Quantum behavior of a heavy impurity in a Bose gas

Meera Parish Monash University

ARC CENTRE OF EXCELLENCE IN FUTURE LOW-ENERGY ELECTRONICS TECHNOLOGIES

FLEET

Quantum2021, 9 September

Impurities in a Bose medium

What happens if the medium is a BEC?

<u>Cold-atom experiments</u>: JILA, Aarhus, Kaiserslautern, MIT, ...

• Fundamental problem in physics

- Quantum system + environment

E.g. spin-boson problem - Leggett et al, RMP 1987

- Electrons in ionic lattice (polarons)

Outline

- The Bose polaron problem [3D]

Few-body bound states

- Impurity + N bosons

- Many-body limit
- Conclusion

Theory: Tempere, Bruun, Massignan, Enss, Schmidt, Demler, Gurarie, Giorgini ...

The Bose polaron – Infinitely heavy case

- Fixed impurity in a weakly repulsive Bose gas
- Tunable short-range attractive interactions between impurity and bosons

$$\hat{H} = \sum_{\mathbf{k}} \frac{k^2}{2m} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + \sum_{\mathbf{k}\mathbf{k}'\mathbf{q}} \frac{V(\mathbf{q})}{2} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}'}^{\dagger} b_{\mathbf{k}'+\mathbf{q}}$$

The Bose polaron Infinitely heavy case

- Fixed impurity in a weakly repulsive Bose gas
- Tunable short-range *attractive* interactions between impurity and bosons

$$\hat{H} = \sum_{\mathbf{k}} \epsilon_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + \sum_{\mathbf{k}\mathbf{k}'\mathbf{q}} \frac{V(\mathbf{q})}{2} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}'+\mathbf{q}} + c$$

Exactly solvable for ideal Bose gas

• Polaron energy:
$$E = \frac{2\pi an}{m}$$

 $a^{b_{\mathbf{k}}-\mathbf{q}}+g$

... but singular

Guenther, Schmidt, Bruun, Gurarie & Massignan, PRA 2021; Drescher, Salmhofer & Enss, PRA 2021

Few-body bound states – Exact calculations

- Impurity + N non-interacting bosons
 - All bosons occupy bound state once a > 0

$$E = -N\varepsilon_b$$

- Effect of boson-boson repulsion?
 (i.e., non-zero a_B)
- Trimer <u>unbinds</u> at critical interaction a*

$$\Delta E = -\varepsilon_b + U_{int} \approx -\frac{1}{2ma^2} + \frac{4\pi a_B}{ma^3} \quad \swarrow \quad a^* \in$$

Levinsen, Peña Ardila, Yoshida & MMP, PRL 2021; Shi, Yoshida, MMP & Levinsen, PRL 2018

 a^*/a

Few-body bound states Exact calculations

- All N>1 bound states unbind at a*
 - Unitarity point for dimer impurity
- Universal bound states near a* \bullet
- Ground-state energy is bounded from below for any boson number N

$$E(1/a) \ge E(1/a^*) = -\frac{1}{2m(a^*)^2}$$
 , $1/a \le 1/a$

Levinsen, Peña Ardila, Yoshida & MMP, PRL 2021; Shi, Yoshida, MMP & Levinsen, PRL 2018

 a^*

 ∂E since $\frac{\partial L}{\partial (-1/a)} > 0$

Polaron ground state — Many-body limit

Popular approach: treat BEC as a classical field

Shchadilova, Schmidt, Grusdt & Demler, PRL 2016; Massignan, Yegovtsev & Gurarie, PRL 2021

Ignores quantum "granular" nature of gas

Crucial for short-range impurity potential!

"quantum blockade"

Classical-field approach requires conditions:

$$n_l a_B^3 \ll 1$$

$$n_l r_0^3 \gg 1$$

See also: Chen, Prokof'ev & Svistunov, PRA 2018

Polaron ground state — Many-body limit

• Consider general (correlated) state:

Levinsen, Peña Ardila, Yoshida & MMP, PRL 2021

Boson-boson interactions encoded in:

$$G_{\mathbf{k}} = g\sqrt{n} \left(\sum_{\mathbf{k}'} \alpha_{\mathbf{k}\mathbf{k}'} / \alpha_{\mathbf{k}} - \sum_{\mathbf{k}'} \alpha_{\mathbf{k}'} / \alpha_0 \right)$$

- Ideal gas: $G_{\mathbf{k}} = 0$

- Coherent state: $G_{\mathbf{k}} = 8\pi a_B n/m$ Shchadilova et al, PRL 2016

- "Chevy-type" ansatz: $G_{\mathbf{k}} = -E$

Polaron energy Variational vs exact calculations

• Bosonic Anderson model:

$$\begin{split} \hat{H} &= \sum_{\mathbf{k}} \epsilon_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + \nu_0 d^{\dagger} d + \lambda \sum_{\mathbf{k}} (d^{\dagger} b_{\mathbf{k}} + b_{\mathbf{k}}^{\dagger} d) \\ &+ \frac{U}{2} d^{\dagger} d^{\dagger} d d, \qquad U \to +\infty \end{split}$$

- Mimics quantum blockade
- Truncated basis approach
 - Up to 3 excitations

$$\left| \begin{array}{c} \bullet \bullet \bullet \bullet \\ \bullet \bullet \bullet \end{array} \right\rangle + \left| \begin{array}{c} \bullet \bullet \bullet \bullet \\ \bullet \bullet \bullet \end{array} \right\rangle + \left| \begin{array}{c} \bullet \bullet \bullet \bullet \\ \bullet \bullet \bullet \end{array} \right\rangle + \left| \begin{array}{c} \bullet \bullet \bullet \bullet \\ \bullet \bullet \bullet \end{array} \right\rangle + \left| \begin{array}{c} \bullet \bullet \bullet \bullet \\ \bullet \bullet \bullet \bullet \end{array} \right\rangle$$

Compare with QMC for same a*

 $n^{1/3}a_B \simeq 2.15 \times 10^{-2}$ 2.15×10^{-4}

- Boson repulsion suppresses excitations
- Insensitive to microscopic details

Levinsen, Peña Ardila, Yoshida & MMP, PRL 2021

Polaron energy - Unitarity limit 1/a = 0

$$E = -f(n^{1/3}a_B)n^{2/3}/m$$

$$\rightarrow -\infty, \qquad a_B \rightarrow 0$$

$$\rightarrow 0 \qquad \qquad n \rightarrow 0$$

Thus require:

$$f(x) \to \infty$$
 slower than $\sim 1/x^2$

Levinsen, Peña Ardila, Yoshida & MMP, PRL 2021

Logarithmically slow dependence!

 $f(x) \sim -\ln(x)$

Finite mass?

• Equal-mass case

Efimov effect Power-law dependence

Yoshida, Endo, Levinsen & MMP, PRX 2018; Field, Levinsen & MMP, PRA 2020

Also obtain *universal* quantum blockade due to boson repulsion

Conclusion

- Quantum behavior when impurity potential is short-ranged
 - "Quantum blockade" at position of impurity
 - Universal logarithmic behavior at unitarity \bullet
 - Universal few-body bound states lacksquare
- Outlook
 - Directly applicable to cold-atom experiments \bullet
 - Route to enhancing quantum correlations in photonic systems?

Acknowledgements

Quantum matter theory @ Monash

Shuhei Yoshida (Tokyo)

Luis Peña Ardila (Hannover)