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MOTIVATION

The quantum problem of a single impurity is very 
interesting:

•polaron - quasiparticle with
an effective mass

•Ultracold gases are fantastic
for studying impurities:
-the system is extremely pure / defects free
-atom-atom and atom-impurity interactions can be fine 
tuned
-controllable geometry

•1D geometry: regimes of strong interactions accesible2



HAMILTONAIN OF A 1D GAS
- Hamiltonian of N particles interacting via contact interaction

- where g>0 is the strength of interaction (coupling constant)
- and δ(r) is the delta-function with the usual normalization

- Units of a delta-function in D dimensions:

[δ(r)] = [1 /rD]

•1D:  [δ(r)] = [1 / length]
•2D:  [δ(r)] = [1 / length2]
•3D:  [δ(r)] = [1 / length3]
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COUPLING CONSTANT
Relation between the s -wave scattering length a and the 
coupling constant g ?

Interaction potential g δ(r) has units of energy: 

• 1D:                                         i.e. g1D ∝ -1/a1D

• 2D:                                        weak logarithmic dependence 

Units of g are :

•3D:                                          i.e. g3D ∝ a3D
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POTENTIAL ENERGY: TYPICAL SCALING WITH DENSITY
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KINETIC ENERGY: TYPICAL SCALING WITH DENSITY
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POTENTIAL vs KINETIC ENERGY
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THREE-DIMENSIONAL GEOMETRY
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TWO-DIMENSIONAL GEOMETRY
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ONE-DIMENSIONAL GEOMETRY
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MEAN-FIELD vs QUANTUM REGIMES



CHARACTERISTIC PARAMETERS IN 1D
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THEORIES OVERVIEW
Most common methods used to address the problem of 1D gas

• Bethe ansatz method (1D)

• Gross-Pitaevskii mean-field theory (1D, 2D, 3D)

• Bogoliubov theory (1D, 2D, 3D)

• Luttinger liquid approach (1D) 

• DMRG (1D)

• Monte Carlo methods (1D,2D,3D)

• …
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BETHE ANSATZ
Applies to contact delta-function interactions in 1D

• Constructs the wave function from plane waves with 
appropriate boundary condition at the contact

• Is exact for any interaction strength g

• Repulsive interactions: ground state energy (Lieb – Liniger, 
1963), excitation spectrum (Lieb, 1963), thermodynamics 
(Yang-Yang, 1969) 

• Local correlation functions (Gangardt & Shlyapnikov, 2003), 
dynamical density-density correlations (Caux & Calabrese, 
2006)

• Attractive interactions: bright soliton ground state energy 
(McGuire, 1964), density profile (Calogero – Degasperis, 1975)14
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BETHE-ANSATZ SOLUTION



ENERGY OF LIEB-LINIGER GAS
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GROSS-PITAEVSKII THEORY
Within the mean-field description all bosons are considered to be 
condensed and described by the same (condensate) wave function

•In 1D where true Bose-Einstein condensation is absent 
(Mermin1966,Hohenberg1967) but GP theory is still applicable 
when the healing length ξ exceeds the mean interparticle distance

•Is applicable for weak interactions, g → 0, or in terms of the 
one dimensional gas parameter, na → ∞,  i.e. large density (!)

•Chemical potential linear with density, μ = gn

•Energy per particle linear with density, E/N = gn/2

•Can be used for prediction of time dynamics
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BOGOLIUBOV THEORY
Bogoliubov approach makes is a perturbative one assuming that 
a small amount of bosons drop out of the condensate

• Provides a correction to the energy (Lee-Huang-Yang in 3D)

• Second order correction to the ground-state energy is always 
negative. 

• Correction is negative in 1D, energy per particle: 
E/N = gn/2 · (1 – const / (n|a|)1/2 +… ).

NB1 In 3D, the LHY correction is positive due to 
renormalization, i.e. second order relation between the coupling 
constant g and a.

NB2 In 1D the correction is consistent with the result obtained 
by Kirchhoff 1880 within the electrostatic analogy 18



TONKS-GIRARDEU LIMIT
Hard-core bosons, g = ∞, are impenetrable and share many 
properties with an ideal Fermi gas

•The bosonic ground-state wave function ΨB is related to the wave 
function of ideal fermions ΨF as (Girardeau 1960)

ΨB= |ΨF|
•Local properties are the same.

•Energy per particle is quadratic in density: 
E/N = π2ħ2n2 /(6m)

•Hard rod of size a>0 energy is obtained from the excluded volume
correction L → L - Na : E/N = π2ħ2n2/[6m(1 - na)2]

•Same correction for g → ∞ even if the sign of a → -0 is different 
(“included volume”) L → L +N|a|: E/N=π2ħ2n2/(6m)(1 + 2na)
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TWO-BODY SCATTERING SOLUTION
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UNIVERSAL REGIME
The universal regime at ultralow densities can be understood by 
considering the properties of two-body scattering problem:

When the typical interparticle spacing is large compared to the range of 
the potential, the exact shape of the potential is no longer important and 
the interaction potential can be describe by a single parameter:
- the phase shift                or
- the s-wave scattering length a

Scattering length a is the position of the first node, closest to zero of the 
analytic continuation of the scattering solution from the region where 
the interaction potential is absent

potential range interparticle distance

s-wave
scattering

length



LUTTINGER LIQUID
An effective description of gapless one-dimensional systems 
•Is very generic as it applies to any 1D system with linear 
excitation spectrum, E(k) = ħ k vs where vs is the speed of sound

•Luttinger parameter, K= vF/vs, where vF is the Fermi velocity

•In homogeneous continuous system vF = π ħ n/m

•Provides description of the long-range decay of the correlation 
functions

•Can be used for prediction of low-temperature thermodynamics

•With renormalization group theory can be used for prediction of 
pinning, superfluid – Mott insulator transitions, etc

•Is an effective theory, takes speed of sound as an input 
parameter. 
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LUTTINGER PARAMETER IN LIEB-LINIGER GAS

Luttinger exponent K versus γ. The dashed lines are the small γ
approximations obtained from Bogoliubov theory whereas the 
dotted-dashed lines correspond to the asymptotic expressions for 
large γ. Fig. from M. A. Cazalilla J. Phys. B 37, S1 (2004)



MONTE CARLO METHODS
Expectation values (energy, correlation functions, etc) can be 
expressed as multidimensional integrals and can be efficiently 
calculated by Monte Carlo methods

• Can be used for any interaction potential (contact interaction, 
van der Waals, dipolar, etc)

• Energy and correlation functions can be calculated in the 
ground state of thermodynamic equilibrium

• The results are obtained within some error bars

• The error bars are controllable and can be decreased by 
making the simulation time larger

• In 1D geometry the Slater determinant of an ideal Fermi gas/ 
Tonks-Girardeau gas is a Wronskian and can be simplified24



VARIATIONAL MONTE CARLO METHOD
- Variational Monte Carlo (VMC) method evaluates multidimensional 
averages of physical quantities over the N-body trial wave functionΨT

- Metropolis algorithm can be used to generate set of points {Ri } in 
3N-dimensional space R={r1,…,rN} according to probability 
distribution p(R) = |ψT(R)|2.

- Average of some operator A over |ψT(R)|2  is approximated as 

-Applied to Hamiltonian, A= H, one obtains an upper bound

-Variational principle can be used to optimize parameters



DIFFUSION MONTE CARLO METHOD
- Difffusion Monte Carlo (DMC) method is based on solving the 

Schrodinger equation in imaginary time 

- Formal solution

- Expanding over eigenstates 

- At large times only contribution from the ground state survives:

- Permits to calculate static ground state properties exactly

- Provide correlations in imaginary time, e.g. S(k, τ)
+ inverse Laplace transform gives S(k, ω)

- Importance sampling uses ΨT(R)Ψ(R,τ) instead of Ψ(R,τ)



TRIAL WAVEFUNCTION
We chose the trial wave function in pair-product form:

where the Jastrow terms f2(r) describe correlations and satisfy:  
1) at short distances, 2-body scattering problem 

f2(x) = cos(k x + δ),    x < Rmatch
with momentum k and phase shift δ chosen in order to satisfy 
the Bethe-Peiels boundary condition  
f2’(x) / f2 (x) = -1/a

2) at large distances, phononic tail [Reatto & Chester 1967]
f2(x) = cos1/K(π x / L),    Rmatch < x < L/2

where K is the Luttinger parameter

NB for Tonks-Girardeau gas, K=1, short and long-range parts 
became the same, f2(x) = cos(k x + δ), and trial wave 
function becomes exact and equal to Slater determinant.



VARIATIONAL ENERGY
The variational energy with the physically sound trial wave 

function can be pretty good

• Simple ansatz provides accuracy of the order of 1%

• More sophisticated optimization can be much more precise.
Carleo tVMC optimization, error of the order of 10-4 %  



POLARON HAMILTONIAN 
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CHARACTERISTIC PARAMETERS
The system properties are governed by the following 
dimensionless parameters

•gas parameter naBB
•or the Lieb – Liniger parameter γ = -2/naBB = mB gBB /(ħ2 n)
describing the strength of Bose-Bose interactions

•strength of Bose-impurity interactions naBI
•or, analog of the Lieb-Liniger parameter, η = -2/naBI ∝ gBI

•mass ratio mI / mB
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DIFFERENT REGIMES 1/2
The following different regimes can be realized in the system

Changing boson-impurity interaction strength
•Repulsive polaron η >0
•Attractive polaron η <0
•Weakly interacting polaron, |η|<1
•Strongly interacting polaron, |η|>1
•Hard-core polaron η =∞

Changing boson-boson interaction strength
•Repulsive gas γ>0, homogeneous system is stable
•Attractive gas γ<0, bright soliton is formed
•Tonks-Girardeau / fermionized gas, γ =∞
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DIFFERENT REGIMES
Changing mass
•light impurity mI≪mB
•heavy impurity mI≪mB
•mobile impurity, finite mI
•pinned impurity, mI =∞
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THEORIES
Different method can be used to address the problem of 1D 

•Bethe ansatz method (exact) applicable for contact 
interactions
a)repulsive interactions, Lieb-Liniger uniform gas
b)Attractive interactions, McGuire bright soliton

•can be generalized for an impurity with equal mass mI = mB
and equal interactions gBB = gBI

•Impenetrable bosons / ideal fermions, gBB =∞, plus one 
impurity, gBB =∞

33



RESULTS
•Pure bosonic system (no impurities)

•Bosons plus single impurity (polaron)

•Bosons plus two impurities (bipolaron)
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Results:

Pure bosonic system (no 
impurities)
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PAIR DISTRIBUTION FUNCTION

Pair distribution function for different values of the gas 
parameter. Arrows indicate the value of g2(0) as obtained from 
the equation of state. At n|a1D|=10-3 the g2(z) function is similar 
to that of the a Tonks-Girardeau gas

Ref:. GEA & S. Giorgini PRA 68, 031602 (2003)
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ONE-BODY DENSITY MATRIX

One-body density matrix g1(z) (solid lines), power-law fits (dashed 
lines). The long-range asymptotic value of OBDM gives the 
condensate fraction i.e. condensate is absent in all cases.

Ref:. GEA & S. Giorgini PRA 68, 031602 (2003)



Results:

Bosonic system with one 
impurity (polaron)
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PINNED IMPURITY IN GROSS-PITAEVSKII THEORY

Ref: GEA & L.P. Pitaevskii PRA 70, 013608 (2004)
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IMPENETRABLE PINNED IMPURITY IN BETHE ANSATZ

[1] M. Gaudin, Boundary energy of a Bose gas in one dimension, PRA 4, 386 (1971).
[2] Michel Gaudin “Bethe wavefunction” Cambridge University Press (2014)
[3] B.Reichert, GEA, A.Petković & Z.Ristivojevic PRL 123, 250602 (2019)

- upper curve
Lieb II dark soliton 
energy [1,2]
- lower curve
polaron energy [3]

Units of ε = ħ2n2/(2m)

NB: factor 2 in TG 
limit
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IMPENETRABLE PINNED IMPURITY

Polaron density profile in a box of size L
- a ≫n-1 ≫ L (i.e. γ≪1, a ≫ L) : Ideal Bose gas / standing wave
-L ≫a ≫n-1 (i.e. γ≪1, a ≪ L) : GP dark soliton
-L ≫ n-1 (i.e. γ ≫ 1) : Girardeau-Wright dark soliton

0 2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

 γ = 0.01
 γ = 0.1
 γ = 1
 γ = 10
 γ = 100
 ideal Bose gas
 Tonks-Girardeau gas

n(
x)

 /
 n

n x



42

IMPENETRABLE PINNED IMPURITY

Polaron density profile in a box as a function of the interaction 
strength and number of bosons N in a box.



IMPURITY IN AN IMPENETRABLE GAS
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[1] J. B. McGuire, J. Math. Phys. 6, 432 (1965).
[2] GEA and I. Brouzos Phys. Rev. A 88, 021602(R) (2013)



EXPERIMENT IN FLORENCE

Ref: J. Catani, G. Lamporesi, D. Naik, M. Gring, M. Inguscio, F. Minardi, A. 
Kantian, T. Giamarchi (2012)
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POLARON MASS

Repulsive polaron mass vs experiment by Catani et al 2012
Ref: F.Grusdt, GEA & E.Demler New Journal of Physics 19, 103035 (2017)45



PERTURBING GP SOLUTION

Martin Will, GEA, Michael Fleischhauer “Polaron interactions and 
bipolarons in one-dimensional Bose gases in the strong coupling 
regime” arXiv:2101.11997 46



PERTURBING GP SOLUTION

Polaron energy dependence on IB interaction strength in the 
weakly interacting regime, γ≪1, as a function of the relative 
interaction strength η=gIB/g for mass ratio of 3 47



Results:

Bosonic system with two 
impurities (bipolaron)



BIPOLARON: WEAKLY INTERACTING GAS
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BIPOLARON: STRONGLY CORRELATED GAS
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EFFECTIVE INTERACTIONS: HEAVY IMPURITIES

51

For infinite impurity mass the polaron-polaron interaction 
potential is calculated as

U(x2 – x1) = E2 – E0

E2: the ground-state energies of the system with two impurities at 
positions x1 and x2
E0: the ground-state energies of the system with no impurities 



EFFECTIVE INTERACTION: WEAKLY INTERACTING GAS

Effective impurity interaction for M=∞. The solid lines represent the 
semi analytical approximation and the dots are QMC simulations. 
The perturbative predictions from [1], are shown as dashed and dotted 
lines, including and excluding Casimir-type contribution. 
[1] B.Reichert, A.Petković & Z.Ristivojevic PRB 99, 205414 (2019)52



CASIMIR INTERACTION 

The perturbative predictions are shown as dashed and dotted lines, 
including and excluding Casimir-type contribution. Exponential 
decay for weak impurity-boson couplings is seen as straight lines. 
The Casimir effect (absent in the mean-field description) results in 
the slow 1/r3 decay at r / ξ > 6.
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EFFECTIVE INTERACTIONS: MOBILE IMPURITIES
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INTERACTIONS: MOBILE IMPENETRABLE IMPURITIES
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Results:

Bosonic system with 
many impurities



MULTIPLE-IMPURITY STATE: ENERGY
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QMC ground state energy of a system containing NB bosons and NI
impurities interacting attractively with each other. The solid (dashed) 
line is the MF prediction of the bipolaron energy including (excluding) 
the first order BO correction in the thermodynamic limit.



MULTIPLE-IMPURITY STATE: STABILITY

58

If direct interaction potential between impurities is neglected, a 
homogeneous mixture will be always unstable. 

Stability criterium for a balanced mixture (NB=NI)

gBB gII >  gBI
2

cannot be fulfilled when gII = 0.

Depending on the sign of boson-impurity interaction different 
instabilities are present

• gBI>0, phase separation 

• gBI<0, collapse



BONUS SLIDE* PHASE DIAGRAM OF BOSE-BOSE MIXTURE
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CONCLUSIONS

• One-dimensional systems are fantastic!

• Quantum Monte Carlo methods provide useful information

• There is a certain analogy between impenetrable heavy 
impurity and a dark soliton within Gross-Pitaevskii theory

• McGuire energy generalized for trapped geometry

• Edge energy found within Bethe ansatz theory

• Induced interaction between polarons can be non-monotonous 
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FUTURE WORK

• Map complete phase diagram in terms of boson-boson, boson-
impurity, impurity-impurity interaction and mass ratio

• Regimes of ultrastrong correlations – super Tonks-Girardeau 
regime for the gas and/or impurity

• Density profiles for impenetrable massive impurity, relation to 
dark soliton

• Impurities in a bright soliton

61



MERCI BEAUCOUP 
POUR VOTRE 
ATTENTION !
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