tantamount
to ideal sampling from the distribution fnðuÞ and it is as
challenging as the original integration. Instead, a judicious
warping must provide sufficient smoothing while remain-
ing efficiently computable.
Mathematically, convergence theorems can only be

established for f̄nðxÞ that belong to specific smooth
function spaces, or whose Fourier coefficients have rapid
asymptotic decay properties [22,24]. Although we cannot
prove that our warped integrands satisfy assumptions of
this kind, in practice we find that the change of variables are
good enough to provide excellent error scaling.
To warp the integral, we consider a positive model

function pnðuÞ, which should be viewed as an approxi-
mation of jfnj. The inverse change of variables xðuÞ is then
defined by (for 1 ≤ m ≤ n),

xmðu0m; umþ1;…; unÞ ¼
R u0m
0 dum

R∞
0

Qm−1
i¼1 duipnðuÞR∞

0 dum
R∞
0

Qm−1
i¼1 duipnðuÞ

:

ð4Þ

Here we adopt a case where ui is defined on the interval
½0;∞Þ. Since xmðuÞ only depends on um;…; un,
the Jacobian is j∂u=∂xj ¼ ½

R
dupnðuÞ%=pnðuÞ (see

Ref. [26]). In quasi-Monte Carlo simulations, the integral
Eq. (3) is approximated by a sum over the firstN points of a
low-discrepancy sequence x̄i. This is a deterministic
sequence of points with specific properties that uniformly
samples the hypercube [22,24]. We have

Fn ≈ FnðNÞ ¼ C
N

XN

i¼0

fn½uðx̄iÞ%
pn½uðx̄iÞ%

; ð5Þ

where C ¼
R
dupnðuÞ is a constant. Here we use a Sobol’

sequence [47,48] to obtain x̄i.
The model function pnðuÞ should have two key proper-

ties. First, it should approximate jfnðuÞj well. Second, its
form should be simple enough for the partial integrals
Eq. (4) to be evaluated exactly and quickly. This allows the
reciprocal function uðxÞ to be computed by first inverting
the one-dimensional function xnðunÞ, then inverting
xn−1ðun; un−1Þ for fixed un, and so on [26].
Many classes of model functions are possible, as dis-

cussed later. This Letter applies the method to impurity
models, using a real-time Schwinger-Keldysh formalism, in
which the ui are the times of the interaction vertices. We
consider the simple form

pnðuÞ ¼
Yn

i¼1

hðiÞðui−1 − uiÞ; ð6Þ

FIG. 1. Comparison of the convergence rates for QQMC and
DiagQMC. Here QnðNÞ is the expansion coefficient of the
occupation number of the Anderson impurity model at order n
as a function of the number of integrand evaluations N. Each
result is normalized to the exact analytic result QBethe

n .

PHYSICAL REVIEW LETTERS 125, 047702 (2020)

047702-2

interaction strength as parameters. This experimentally
relevant calculation was computationally unfeasible for
previous techniques.
Formalism.—In perturbative calculations, an observable

FðUÞ such as a current or susceptibility is expressed as a
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expressed in terms of 2n determinants (Wick’s theorem),
in both Schwinger-Keldysh [10] and Matsubara formalisms
[17]. The exponential complexity of evaluating fnðuÞ leads
us to seek fast integration methods. Here the ui specify the
locations of interaction vertices in space and time. We
present the formalism generally and will specialize to a
concrete application later.
We will perform the integral Eq. (2) by direct sampling
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that maps the hypercube x ∈ ½0; 1%n onto the u domain. The
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sible in the new variables x. If fn were positive, the perfect
change of variables would make f̄n constant and thus trivial
to integrate with a single sample. That would be tantamount
to ideal sampling from the distribution fnðuÞ and it is as
challenging as the original integration. Instead, a judicious
warping must provide sufficient smoothing while remain-
ing efficiently computable.
Mathematically, convergence theorems can only be

established for f̄nðxÞ that belong to specific smooth
function spaces, or whose Fourier coefficients have rapid
asymptotic decay properties [22,24]. Although we cannot
prove that our warped integrands satisfy assumptions of
this kind, in practice we find that the change of variables are
good enough to provide excellent error scaling.
To warp the integral, we consider a positive model

function pnðuÞ, which should be viewed as an approxi-
mation of jfnj. The inverse change of variables xðuÞ is then
defined by (for 1 ≤ m ≤ n),
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the Jacobian is j∂u=∂xj ¼ ½
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Eq. (3) is approximated by a sum over the firstN points of a
low-discrepancy sequence x̄i. This is a deterministic
sequence of points with specific properties that uniformly
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ties. First, it should approximate jfnðuÞj well. Second, its
form should be simple enough for the partial integrals
Eq. (4) to be evaluated exactly and quickly. This allows the
reciprocal function uðxÞ to be computed by first inverting
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The standard approach: Metropolis Monte-Carlo.
à Intrinsic very slow convergence N-1/2 (in one dimension: 1/N15or even exponential)
à We do not build any knowledge of f(u)

à The dimensionality curse



26

MACHINE LEARNING THE INTEGRAND

2

I. INTRODUCTION

| i = UnUn�1...U3U2U1|0000000000000000000i

| i =
253X

x=1

 x|xi

P (x) = |hx| i|2 = | x|2

Proba
�
| x0 |2 = ⇢

�
=

R Q253

i=1 duidvi�
�
⇢� u

2
0 + v

2
0

�
�

⇣
1�

P253

i=1 u
2
i + v

2
i

⌘

R Q253

i=1 duidvi�

⇣
1�

P253

i=1 u
2
i + v

2
i

⌘

Proba
�
| x0 |2 = ⇢

�
= (253 � 1)(1� ⇢)2

53�2 ⇡ 253e�253⇢

x1, x2, x3, x4, ..., x106

F = (f)ND

FXEB = 253
X

x

P (x)Q(x)� 1 ⇡ 1

106

106X

i=1

P (xi)� 1

F = 0.002

f = 0.986
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interaction strength as parameters. This experimentally
relevant calculation was computationally unfeasible for
previous techniques.
Formalism.—In perturbative calculations, an observable

FðUÞ such as a current or susceptibility is expressed as a
power series in the interaction U:

FðUÞ ¼
X∞

n¼0

FnUn; ð1Þ

where the coefficients Fn are n-dimensional integrals

Fn ¼
Z

dnu fnðu1; u2;…; unÞ: ð2Þ

The integrands fnðuÞ are time-ordered correlators
expressed in terms of 2n determinants (Wick’s theorem),
in both Schwinger-Keldysh [10] and Matsubara formalisms
[17]. The exponential complexity of evaluating fnðuÞ leads
us to seek fast integration methods. Here the ui specify the
locations of interaction vertices in space and time. We
present the formalism generally and will specialize to a
concrete application later.
We will perform the integral Eq. (2) by direct sampling

using quasi-Monte Carlo simulations. The crucial step is to
warp the integral, i.e., to make a change of variables uðxÞ
that maps the hypercube x ∈ ½0; 1%n onto the u domain. The
integral Eq. (2) becomes

Fn ¼
Z

½0;1%n
dnx fn½uðxÞ%

!!!!
∂u
∂x

!!!!; ð3Þ

where j∂u=∂xj is the associated Jacobian.

The most important property of the warping is to make
the function f̄nðxÞ ¼ fn½uðxÞ%j∂u=∂xj as smooth as pos-
sible in the new variables x. If fn were positive, the perfect
change of variables would make f̄n constant and thus trivial
to integrate with a single sample. That would be tantamount
to ideal sampling from the distribution fnðuÞ and it is as
challenging as the original integration. Instead, a judicious
warping must provide sufficient smoothing while remain-
ing efficiently computable.
Mathematically, convergence theorems can only be

established for f̄nðxÞ that belong to specific smooth
function spaces, or whose Fourier coefficients have rapid
asymptotic decay properties [22,24]. Although we cannot
prove that our warped integrands satisfy assumptions of
this kind, in practice we find that the change of variables are
good enough to provide excellent error scaling.
To warp the integral, we consider a positive model

function pnðuÞ, which should be viewed as an approxi-
mation of jfnj. The inverse change of variables xðuÞ is then
defined by (for 1 ≤ m ≤ n),

xmðu0m; umþ1;…; unÞ ¼
R u0m
0 dum

R∞
0

Qm−1
i¼1 duipnðuÞR∞

0 dum
R∞
0

Qm−1
i¼1 duipnðuÞ

:

ð4Þ

Here we adopt a case where ui is defined on the interval
½0;∞Þ. Since xmðuÞ only depends on um;…; un,
the Jacobian is j∂u=∂xj ¼ ½

R
dupnðuÞ%=pnðuÞ (see

Ref. [26]). In quasi-Monte Carlo simulations, the integral
Eq. (3) is approximated by a sum over the firstN points of a
low-discrepancy sequence x̄i. This is a deterministic
sequence of points with specific properties that uniformly
samples the hypercube [22,24]. We have

Fn ≈ FnðNÞ ¼ C
N

XN

i¼0

fn½uðx̄iÞ%
pn½uðx̄iÞ%

; ð5Þ

where C ¼
R
dupnðuÞ is a constant. Here we use a Sobol’

sequence [47,48] to obtain x̄i.
The model function pnðuÞ should have two key proper-

ties. First, it should approximate jfnðuÞj well. Second, its
form should be simple enough for the partial integrals
Eq. (4) to be evaluated exactly and quickly. This allows the
reciprocal function uðxÞ to be computed by first inverting
the one-dimensional function xnðunÞ, then inverting
xn−1ðun; un−1Þ for fixed un, and so on [26].
Many classes of model functions are possible, as dis-

cussed later. This Letter applies the method to impurity
models, using a real-time Schwinger-Keldysh formalism, in
which the ui are the times of the interaction vertices. We
consider the simple form

pnðuÞ ¼
Yn

i¼1

hðiÞðui−1 − uiÞ; ð6Þ

FIG. 1. Comparison of the convergence rates for QQMC and
DiagQMC. Here QnðNÞ is the expansion coefficient of the
occupation number of the Anderson impurity model at order n
as a function of the number of integrand evaluations N. Each
result is normalized to the exact analytic result QBethe
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And get an almost constant integrand
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High order perturbation theory has seen an unexpected recent revival for controlled calculations
of quantum many-body systems, even at strong coupling. We adapt integration methods using
low-discrepancy sequences to this problem. They greatly outperform state-of-the-art diagrammatic
Monte Carlo. In practical applications, we show speed-ups of several orders of magnitude with
scaling as fast as 1/N in sample number N ; parametrically faster than 1/

p
N in Monte Carlo. We

illustrate our technique with a solution of the Kondo ridge in quantum dots, where it allows large
parameter sweeps.

The exponential complexity of quantum many-body
systems is at the heart of many remarkable phenomena.
Advances in correlated materials and recently developed
synthetic quantum systems – e.g. atomic gases [1], trapped
ions [2], and nanoelectronic devices [3–6] – have allowed
many-body states to be characterized and controlled with
unprecedented precision. The latest of these systems,
quantum computing chips, are highly engineered out-of-
equilibrium many-body systems, where the interacting
dynamics performs computational tasks [7]. However, our
understanding of these many-body systems is limited by
their intrinsic complexity. While uncontrolled approxi-
mations can give insight into possible behaviors, there
is a growing e↵ort to develop controlled, high-precision
methods [8], especially ones that apply far from equilib-
rium [9–11]. These allow us to make quantitative pre-
dictions about the physics of many-body systems and to
uncover qualitatively new e↵ects at strong coupling.

Among theoretical approaches, perturbative expansions
in the interaction strength have seen an unexpected re-
cent revival, in particular using a family of “diagrammatic”
Quantum Monte Carlo (DiagQMC) methods [10–21]. Us-
ing various techniques [11, 12, 18, 21], it is now possible to
sum perturbative series beyond their radius of convergence
and thus access strongly correlated regimes. The e↵ects
of strong interactions have been studied in diverse sys-
tems, including unitary quantum gases [15], polarons [12],
quantum dots [10, 11, 19], and pseudo-gap metals [16].

DiagQMC is currently the preferred strategy for com-
puting series coe�cients at large perturbation order n,
as this involves integrals of dimension proportional to n
(practically around 5 � 30). High dimensional integration
is notoriously di�cult, and Monte Carlo provides a ro-
bust and flexible solution with errors that scale as 1/

p
N

independently of the dimension; here N is the number of
sample points.

Nonetheless, there has been tremendous progress in

⇤ pdumitrescu@flatironinstitute.org
† xavier.waintal@cea.fr

integration methods for problems that lie in-between tra-
ditional quadrature (very low dimensions) and Monte
Carlo (high dimensions). In intermediate dimensions
(typically 5-200), ‘Quasi-Monte Carlo’ methods have be-
come well established. These sample the integrand in a
deterministic and structured way that ensures improved
uniformity and better convergence rates. In favorable
cases they can achieve error scalings of 1/N or even 1/N2,
far outperforming traditional Monte Carlo [22–25].

In this paper we show how to apply these integra-
tion techniques to perturbative expansions for quantum
many-body systems. Our “Quantum Quasi-Monte Carlo”
(QQMC) approach is broadly applicable. It can be for-
mulated for both equilibrium and non-equilibrium cases
and extended to various lattices and dimensions. Here we
demonstrate it on a quantum dot model and show com-
putational accelerations of several orders of magnitude
compared to state-of-the-art DiagQMC [10, 11] (Fig. 1).
A crucial ingredient of QQMC is the warping of the in-
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Figure 1. Comparison of the convergence rates for QQMC
and DiagQMC. Here Qn(N) is the expansion coe�cient of the
occupation number of the Anderson impurity model at order n
as a function of the number of integrand evaluations N . Each
result is normalized to the exact analytic result QBethe

n .
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Figure 2. Expansion coe�cients Qn for the Anderson impu-
rity occupation number relative to the analytic result QBethe

n .
QQMC converges at rates close to 1/N with the number of
integrand evaluations N . For visibility, the data has been
smoothed (see Appendix H). The black lines indicate exact
1/N (dotted) and 1/

p
N (dashed) convergence. Each run

was performed with one Sobol’ sequence. Inset: Cartoon of
quantum dot set-up.

� =", # is the electronic spin and "d represents a capacitive
gate coupled to the dot. The local Coulomb repulsion
is Hint = Uc†0"c0"c

†
0#c0#. The electron tunneling between

the leads and dot is �0 = ��1 = �. All other �i = D/2,
corresponding to hopping within the leads; the lead half-
bandwidth D is a constant. We perform the perturbative
expansion in powers of U (see Appendix E).

Benchmark. To validate the QQMC method, we con-
sider the special case solved by the Bethe Ansatz. For
this, we set temperature T = 0, capacitive gate "d = 0,
and half-bandwidth D ! +1 such that � = 4�2/D = 1
is the unit of energy. The measurement time t = 30/�
is su�ciently long that the system reaches steady-state.
We compute the expansion of the occupation number
Q(U) = hc†0"c0" + c†0#c0#i. The system is particle-hole
symmetric for "d = �U/2 so the non-interacting case is
Q0 = 1. For higher-order Qn, particle-hole symmetry is
broken, but the expansion stays in the symmetric regime
(U + 2"d) ⌧

p
U� [28].

Figure 2 shows the relative error between Qn(N) using
QQMC and the exact result QBethe

n (see Appendix F),
as a function of the number of integrand evaluations N .
Following an initial transient, we enter an asymptotic
regime in which there is rapid convergence: for n = 4
this is consistent with pure 1/N while for n = 8, 12 it
is 1/N � with � ' 0.9, 0.8. These calculations used the
product model function Eq. (6) with a single exponential
h(i)(vi) = exp(�vi/⌧), where ⌧ = 0.95. The same set-up
was used in Fig. 1. The level of precision that we obtained
revealed limitations in the conventional evaluation of the
non-interacting Green functions, which warranted special
consideration (see Appendix E).

It is expected that the convergence rate gradually slows
as n increases. First, the quality of the warping decreases
as the disparity between the increasingly-severe require-
ments of convergence theory and the behavior of our
integrands grows. This can be mitigated by construct-
ing more expressive model functions, which we discuss
below. Second, for larger n the integrands generally be-
come more oscillatory. The model functions Eq. (4) were
not designed to handle cases with massive cancellation,
and this may become a limiting factor. We will see this
e↵ect below for calculations with "d/U > 0.5, although
in practice enough orders can be computed accurately to
obtain the desired physical results (see Appendix E).

In Quasi-Monte Carlo methods, a standard technique to
estimate errors is to perform computations using Eq. (5)
with several ‘randomized’ low-discrepancy sequences [22–
25] and we use this method below (see Appendix G).

Having made these technical points, let us reiterate the
lessons of Fig. 1 and Fig. 2: (i) QQMC provides a dra-
matic speed-up with better asymptotic error scaling than
DiagQMC; (ii) the speed-up persists up to at least order
n = 12, which is what is needed for practical applications.

Coulomb Diamond. We now apply QQMC to solve a
topical physics problem. We explore the current-voltage
characteristic I(V ) across the quantum dot for finite bias
and varying U . Since quantum dots are considered promis-
ing platforms for building qubit systems, it is of primary
importance to understand how many-body e↵ects influ-
ence their properties, especially the phase coherence.

Quantum dots can be in three di↵erent experimen-
tally accessible regimes [30–33]: Fabry-Pérot (small U),
Kondo (intermediate U) and Coulomb blockade (large U).
The Fabry-Pérot and Coulomb blockade limits are well de-
scribed by, respectively, non-interacting and semi-classical
theories; the out-of-equilibrium Kondo regime is more
challenging. Two controlled approaches have recently
appeared, but both are too slow for some applications:
the Schwinger-Keldysh DiagQMC used in Figs. 1 and
4 [10, 11] and the real-time inchworm algorithm [9, 34, 35].
QQMC provides the speed and precision to allow large
parameter sweeps, which is mandatory to make good con-
tact with experiments. In [11], some of us studied the
Kondo ridge close to "d = �U/2. QQMC allows us to
present results scanning the entire (U, "d) phase diagram,
including slowly converging regions with even numbers of
electrons or near the degeneracy points.

Figure 3 (inset) shows a cartoon of the di↵erential con-
ductance for varying ("d, V ) as predicted by Coulomb
blockade theory [36] and seen experimentally at low tem-
peratures and large U [37]. At small bias, the Coulomb
blockade forbids current flows except at two special points:
"d = 0, where the dot energies for Q = 0 and Q = 1 elec-
trons are degenerate, and "d = �U (likewise for Q = 1, 2).
At intermediate U , the Kondo e↵ect changes this picture
drastically: the zero-bias Kondo resonance forms in the
‘forbidden’ region of odd Q and enables current flow.

Figure 3 shows the current I versus gate voltage "d

for V = U/7 and temperature T = 0. We choose
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FIG. 3. Resummation of the Kondo temperature (as de-
fined in Eq. (15)) in the symmetric model (✏d = 0). Plain red
line: resummation technique including Bayesian inference, us-
ing the Euler transform (error bar shown as red shaded area);
dashed thick green line: exact result from Bethe ansatz78;
black circles: reference NRG results; dashed blue lines: trun-
cated series including up to N = 2, 4, 6, 8 and 10 terms. The
vertical line shows the estimated convergence radius of the
series. Inset: evolution of FnU

n with n for U = 9� in
log-linear scale (blue circles); evolution of the series F̄nW

n

obtained after conformal transformation (red squares). The
valueW = 0.7 is obtained by applying the conformal transfor-
mation to U = 9�. The F̄nW

n decreases exponentially, indi-
cating convergence of the transformed series while the original
series (blue circles) diverges.

B. Illustration with the Kondo temperature

Let us first apply the method described above to the
Kondo temperature TK (which will be F in this section).
TK corresponds roughly to the width of the low energy
Kondo peak, and is defined more specifically in this pa-
per as the dimensionful Fermi liquid quasi-particle weight
extracted from the retarded self-energy at low energy:

TK(U) ⌘
2�

1 � @!Re⌃R(U, !)
��
!=0

. (15)

Our first goal is to illustrate how the method actu-
ally works, and benchmark it against the calculation of
the same quantity from the Numerical Renormalization
Group (NRG) technique and Bethe ansatz78.

1. Singularities in the complex U plane

The dashed blue lines of Fig. 3 shows the truncated
series of TK =

P
N

n=0 FnU
n for various orders N  10.

These truncated series diverge around RTK ⇡ 5� which
is the convergence radius of the series for these parame-
ters. Increasing the value of N helps to obtain a reliable
value of TK closer to RTK . However, as expected, even
with a very large number of terms, the bare series cannot

be summed near or above RTK . Anticipating the final re-
sults, the plain red line corresponds to the results after
resummation which matches very well what was obtained
with our benchmark NRG calculation (see Sec. IVA for
details on the used NRG implementation).

The inset of Fig. 3 shows the value of |FnU
n
| (blue

circles) as a function of n for U/� = 9 which lies above
the convergence radius of the series. The log-linear plot
shows an exponential increase of |FnU

n
| ⇠ (U/RTK )n

with n which we use to extract the convergence radius
of the series. Note that for other series, it can happen
that |Fn| oscillates with n. Whenever Fn changes sign, it
becomes close to zero which provides deviations from the
clear exponential behaviour shown in the inset of Fig. 3.
Hence, to obtain convergence radii which are robust to
these outliers, we used a robust regression method on the
log |Fn| versus n data (we compute the regression slope
as the median of all slopes between pairs of data points,
this is known in statistics as the Theil-Sen estimator79).

We now compute the first 10 terms of the series of
1/TK(U). This series has a radius of convergence of the
order of 10�. We look for the zeros, in the complex plane,
of the series 1/TK(U) truncated at order N . Since the
truncated series is a polynomial, it has (generically) N

zeros, which are shown in Fig. 4 for N = 6 (red squares),
N = 8 (blue circles) and N = 10 (stars). One pair of ze-
ros U ⇡ ±i5� is converged for all the truncations, hence
corresponds to a true zero of 1/TK(U), i.e. to a pole of
TK(U). Fig. 4 also shows the circle |U | = RTK extracted

FIG. 4. Poles of TK(U) identified from the zeros of the
1/TK(U) function. These are found by looking for the zeros of
its truncated series. Here they are shown in the U/� complex
plane with truncation at order 6 (red squares), 8 (blue points)
and 10 (black stars). The black circle corresponds to |U | =
RTK where RTK is the radius of convergence of the series of
TK . The stable points close to ±i5� correspond to true non-
perturbative poles of TK(U). The exact zeros (small orange
arrows) have been computed from the exact 1/TK series found
with Bethe ansatz78.

F (U ) = FnU
n

n
∑

Truncated sum

Reconstructed

NRG
Exact
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field theory. In weak coupling theories, a few orders are
su�cient to explain many physical phenomena, even
quantitatively, as e.g. in Quantum Electrodynamics
(QED). However, at intermediate or strong coupling,
this approach faces two main challenges: (i) the compu-
tation of the coe�cients for n large enough and (ii) the
reconstruction of the physical quantities as a function of
U from a finite number of coe�cients.

Using the standard Wick theorem, an explicit expres-
sion of Fn to order n can be written as n�dimensional
integrals. While the computation of Fn can hardly
been achieved analytically beyond a few orders, Quan-
tum Monte-Carlo (QMC) algorithms known as “diagram-
matic Monte-Carlo”44–59 are able to compute a finite
number of these coe�cients Fn for a general class of
quantum many-body problems, in practice up to 8 or
15 depending on the model and the physical quantity.
The first generation of these algorithms explicitly sam-
pled the Feynman diagrams one by one with a complex
Markov chain, moving from one diagram to another. A
second generation of algorithms handles the diagrams
collectively using combinations of determinants to cancel
disconnected diagrams in physical quantities. This was
achieved in the real time Schwinger-Keldysh formalism39,
and in the imaginary time Matsubara formalism60–63.

The resummation of the series is a non-trivial mathe-
matical task outside of the weak coupling regime, even
with a perfect knowledge of the coe�cients Fn. The issue
comes from the finite radius of convergence of the series.
When U is larger than this radius, the truncated series to
the first N -th terms does not converge with N and some
resummation technique must be used to compute F (U).
Moreover, there are two additional di�culties associated
with numerical methods: i) only a finite number of coef-
ficients Fn can be computed since the computation cost
is exponential in n and ii) the Fn are only known with a
finite precision, typically of a few digits in QMC.

In this paper, we approach this problem from the angle
of complex analysis. Indeed, the divergence of the series
originates from the singularity structure of the function
F (U) in the complex plane U (lower left panel in Fig. 1).
We discuss how to locate the singularities closest to 0,
and how to construct an analytic change of variable to
resum the series beyond weak coupling (lower right panel
in Fig. 1). We also introduce a Bayesian technique to
take into account the amplification of the Monte-Carlo
noise in the resummation process using some simple non-
perturbative additional information on the model.

While our approach is quite general, we will focus
here on the non-equilibrium Anderson quantum impurity
model in the quantum dot configuration (upper panel
in Fig. 1). Our starting point is an expansion of the
Green’s function in power of the Hubbard interaction U ,
using an extension of the algorithm of Ref.39. The algo-
rithm is discussed in details in a companion paper64, its
implementation is based on the TRIQS library65. This
algorithm provides a numerically exact computation of
the perturbative series of physical quantities in power of
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FIG. 1. Upper panel: the Anderson quantum impurity model
describing a single level quantum dot. The level with energy
✏d is subject to a finite Coulomb interaction U , and is hy-
bridized with a tunnel coupling � to two leads that are biased
with voltage Vb. Lower left panel: illustration of the gen-
eral computation scheme developed in this work. A physical
quantity F (e.g. the current through the dot) presents sin-
gularities in the U complex plane, such as poles (stars) or
branch cuts (dashed line), hampering proper convergence of
perturbative approaches for values of U outside the conver-
gence disk (grey area). After defining a broad singularity-free
contour C (red line) that encircles both U = 0 and a targeted
U0 value, a conformal map U ! W (U) is defined in order to
bring W0 = W (U0) inside the convergence disk of F [U(W )]
(lower right panel). Resummation techniques can then be
applied in a controlled way.

the interaction U , at a cost which is uniform in time but
exponential with the expansion order. Hence it allows
to compute in a transient regime as well as directly in a
long time steady state, a regime in which most competing
methods have severe limitations.

This paper is organized as follows. Section II intro-
duces our notations for the single impurity Anderson
model. Section III develops the resummation technique
and illustrates it on the Kondo temperature. Section IV
performs a benchmark of the method against NRG for the
equilibrium dynamics. Section V presents new results in
the non-equilibrium regime, including the voltage-split
spectral function, extended-range current-voltage char-
acteristics, and a non-trivial dot distribution function.
Section VI concludes this article and presents perspec-
tives for our conformal approach to the perturbative ex-
pansions of strongly interacting quantum systems.

SEPARATION PROPERTY HYPOTHESIS
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6

FIG. 3. Resummation of the Kondo temperature (as defined
in Eq. (14)) in the symmetric model (✏d = 0). Plain red line:
resummation technique including Bayesian inference, using
the Euler transform; dashed thick green line: similar resum-
mation using the Parabola transform; black circles: reference
NRG results; dashed blue lines: truncated series including
up to N = 2, 4, 6, 8 and 10 terms. The vertical line shows
the estimated convergence radius of the series. Inset: evo-
lution of FnU

n with n for U = 9� in log-linear scale (blue
circles); evolution of the series F̄nW

n obtained after confor-
mal transformation (red squares). The value W = 0.7 is ob-
tained by applying the conformal transformation to U = 9�.
The F̄nW

n decreases exponentially, indicating convergence of
the transformed series while the original series (blue circles)
diverges.

2. Location of singularities in the complex U plane

In order to choose C properly, we need to have some
information on the location of the singularities in the U

plane. In this paper, we use the following technique to
approximately locate the poles of F (U) in the complex
plane.

• We form an inverse of F of the form K(U) =
1/(F (U)+a) as a formal series (i.e. order by order).
a is a constant that we choose at our convenience.
In order for the series K(U) to exist, we must have
F0 + a 6= 0.

• We estimate the radii of convergence RF (resp.
RK) of F (resp. K), by plotting |Fn| and |Kn| ver-
sus n, and fitting the asymptote |Fn| ⇠ (1/RF )n

• In most of situations we found RF 6= RK . If not,
we used a di↵erent a so as to obtain RF 6= RK .
Without loss of generality, let us assume that RK

is the largest. We use the truncated polynomial
of the series,

PN
p=0 KpU

p to compute K(U) within
its disk of convergence and therefore locate its ze-
ros, which are the poles of F . They will appear as
the accumulation of the zeros of the polynomials at
large enough N . If RF > RK , we simply reverse
the roles of the series and reconstruct K(U).

This technique has a quite large degree of generality,
but also limitations. It assumes for example that the
leading singularities in F are poles and that the radius
of convergence of F and K are di↵erent. Also it does not
give us indications of poles that would be far from the
origin but close to the real axis. However, in practice,
we will see below that for the quantities and the physical
problem considered in this paper (Green’s function and
self-energy in real frequency, and Kondo temperature),
this technique is su�cient. Finally, once F (U) has been
re-summed, it can be used to locate its zeros, hence for
the resummation of K(U) which provides another con-
sistency check of the method.

3. Controlling the noise amplification using

non-perturbative information and Bayesian inference

The transformation from Fn to F̄p is a linear one (with
a lower triangular matrix), for a given transformation
W (U). Depending on the eigenvalues of the correspond-
ing matrix, the Monte-Carlo error bar in Fn may be
strongly amplified by the transformation. As a result,
the method may become unusable at strong coupling, as
will be illustrated below on Fig. 6.

However, if we add some non-perturbative information,
such as the fact that the Kondo temperature vanishes at
infinite U , or a sum rule, we can construct a Bayesian
inference technique that may be used to decrease the
statistical uncertainty. Bayesian inference provides a sys-
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FIG. 12. (Color online) Homographic transformation of the
model A series for Q(U ) (same data as Fig. 7) with b = 6.
(Top) Effective radius RW (a) (ful black line) and homographic
transformation W (a,U = 6) (dashed red line) as a function of position
of the singularity a. (Bottom) resummation result Q(U = 6) as a
function of a. The dashed line indicates the exact result Q ≈ 0.22.
(Inset) Q̄n as a function of n for a = −0.25 (squares) and the initial
series (circles).

where the figure of merit is high enough, one observes a nice
plateau at the correct value. We have also reported the full
extrapolated Q(U ) curve in Fig. 11 (blue squares), which is
in very good agreement with our reference calculation. This
method has two clear advantages over other resummation
methods. First, the technique is controlled with the figure
of merit. Second, it can, in principle, work even in the
strong coupling limit. For the case studied here, the point
U = ∞ is mapped onto W = b = 6, which is well within
our convergence radius RW (a = −0.25) ≈ 12 so that we can
compute Q(U = ∞) ≈ 0.18.

VIII. MORE RESULTS: CURRENT AND MAGNETIZATION

In the previous section, we have computed the charge of
the impurity, a quantity that misses the important physics
associated to spin fluctuations, the Kondo effect. The Kondo
effect in quantum dots has been extensively studied and we
refer to Refs. [35,36] for an account of the literature. Here,
we merely aim at illustrating our method with calculations
of current versus voltage and magnetization versus field
characteristics.

A. Current

In Fig. 13, we present some results obtained for the current-
voltage characteristics of the Anderson impurity connected
to two electrodes. Figure 13 shows the resulting I (Vb)
characteristics for two values of εd : εd = 0, which corresponds
to the particle-hole symmetric case where the noninteracting
problem is at resonance, and εd = −0.5, which breaks this
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FIG. 13. (Color online) Current-voltage characteristics I (Vb) for
model B with α = 0.5, γ = 0.5, and T = 0. The current is in units of
energy time e/h. Black line and black circles: particle-hole symmetric
point εd = 0 for U = 0 and U = 1.2, respectively. Red dot-dashed
line and red squares εd = −0.5 for U = 0 and U = 1.2. Dashed line:
perfect transmission I = Vb. (Inset) Convergence of the results as a
function of 1/N where N is the total number of moments included
for Vb = 0.3,εd = −0.5,U = 1.2 (red squares) and Vb = 0.2,εd =
0,U = 1.2 (black circles).

symmetry and is nonresonant. We also indicate the perfectly
transmitting limit I = Vb with the orange dashed line. The
εd = 0 case is already very interesting: at small bias, the
transmission probability is unity because we are exactly at
the resonance frequency of the impurity. When one increases
the interaction strength, we also expect perfect transmission
but for a totally different reason: the original resonance is
now shifted to negative energies (−0.6 in this instance) but a
new one, the Kondo resonance, starts to develop at the Fermi
level (Vb ! TK ). In practice, we find that the In are extremely
small at small voltages so that the current is unaffected by the
interaction. It is only at higher bias than interaction becomes
relevant. It is interesting to note that this “Kondo ridge,”
which is a notoriously difficult regime appears here to be one
of the most tractable ones. The off-resonant case εd = −0.5
corresponds to a situation where the noninteracting current is
much smaller than the interacting one so that the perturbation
series must build the Kondo resonance. We find that it does
indeed build it as one recovers perfect transmission at low bias.
Up to the accuracy of the calculations (the error bars are of the
order of the symbol sizes), the result shown in Fig. 13 is an
exact solution of the nonequilibrium Anderson model, in its
stationary regime, with and without particle-hole symmetry.

Let us now analyze a bit further this calculation and present
In, the various orders of the expansion of the current in
powers of U . It is interesting to study how In converge to
the stationary value with time. Figure 14 shows the first
seven moments In (rescaled by Un with U = 3 for visibility
of the higher moments) as a function of time t . At short
time, the moments grow typically as In ∝ tn which simply
reflects the fact that In is an n-dimensional integral. After one
or two oscillations, they reach their stationary value for roughly
$t > 10 but one notices that the higher orders converge
significantly slower than the lower orders. Simulations for
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FIG. 12. (Color online) Homographic transformation of the
model A series for Q(U ) (same data as Fig. 7) with b = 6.
(Top) Effective radius RW (a) (ful black line) and homographic
transformation W (a,U = 6) (dashed red line) as a function of position
of the singularity a. (Bottom) resummation result Q(U = 6) as a
function of a. The dashed line indicates the exact result Q ≈ 0.22.
(Inset) Q̄n as a function of n for a = −0.25 (squares) and the initial
series (circles).

where the figure of merit is high enough, one observes a nice
plateau at the correct value. We have also reported the full
extrapolated Q(U ) curve in Fig. 11 (blue squares), which is
in very good agreement with our reference calculation. This
method has two clear advantages over other resummation
methods. First, the technique is controlled with the figure
of merit. Second, it can, in principle, work even in the
strong coupling limit. For the case studied here, the point
U = ∞ is mapped onto W = b = 6, which is well within
our convergence radius RW (a = −0.25) ≈ 12 so that we can
compute Q(U = ∞) ≈ 0.18.

VIII. MORE RESULTS: CURRENT AND MAGNETIZATION

In the previous section, we have computed the charge of
the impurity, a quantity that misses the important physics
associated to spin fluctuations, the Kondo effect. The Kondo
effect in quantum dots has been extensively studied and we
refer to Refs. [35,36] for an account of the literature. Here,
we merely aim at illustrating our method with calculations
of current versus voltage and magnetization versus field
characteristics.

A. Current

In Fig. 13, we present some results obtained for the current-
voltage characteristics of the Anderson impurity connected
to two electrodes. Figure 13 shows the resulting I (Vb)
characteristics for two values of εd : εd = 0, which corresponds
to the particle-hole symmetric case where the noninteracting
problem is at resonance, and εd = −0.5, which breaks this
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FIG. 13. (Color online) Current-voltage characteristics I (Vb) for
model B with α = 0.5, γ = 0.5, and T = 0. The current is in units of
energy time e/h. Black line and black circles: particle-hole symmetric
point εd = 0 for U = 0 and U = 1.2, respectively. Red dot-dashed
line and red squares εd = −0.5 for U = 0 and U = 1.2. Dashed line:
perfect transmission I = Vb. (Inset) Convergence of the results as a
function of 1/N where N is the total number of moments included
for Vb = 0.3,εd = −0.5,U = 1.2 (red squares) and Vb = 0.2,εd =
0,U = 1.2 (black circles).

symmetry and is nonresonant. We also indicate the perfectly
transmitting limit I = Vb with the orange dashed line. The
εd = 0 case is already very interesting: at small bias, the
transmission probability is unity because we are exactly at
the resonance frequency of the impurity. When one increases
the interaction strength, we also expect perfect transmission
but for a totally different reason: the original resonance is
now shifted to negative energies (−0.6 in this instance) but a
new one, the Kondo resonance, starts to develop at the Fermi
level (Vb ! TK ). In practice, we find that the In are extremely
small at small voltages so that the current is unaffected by the
interaction. It is only at higher bias than interaction becomes
relevant. It is interesting to note that this “Kondo ridge,”
which is a notoriously difficult regime appears here to be one
of the most tractable ones. The off-resonant case εd = −0.5
corresponds to a situation where the noninteracting current is
much smaller than the interacting one so that the perturbation
series must build the Kondo resonance. We find that it does
indeed build it as one recovers perfect transmission at low bias.
Up to the accuracy of the calculations (the error bars are of the
order of the symbol sizes), the result shown in Fig. 13 is an
exact solution of the nonequilibrium Anderson model, in its
stationary regime, with and without particle-hole symmetry.

Let us now analyze a bit further this calculation and present
In, the various orders of the expansion of the current in
powers of U . It is interesting to study how In converge to
the stationary value with time. Figure 14 shows the first
seven moments In (rescaled by Un with U = 3 for visibility
of the higher moments) as a function of time t . At short
time, the moments grow typically as In ∝ tn which simply
reflects the fact that In is an n-dimensional integral. After one
or two oscillations, they reach their stationary value for roughly
$t > 10 but one notices that the higher orders converge
significantly slower than the lower orders. Simulations for
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FIG. 5. Left panels: Euler map. Right panels: parabola
map. Upper panels: complex U plane. Lower panels: com-
plex W plane. The transformation maps the upper regions of
various colors onto the lower regions of matching colors. In
particular the thick straight line (upper left) and the parabola
(upper right) are mapped onto the unit circles (lower left and
right respectively).

from the analysis of the TK(U) series done in the inset
of Fig. 3. We find that the two poles ±i5� do indeed lie
right on this circle.

2. Conformal transformation

Let us now turn to the conformal transformation
W (U), which maps the two poles ±i5� away and brings
the values of interest U > 0 (real) closer to zero. We
illustrate the technique with two maps: the Euler map
defined by

W =
U

U � p
, (16)

and the “parabola” map which is defined as

W = �tan2

0

@⇡

2

s
U

p

1

A , (17)

where p is an adjustable complex parameter.
Fig. 5 shows the various regions (di↵erent colors) in

the U plane that are mapped onto concentric circles of
the W plane. 0 is mapped onto 0 and p onto 1 in both
transforms. The Euler map (left column) maps one half
of the plane into the unit disk and the other half into the
outside of the unit disk (separated by a black line). The
parabola transform (right column) maps the inside of a

parabola (black line) into the unit disk and the outside
of the parabola into the outside of the unit disk. In the
case where there are no singularities on the positive half
plane Re[U ] > 0, the Euler transform should be preferred
since real values of U > 0 are typically mapped closer
to U = 0 than with the parabola transform (compare
the size of the blue region of the parabola and Euler
case for instance). However, the parabola map is more
agnostic about the positions of the singularities and will
work even if there are singularities on the positive half
plane Re[U ] > 0 as long as they lie outside the parabola.

We now perform the resummation of TK(U). The se-
ries contains only even power of U due to particle-hole
symmetry, so that it can be considered as a function of
U

2. The two poles U = ±i5� correspond to a single
one U

2 = �25�2. In the U
2 plane, the pole being on

the negative real axis, the Euler maps works very e↵ec-
tively. The resummation can also be performed with the
parabola transform.

Once the conformal map is selected, we form the se-
ries F̄p in the W variable, as explained above. The in-
set of Fig. 3 shows F̄nW

n

0 (red squares) as a function of
n for W0 = 0.7 = W (U0 = 9�), using the Euler map
with p = �35�2 (the parabola yields similar results with
p = �15�2). As expected, U0 is way beyond the radius
of convergence in the original variable U , while W0 lies
within the disk of convergence of F̄ (W ) whose radius is
found to be RF̄ ⇡ 2. The final result TK(U) using the
Euler transforms is shown in Fig. 3. The parabola trans-
form (not shown) is undistinguishable from the Euler at
this scale.

In this work, singularities were never found near the
real positive axis, so that all U > 0 can be reached using
the conformal transforms of Fig. 5, given that enough
orders of the series are known. However, one may very
well build a conformal transform to reach a regime beyond
a singularity by considering a concave contour C, as it is
shown in Appendix A. This may become interesting if a
phase transition occurs when interaction is increased.

3. Noise reduction with Bayesian inference

Let us now apply the Bayesian inference technique de-
scribed above to the computation of TK(U). In the left
panel of Fig. 6 we have re-sampled the series for the
Kondo temperature, i.e. we have generated many se-
ries (typically 103 to 105 samples). For each sample we
perform the conformal transformation and plot the result
for the Kondo temperature as a function of U (thin red
lines). While we find that all results agree for U  6�,
the bundle of curves start to diverge for larger values
of U . In the middle panel, we plot (black thin line)
the corresponding histogram of the values obtained for
TK(U = 1), which is Pprior(TK = g(f)).

We use the non-perturbative relation
limU!1 TK(U) = 0. Hence we want to “post-select”
the configuration of Fn which give a vanishing Kondo

F (U (W )) = FnW
n

n
∑

W(U): exact
U(W): truncated

F (U ) = Fn[W (U )]
n

n
∑
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FIG. 6. Reduction of the statistical noise on the resummed TK(U) series by Bayesian inference. Left panel: Kondo temperature
as a function of U . The bundle of red lines correspond to di↵erent samples of our series after resummation (see text). The thick
line shows the final result after Bayesian inference while the circles show our reference NRG calculations. The dashed blue lines
show the bare results without resummation, which diverge for U > 5�. Middle panel: histogram of the values of TK(U = 1)
obtained from our samples (black line), histogram of its assumed distribution with tolerance " (purple line). Right panel: final
result after inference as a function of " for three values of U/� = 6, 9 and 12 (thin lines), reference NRG result (dotted lines).

with n which we use to extract the convergence radius
of the series. Note that for other series, it can happen
that |Fn| oscillates with n. Whenever Fn changes sign, it
becomes close to zero which provides deviations from the
clear exponential behaviour shown in the inset of Fig. 3.
Hence, to obtain convergence radii which are robust to
these outliers, we used a robust regression method on the
log |Fn| versus n data (we compute the regression slope
as the median of all slopes between pairs of data points,
this is known in statistics as the Theil-Sen estimator78).

We now compute the first 10 terms of the series of
1/TK(U). This series has a radius of convergence of the
order of 10�. We look for the zeros, in the complex plane,
of the series 1/TK(U) truncated at order N . Since the
truncated series is a polynomial, it has (generically) N

zeros, which are shown in Fig. 4 for N = 6 (red squares),
N = 8 (blue circles) and N = 10 (stars). One pair of ze-
ros U ⇡ ±i5� is converged for all the truncations, hence
corresponds to a true zero of 1/TK(U), i.e. to a pole of
TK(U). Fig. 4 also shows the circle |U | = RTK extracted
from the analysis of the TK(U) series done in the inset
of Fig. 3. We find that the two poles ±i5� do indeed lie
right on this circle.

2. Conformal transformation

Let us now turn to the conformal transformation
W (U), which maps the two poles ±i5� away and brings
the values of interest U > 0 (real) closer to zero. We
illustrate the technique with two maps: the Euler map
defined by

W =
U

U � p
, (15)

and the “parabola” map which is defined as

W = �tan2

 
⇡

2

s
U

p

!
, (16)

where p is an adjustable complex parameter.
Fig. 5 shows the various regions (di↵erent colors) in

the U plane that are mapped onto concentric circles of
the W plane. 0 is mapped onto 0 and p onto 1 in both
transforms. The Euler map (left column) maps one half
of the plane into the unit disk and the other half into the
outside of the unit disk (separated by a black line). The
parabola transform (right column) maps the inside of a
parabola (black line) into the unit disk and the outside
of the parabola into the outside of the unit disk. In the
case where there are no singularities on the positive half
plane Re[U ] > 0, the Euler transform should be preferred
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FIG. 6. Reduction of the statistical noise on the resummed TK(U) series by Bayesian inference. Left panel: Kondo temperature
as a function of U . The bundle of red lines correspond to di↵erent samples of our series after resummation (see text). The thick
line shows the final result after Bayesian inference while the circles show our reference NRG calculations. The dashed blue lines
show the bare results without resummation, which diverge for U > 5�. Middle panel: histogram of the values of TK(U = 1)
obtained from our samples (black line), histogram of its assumed distribution with tolerance " (purple line). Right panel: final
result after inference as a function of " for three values of U/� = 6, 9 and 12 (thin lines), reference NRG result (dotted lines).

with n which we use to extract the convergence radius
of the series. Note that for other series, it can happen
that |Fn| oscillates with n. Whenever Fn changes sign, it
becomes close to zero which provides deviations from the
clear exponential behaviour shown in the inset of Fig. 3.
Hence, to obtain convergence radii which are robust to
these outliers, we used a robust regression method on the
log |Fn| versus n data (we compute the regression slope
as the median of all slopes between pairs of data points,
this is known in statistics as the Theil-Sen estimator78).

We now compute the first 10 terms of the series of
1/TK(U). This series has a radius of convergence of the
order of 10�. We look for the zeros, in the complex plane,
of the series 1/TK(U) truncated at order N . Since the
truncated series is a polynomial, it has (generically) N

zeros, which are shown in Fig. 4 for N = 6 (red squares),
N = 8 (blue circles) and N = 10 (stars). One pair of ze-
ros U ⇡ ±i5� is converged for all the truncations, hence
corresponds to a true zero of 1/TK(U), i.e. to a pole of
TK(U). Fig. 4 also shows the circle |U | = RTK extracted
from the analysis of the TK(U) series done in the inset
of Fig. 3. We find that the two poles ±i5� do indeed lie
right on this circle.

2. Conformal transformation

Let us now turn to the conformal transformation
W (U), which maps the two poles ±i5� away and brings
the values of interest U > 0 (real) closer to zero. We
illustrate the technique with two maps: the Euler map
defined by

W =
U
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and the “parabola” map which is defined as
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where p is an adjustable complex parameter.
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zeros, which are shown in Fig. 4 for N = 6 (red squares),
N = 8 (blue circles) and N = 10 (stars). One pair of ze-
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FIG. 7. Main frame: convergence radius RF! of F!(U) =
1/(⌃R(U,!) � i�) (thin line) in the equilibrium symmetric
Anderson impurity model. The color circles show the absolute
value of the pole of F!(U). Inset: position of the pole of
F!(U) in the U2 complex plane for di↵erent frequencies. The
color blue to red corresponds to increasing frequency, as in
the main frame. At high frequency, the statistical uncertainty
prevents an accurate localization of the poles.

1. Singularities in the long time (stationary) limit

Let us now turn to the full Green’s function G
R(!, U)

and self-energy ⌃R(!, U). An example of our bare data
is shown in Fig. 2 where we plot the coe�cients ⌃R

n
(!)

obtained from real time diagrammatic quantum Monte-
Carlo for n = 2, 4, 6, 8 and 10. The description of the
method used to calculate these coe�cients ⌃R

n
(!) is ex-

plained in the companion paper to this article64.

We focus on the quantity ⌃R(!) � i� and denote its
inverse F!(U) = 1/(⌃R(!) � i�). The retarded Green’s
function can be recovered from F!(U) using G

R(!) =
1/(! � F!(U)�1) (using ! � ⌃R(!) + i� turns out to be
less convenient especially at high frequency).

Fig. 7 shows the convergence radius of F!(U) as a func-
tion of frequency, extracted from a study of the expo-
nential decay of the corresponding series with n. We
have also performed a systematic study of the zeros of
⌃R(!) � i� in order to localize the poles of F!(U). We
find one pair of poles at each frequency. The results are
shown in the inset of Fig. 7 for a set of frequencies from
! = 0 to ! = 10� in the complex plane for U

2. The
absolute value of the poles of F!(U) is also plotted in the
main frame of Fig. 7 as a function of frequency (circles
of varying colors from blue to red). We observe a perfect
match with our estimation of the convergence radius re-
flecting the fact that these poles are responsible for the

FIG. 8. Resummation of the self-energy in the equilibrium
symmetric Anderson impurity model at U = 9�. The imagi-
nary part of ⌃R(!) is shown as a function of the number n of
terms kept in the resummation, for three frequencies ! = �
(circles), 2� (triangles) and 6� (squares). The independent
resummation of F!(U) (green line) and of ⌃R(!)� i� (purple
line) converge with one another. The results with truncation
and statistical errors are shown on the left of the y-axis, along
with NRG results (black symbols).

divergence of the series. It is important to note here that
working in the real frequency domain is very helpful: we
found a single pole per frequency (at least for the range
of interactions that we could study). Hence, we expect
that performing the resummation in real time or imagi-
nary frequencies could be more complex, since all these
poles would be involved simultaneously.

The results for three frequencies (!/� = 1, 2 and 6)
are given in Fig. 8. We show the convergence of the
imaginary part of the self-energy using two di↵erent re-
summed series: F!(U) (green symbols) and 1/F!(U)
(purple symbols). The former has been resummed with
an Euler transform with a frequency dependant p set
close to the poles shown in Fig. 7. The latter, for
which our method did not detect poles, has been re-
summed with the parabola transform (in the U plane)
with p = �4.5�. Again, Bayesian inference has been
used to enforce limU!1 G(U, !) = 0 for all ! 6= 0. For
comparison, we also include the NRG results (which are
very accurate at small frequency and possibly less accu-
rate at large frequency). The slight di↵erence between
the purple and green curves is due to the truncation er-
ror. We find that the series which has (initially) the
largest convergence radius is less sensitive to truncation
error or statistical noise than the other. We attribute the
small discrepancy between the QMC results and NRG at
large frequency to a lack of convergence of the latter.
These results are obtained for a rather strong interaction
U = 9�. At smaller interaction the QMC and NRG re-
sults become undistinguishable. At larger interactions,
the QMC results become increasingly inaccurate due to
truncation errors.
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We analyze the time-dependent formation of the spectral function of an Anderson impurity model
in the Kondo regime within a numerically exact real-time quantum Monte Carlo framework. At
steady state, splitting of the Kondo peak occurs with non-trivial dependence on voltage and tem-
perature, and with little e↵ect on the location or intensity of high energy features. Examining the
transient development of the Kondo peak after a quench from an initially uncorrelated state reveals
a two-stage process where the initial formation of a single central Kondo peak is followed by split-
ting. We analyze the time-dependence of splitting in detail and demonstrate a strong dependence
of its characteristic timescale on the voltage. We expect both the steady state and the transient
phenomenon to be experimentally observable.

Interacting quantum many-body systems often exhibit
highly entangled states that cannot be described within
an independent particle formalism. The Kondo e↵ect in
a quantum dot [1, 2] coupled to non-interacting leads is
the paradigmatic example for such a state, as the dot
electrons hybridize with the leads to form a highly corre-
lated Kondo singlet state [3]. This state manifests itself
as a sharp peak in the local density of states [2, 4]. The
establishment of Kondo correlations can be examined in
a quantum quench scenario, where an initially uncorre-
lated state slowly develops a coherence peak over time
[5, 6].

In the presence of a voltage, the Kondo peak is strongly
suppressed and splits into two smaller peaks [7–11]. Pre-
vious work has argued that the peak-to-peak distance
is given by the voltage [12–17] and that the split state
is significantly less correlated than the equilibrium state
[12]. It is therefore natural to examine the establishment
of splitting after a quench from an initially uncorrelated
state, and to expect that this less correlated state forms
on a time scale shorter than that of the equilibrium state.

Despite significant analytical progress [18–24], an ac-
curate investigation of this scenario requires numerical
methods that are able to simulate the real-time evolu-
tion after a quench accurately, for times long enough to
reach the steady state. Additionally, a full account of the
continuous lead spectrum is crucial for correct treatment
of the nonequilibrium steady state. The major families
of numerical methods include the non-crossing approx-
imation and its higher-order generalizations [25], wave-
function-based methods [26–31], real-time path integral
techniques [32–35], the time-dependent numerical renor-
malization group [36–40], hierarchical equations of mo-
tion [41–44], the auxiliary master equation approach [45–
49], and a wide variety of quantum Monte Carlo methods
[50–65]. Most of these approaches fall short in at least
one of the aforementioned requirements. This situation
has changed with the development of the numerically ex-
act inchworm quantum Monte Carlo method [66–70] that

in many cases eliminates the dynamical sign problem and
is thereby able to reach the relevant timescales.
In this Letter, we examine the voltage splitting of the

Kondo peak in detail. We focus on the time-dependent
formation of the peak after a quantum quench and on its
shape at long times. We find that while the peak-to-peak
distance is roughly proportional to the voltage, there is
a notable deviation from this simple picture. We also
find that the appearance of the split peak is preceded by
the formation of a single, un-split Kondo peak, and that
the splitting occurs at a later time whose scaling with the
voltage is consistent with a power law. Since the splitting
time scale is 1–10 ps in mesoscopic quantum dots, the de-
layed splitting should be observable in recently developed
ultra-fast tunneling microscopy [71, 72] and spectroscopy
[73, 74] experiments.
Model.—We describe a correlated quantum dot (QD)

attached to two extended metallic leads using a single
impurity Anderson model [75],

Ĥ =ĤD +
X

↵=±1

Ĥ↵ + ĤT , (1a)

ĤD =
X

�

"dn� + Un"n#, (1b)

Ĥ↵ =
X

k�

✓
"k +

↵V

2

◆
n↵k�, (1c)

ĤT =
X

↵k�

V↵

k
(t)(c†

↵k�
d� + d

†
�
c↵k�). (1d)

The quantum dot ĤD is coupled to two non-interacting
leads Ĥ↵ by tunneling terms ĤT . The operators d†

�
(d�)

create (annihilate) electrons localized on the quantum
dot, while c

†
↵k�

(c↵k�) create (annihilate) electrons in
lead ↵ (↵ = ±1 labels the left (+) and right (�) lead)
with quasi-momentum k and spin � (" or #). The re-
spective occupation number operators are n� = d

†
�
d�

and n↵k� = c
†
↵k�

c↵k�. The dot Hilbert space is spanned
by four ‘atomic states’ |�i = |0i, | "i, | #i, | "#i. We con-
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Ĥ

T
.
T
h
e
op

erators
d
†�
(
d
�
)

create
(an

n
ih
ilate)

electron
s
localized

on
th
e
qu

antu
m

d
ot,

w
h
ile

c †↵
k
�

(
c
↵
k
�
)
create

(an
n
ih
ilate)

electron
s
in

lead
↵

(
↵

=
±
1
lab

els
th
e
left

(+
)
an

d
right

(�
)
lead

)
w
ith

qu
asi-m

om
entu

m
k
an

d
sp
in

�
("

or
#).

T
h
e
re-

sp
ective

occu
p
ation

nu
m
b
er

op
erators

are
n
�

=
d
†�
d
�

an
d
n
↵
k
�
=

c †↵
k
�
c
↵
k
�
.
T
h
e
d
ot

H
ilb

ert
sp
ace

is
sp
an

n
ed

by
fou

r
‘atom

ic
states’|�i

=
|0i

,|"i
,|#i

,|"#i.
W
e
con

-

arXiv:1904.11527v1  [cond-mat.str-el]  25 Apr 2019

0

5

10

15

U
/°

Vb/° = 0.6

0.0

0.2

0.4

0.6

0.8

1.0
º°A

°10.0 °7.5 °5.0 °2.5 0.0 2.5 5.0 7.5 10.0

!/°

0.0

0.1

0.2

0.3

0.4

0.5

º
°
A

(!
)

U/° = 8
Vb/° = 0.6

Vb/° = 1.5

(PRELIMINARY COMPARAISON
DIFFERENT BATH AND TIMES)



44

AND BACK TO NON-EQUILIBRIUM
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AND BACK TO NON-EQUILIBRIUM
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AND BACK TO NON-EQUILIBRIUM
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NON-EQUILIBRIUM DISTRIBUTION FUNCTION
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Out-of-equilibrium distribution function
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CONCLUSION
MORE TECHNICAL PROGRESS NEEDED

MORE APPLICATIONS

• Improved sampling & implementation (coming up soon)
• Terms and Counter-terms

• Lattice (in progress)
• DMFT (also in progress)
• Nanoelectronics (0.7 anomaly)
• Few qubits & their baths
• Eventually an open source software

with 0 < un < un−1 < … < u1 < u0. Here u0 ¼ t is
defined to be the measurement time and the hðiÞ are positive
scalar functions. (They may depend on n, but we omit this
index). The factored structure allows Eq. (4) to be inverted
rapidly [26].
Anderson impurity.—We illustrate our method on the

Anderson impurity model coupled to two leads. This is the
canonical model for a quantum dot with Coulomb repulsion
and the associated Kondo effect. It has been realized in
many nanoelectronic experiments [3–6]. Importantly, some
quantities including the electron occupation on the dot Q
can be computed analytically in the universal limit with the
Bethe ansatz [49,50]. This provides us with a high-
precision benchmark for QQMC at any perturbation
order n.
We consider an infinite one-dimensional chain with the

impurity at site i ¼ 0. The noninteracting Hamiltonian
is H0 ¼

P
i;σðγic

†
i;σciþ1;σ þ H:c:Þ þ εd

P
σ c

†
0σc0σ, where

σ ¼ ↑;↓ is the electronic spin and εd represents a capacitive
gate coupled to the dot. The local Coulomb repulsion is
Hint ¼ Uc†0↑c0↑c

†
0↓c0↓. The electron tunneling between the

leads and dot is γ0 ¼ γ−1 ¼ γ. All other γi ¼ D=2, corre-
sponding to hopping within the leads; the lead half-bandwidth
D is a constant. We perform the perturbative expansion in
powers of U [26].
Benchmark.—To validate the QQMC method, we con-

sider the special case solved by the Bethe ansatz. For this,
we set temperature T ¼ 0, capacitive gate εd ¼ 0, and half-
bandwidth D → þ∞ such that Γ ¼ 4γ2=D ¼ 1 is the unit
of energy. The measurement time t ¼ 30=Γ is sufficiently
long that the system reaches steady state. We compute
the expansion of the occupation number QðUÞ ¼
hc†0↑c0↑ þ c†0↓c0↓i. The system is particle-hole symmetric
for εd ¼ −U=2 so the non-interacting case is Q0 ¼ 1.
For higher-order Qn, particle-hole symmetry is broken,
but the expansion stays in the symmetric regime
ðU þ 2εdÞ ≪

ffiffiffiffiffiffiffi
UΓ

p
[49].

Figure 2 shows the relative error between QnðNÞ using
QQMC and the exact result QBethe

n [26], as a function of the
number of integrand evaluations N. Following an initial
transient, we enter an asymptotic regime in which there is
rapid convergence: for n ¼ 4 this is consistent with pure
1=N while for n ¼ 8, 12 it is 1=Nδ with δ ≃ 0.9, 0.8. These
calculations used the product model function Eq. (6) with a
single exponential hðiÞðviÞ ¼ expð−vi=τÞ, where τ ¼ 0.95.
The same setup was used in Fig. 1. The level of precision
that we obtained revealed limitations in the conventional
evaluation of the noninteracting Green functions, which
warranted special consideration [26].
It is expected that the convergence rate gradually slows

as n increases. First, the quality of the warping decreases as
the disparity between the increasingly severe requirements
of convergence theory and the behavior of our integrands
grows. This can be mitigated by constructing more expres-
sive model functions, which we discuss below. Second, for

larger n the integrands generally become more oscillatory.
The model functions Eq. (4) were not designed to handle
cases with massive cancellation, and this may become a
limiting factor. We will see this effect below for calcu-
lations with εd=U > 0.5, although in practice enough
orders can be computed accurately to obtain the desired
physical results [26].
In quasi-Monte Carlo methods, a standard technique to

estimate errors is to perform computations using Eq. (5)
with several “randomized” low-discrepancy sequences
[22–25] and we use this method below [26].
Having made these technical points, let us reiterate the

lessons of Figs. 1 and 2: (i) QQMC provide a dramatic
speed-up with better asymptotic error scaling than
DiagQMC; (ii) the speed-up persists to at least order
n ¼ 12, which is what is needed for practical applications.
Coulomb diamond.—We now apply QQMC to solve a

topical physics problem. We explore the current-voltage
characteristic IðVÞ across the quantum dot for finite bias
and varying U. Since quantum dots are considered prom-
ising platforms for building qubit systems, it is of primary
importance to understand how many-body effects influence
their properties, especially the phase coherence.
Quantum dots can be in three different experimentally

accessible regimes [51–54]: Fabry-Pérot (small U), Kondo
(intermediate U), and Coulomb blockade (large U). The
Fabry-Pérot and Coulomb blockade limits are well
described by, respectively, noninteracting and semiclassical
theories; the out-of-equilibrium Kondo regime is more
challenging. Two controlled approaches have recently
appeared, but both are too slow for some applications:

FIG. 2. Expansion coefficients Qn for the Anderson impurity
occupation number relative to the analytic result QBethe

n . QQMC
methods converge at rates close to 1=N with the number of
integrand evaluations N. For visibility, the data have been
smoothed (see Supplemental Material [26]). The black lines
indicate exact 1=N (dotted) and 1=

ffiffiffiffi
N

p
(dashed) convergence.

Each run was performed with one Sobol’ sequence. Inset:
Cartoon of quantum dot setup.
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from the Analytical Structure of Perturbative Expansions
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We propose a systematic approach to the nonequilibrium dynamics of strongly interacting many-body
quantum systems, building upon the standard perturbative expansion in the Coulomb interaction. High-
order series are derived from the Keldysh version of the determinantal diagrammatic quantumMonte Carlo
algorithm, and the reconstruction beyond the weak-coupling regime of physical quantities is obtained by
considering them as analytic functions of a complex-valued interactionU. Our advances rely on two crucial
ingredients: (i) a conformal change of variable, based on the approximate location of the singularities of
these functions in the complex U plane, and (ii) a Bayesian inference technique, that takes into account
additional known nonperturbative relations, in order to control the amplification of noise occurring at large
U. This general methodology is applied to the strongly correlated Anderson quantum impurity model and is
thoroughly tested both in and out of equilibrium. In the situation of a finite voltage bias, our method is able
to extend previous studies, by bridging with the regime of unitary conductance and by dealing with energy
offsets from particle-hole symmetry. We also confirm the existence of a voltage splitting of the impurity
density of states and find that it is tied to a nontrivial behavior of the nonequilibrium distribution function.
Beyond impurity problems, our approach could be directly applied to Hubbard-like models, as well as other
types of expansions.

DOI: 10.1103/PhysRevX.9.041008 Subject Areas: Condensed Matter Physics,
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I. INTRODUCTION

The study of the out-of-equilibrium regime of strongly
correlated many-body quantum problems is a major chal-
lenge in theoretical condensed matter physics. Its interest
has grown rapidly in the past few years with new experi-
ments, e.g., the ability to control light-matter interaction on
an ultrafast timescale [1], light-induced superconductivity
[2–6], or a metal-insulator transition driven by an electric
field [7], proposed, e.g., to build artificial neurons [8].
These experiments raise the question whether the combi-
nation of strong correlation effects and out-of-equilibrium
regimes could lead to genuinely new physics and phases
of matter that do not have an equilibrium counterpart.
Quantum nanoelectronics also provide many examples of

such systems. A classic example is the spin-1=2 Kondo
effect occurring in a quantum dot, but recent experiments
have also managed to study in great detail underscreened
[9,10] and overscreened [11,12] (multichannel) Kondo
effects, characterized by non-Fermi-liquid fixed points.
Other notable examples of new quantum states induced
by interactions are Luttinger liquids [13] that take place
at edges in the fractional quantum Hall regime or the “0.7
anomaly” [14–16] occurring in a simple quantum point
contact geometry. Last, solid-state-based quantum com-
puters such as spin qubit devices are nothing but out-of-
equilibrium quantum many-body systems (few site
Hubbard-like models, possibly connected to electrodes) that
bringnewquestions into the scope of correlated systems [17].
It is worth noting that even the simplest of these out-

of-equilibrium problems, the single-impurity Anderson
model, is still the subject of active research [18,19]. Early
approaches use a range of approximate techniques includ-
ing fourth-order perturbation theory [20], equation of
motion techniques [21], and the noncrossing approximation
(NCA) [22]. State-of-the-art techniques include the time-
dependent numerical renormalization group (NRG) and the
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We present a quantum Monte Carlo algorithm for computing the perturbative expansion in power of the
coupling constant U of the out-of-equilibrium Green’s functions of interacting Hamiltonians of fermions. The
algorithm extends the one presented in Profumo et al. [Phys. Rev. B 91, 245154 (2015)], and inherits its main
property: it can reach the infinite time (steady state) limit since the computational cost to compute order U n

is uniform versus time; the computing time increases as 2n. The algorithm is based on the Schwinger-Keldysh
formalism and can be used for both equilibrium and out-of-equilibrium calculations. It is stable at both small
and long real times including in the stationary regime, because of its automatic cancellation of the disconnected
Feynman diagrams. We apply this technique to the Anderson quantum impurity model in the quantum dot
geometry to obtain the Green’s function and self-energy expansion up to order U 10 at very low temperature. We
benchmark our results at weak and intermediate coupling with high precision numerical renormalization-group
computations as well as analytical results.

DOI: 10.1103/PhysRevB.100.125129

I. INTRODUCTION

The study of the out-of-equilibrium regime of strongly cor-
related many-body quantum problems is a subject of growing
interest in theoretical condensed-matter physics, in particular
due to a rapid progress in experiments with, e.g., the ability
to control light-matter interaction on the ultrafast time scale
[1], light-induced superconductivity [2–6], or metal-insulator
transition driven by electric field [7]. The development of high
precision and controlled computational methods for nonequi-
librium models in strongly correlated regimes is therefore very
important. Even within an approximated framework such as
dynamical mean-field theory [8–10] (DMFT), which reduces
the bulk lattice problem to the solution of a self-consistent
quantum impurity model, efficient numerically exact real time
out-of-equilibrium quantum impurity solver algorithms are
still lacking.

The long-time steady state of nonequilibrium strongly
interacting quantum systems is especially difficult to access
within high-precision numerical methods. Until recently, most
approaches were severely limited in reaching long times, e.g.,
the density matrix renormalization group (DMRG) [11–13]
faces entanglement growth at long times. Early attempts of
real time quantum Monte Carlo [14–18] also experienced an
exponential sign problem at long times and large interaction.
Within Monte Carlo methods, two main routes are currently
explored to resolve this issue: the inchworm algorithm
[19–23] and the so-called “diagrammatic” quantum Monte
Carlo [24] (QMC). Diagrammatic QMC [25–40] computes
the perturbative expansion of physical quantities in power
of the interaction U , using an importance sampling Monte
Carlo. In Ref. [24], some of us have shown that, when
properly generalized to the Schwinger-Keldysh formalism,

this approach yields the perturbative expansion in the steady
state, i.e., at infinite time. We showed that, by regrouping the
Feynman diagrams into determinants and summing explicitly
on the Keldysh indices of the times of the vertices of the
expansion, we eliminate the vacuum diagrams and obtain
a clusterization property allowing us to take the long-time
limit. The sum over the Keldysh indices implies a minimal
cost of O(2n) to compute the order n, but uniformly in time,
at any temperature. We refer to this class of algorithms as
“diagrammatic” for historical reasons, as their first versions
(in imaginary time) were using an explicit Markov chain in
the space of Feynman diagrams. However, modern versions
of the algorithms regroup diagrams with only an exponential
number of determinants (instead of sampling the n! diagrams),
eliminating the vacuum diagrams, both in real time [24]
and in imaginary time [41,42], which leads to much higher
performance.

In this paper, we generalize the algorithm presented in
Ref. [24] to the calculations of Green’s functions. Indeed,
in its initial formulation it only permits the calculation of
physical observables at equal time such as the density or
current, and the full Green’s function requires the computation
of each time one by one, which is not technically viable. Here,
we show how to use a kernel technique in order to obtain
efficiently the perturbative expansion of the Green’s func-
tion and the self-energy, as a function of time or frequency.
Computing the Green’s function is an important extension
of the technique. First, it is the first step towards building
a DMFT real time nonequilibrium impurity solver. Second,
even in the simple context of a quantum dot, each computation
provides much more information than the original algorithm
(from which only a single number, e.g., the current, could be
computed).

2469-9950/2019/100(12)/125129(14) 125129-1 ©2019 American Physical Society
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We present a simple, general purpose, quantum Monte Carlo algorithm for out-of-equilibrium interacting
nanoelectronic systems. It allows one to systematically compute the expansion of any physical observable
(such as current or density) in powers of the electron-electron interaction coupling constant U . It is based on
the out-of-equilibrium Keldysh Green’s function formalism in real-time and corresponds to evaluating all the
Feynman diagrams to a given order Un (up to n = 15 in the present work). A key idea is to explicitly sum over
the Keldysh indices in order to enforce the unitarity of the time evolution. The coefficients of the expansion can
easily be obtained for long-time, stationary regimes, even at zero temperature. We then illustrate our approach
with an application to the Anderson model, an archetype interacting mesoscopic system. We recover various
results of the literature such as the spin susceptibility or the “Kondo ridge” in the current-voltage characteristics.
In this case, we found the Monte Carlo free of the sign problem even at zero temperature, in the stationary regime
and in absence of a particle-hole symmetry. The main limitation of the method is the lack of convergence of the
expansion in U for large U , i.e., a mathematical property of the model rather than a limitation of the Monte Carlo
algorithm. Standard extrapolation methods of divergent series can be used to evaluate the series in the strong
correlation regime.

DOI: 10.1103/PhysRevB.91.245154 PACS number(s): 71.10.Fd, 02.70.Ss, 73.63.Kv, 71.27.+a

I. INTRODUCTION

The field of electronic correlations is largely dominated by
applications to strongly correlated materials such as high-Tc

superconductors or heavy fermions. As a result, the large effort
made by the community to build new numerical techniques
to address correlations aims chiefly at reaching strongly
correlated regimes for systems whose one-body dynamics
is rather simple (the archetype of these systems being the
Hubbard model). There are, however, many situations where
the correlations are either small or moderate, yet their interplay
with one-body dynamics might be very interesting. Examples
include, for instance, the zero-bias anomaly in disordered
systems [1], the Fermi-edge singularity in a quantum dot [2],
a Kondo impurity embedded in an electronic interferometer
[3], and possibly the 0.7 anomaly in a quantum point contact
[4]. While for a few situations, e.g., zero-dimensional (Kondo
effects) and one-dimensional (Luttinger liquids) systems there
exist exact analytical and numerical techniques [5,6], the vast
majority of these problems remains elusive to theoretical
approaches. The aim of this article is to design a technique
that could address moderate interactions for a large variety of
out-of-equilibrium situations.

A natural route for dealing with electron-electron interac-
tions is to compute the expansion of physical quantities in
powers of the interaction coupling constant, denoted hereafter
by U . This expansion is traditionally written in terms of
Feynman diagrams. One can then compute the first orders, or
try various resummation strategies that have been elaborated
in order to choose the relevant Feynman diagrams for a given
problem [7]. From a numerical point of view, systematic

*xavier.waintal@cea.fr

expansions in powers of U have also been intensively studied.
In this context, various diagrammatic Monte Carlo have
been developed and studied [8–11], which aim at explicitly
summing the series of Feynman diagrams numerically, for
example, for the self-energy. Concerning quantum impurity
models, there has been an intense activity in the recent years
in the development of new continuous (mostly imaginary) time
quantum Monte Carlo techniques, based on an expansion in U
(or around the strong coupling limit). These new algorithms are
of huge practical value in solving the self-consistent impurity
problems that arise from the dynamical mean-field theory
of correlated bulk systems [12–15], even though they still
suffer from the sign problem. They have been extended to
the nonequilibrium case in a relatively straightforward way,
simply adapting the Monte Carlo method to the Keldysh for-
malism [16–20]. However, these out-of-equilibrium versions
suffer from a severe dynamical sign problem, compared to
their equilibrium counterparts, which has severely limited
their usage in practice. In particular, they can not reach the
long-time steady-state limit in several regimes of parameters.
Moreover, the approach of Refs. [19,20] has only been shown
to work with sufficient accuracy for an Anderson impurity
with particle-hole symmetry, i.e., a very special point of the
phase diagram. More recently, bold diagrammatic Monte Carlo
for impurity models has also been extended to the Keldysh
context and used in combination with the master equation
for the density matrix [21,22] to reach longer time. Finally,
testing these approaches in large systems, even at moderate
interaction, remains also an open question.

In this paper, we first present a simple, systematic and
general Monte Carlo method to compute the first 10 to 15
coefficients of the expansion of any physical observable for a
nanoelectronic system, in an out-of-equilibrium situation. The
system can be a nanoscopic system connected to leads or a

1098-0121/2015/91(24)/245154(18) 245154-1 ©2015 American Physical Society
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A WARNING ON CONVERGENCE RADIUS

11

FIG. 9. Coe�cients (absolute value) of the series for the cur-
rent (circles with thin lines) in the asymmetric model ("d = �,
Vb = 1.6�) computed at di↵erent times t (di↵erent colors).
The apparent convergence radius decreases with time. For
small values of t, we can observe that the series coe�cients
decrease faster than exponentially, which indicates an infinite
convergence radius. The thick dashed line shows the corre-
sponding fit with (t�/2)n/n!. For large enough t, the series
converges toward the steady state limit.

2. The long time limit

In the Keldysh formalism, the interactions are switched
on at an initial time (0), and one follows the evolution
of the system with time t. We assume here that the
system relaxes to a steady state at long time. Let us
consider the average of an operator Ô as a function of
time, and its expansion hÔ(t)i =

P
n

On(t)Un (the ex-
tension of the following arguments to Green’s function is
straightforward).

At finite time t, the radius of convergence of this series
is infinite, as shown in Appendix B. Each order in the
perturbation expansion On(t) relaxes with t to a long
time limit, but the time trelax(n) it takes to reach this
limit can increase with n. The long time and large n

limit do not commute in general:

lim
n!1

lim
t!1

On(t) 6= lim
t!1

lim
n!1

On(t). (18)

This behaviour was already noted in Fig. 14 of Ref. 39.
It is also illustrated on Fig. 9, which shows various orders
n of the expansion of the current through the dot versus
n, for di↵erent times. We observe that at small times the
orders In decreases faster than exponentially with n, con-
sistent with the bound mentioned above. The coe�cients
converge to the steady state limit at long time.

At finite time t, since the series converges, it is suf-
ficient to have enough orders. In the steady state, as

explained above, we have a minimal order N0 needed to
compute the quantity at a given precision. One should
then simply compute at a time t > trelax(N0).

In the Anderson model, some quantities like the spec-
tral function are known to relax on a long time scale
tK ⇠ T

�1
K

, see e.g. Ref. 80. The previous remarks ex-
plain how the algorithm deals with this long time. For
a given U , we need N0(U) orders, hence to compute at
a time larger than trelax(N0(U)). The larger U is, the
longer this time becomes. However, it is still finite at
fixed U , and since our calculation of the perturbative
expansion is uniform in time, it is not an issue (the com-
putation e↵ort does not grow with time). However, the
existence of the Kondo time indicates that the number
of orders necessary to compute e.g. the low frequency
spectral function at a given U increases with U (other-
wise the relaxation time of the physical quantity would
be bounded at large U).

IV. BENCHMARK OF THE DYNAMICS IN
EQUILIBRIUM

We now benchmark our results in the case of equilib-
rium, testing various regimes of the Anderson impurity
model. Let us first describe the high-precision NRG com-
putations that were performed.

A. NRG implementation

The Numerical Renormalization Group (NRG)81 was
used to benchmark our QMC calculations in equilib-
rium, and to test the reliability of the series extrapolation
method for spectral functions at various values of U and
✏d. In order to obtain precise NRG data for the spectral
function of the Anderson impurity model, the compu-
tations were performed using several improvements over
the simplest implementations of the NRG. First, the full
density matrix formulation of NRG82 was used to reduce
finite size e↵ects due to the NRG truncation. Second,
symmetries of the problem were heavily exploited83, al-
lowing to reduce significantly the Hilbert space dimen-
sion of various multiplets. In the particle-hole symmet-
ric case, the full SU(2)charge⌦SU(2)spin symmetry was
used, while the charge sector was reduced to U(1)charge

away from particle-hole symmetry. Third, the impurity
Green’s function was extracted from a direct computa-
tion of the d-level self-energy ⌃(!)84, according to its
exact representation as the ratio of two retarded correla-
tion functions in the frequency domain:

⌃(!) = U
F

R(!)

GR(!)
, (19)

where G
R(t) = �i✓(t)h{d

�
(0), d†

�
(t)}i is the usual sin-

gle particle retarded Green’s function in the time do-
main, and F

R(t) = �i✓(t)h{d
�
(0)d†

��
(0)d

��
(0), d†

�
(t)}i

We work directly in the stationary limit
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