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Impurities in a Bose medium
• Fundamental problem in physics

- Electrons in ionic lattice (polarons)

- Quantum system + environment
E.g. spin-boson problem - Leggett et al, RMP 1987

What happens if the medium is a BEC?

Cold-atom experiments: JILA, Aarhus, Kaiserslautern, MIT, …   



Outline
• The Bose polaron problem [3D]  

• Few-body bound states


- Impurity + N bosons 

• Many-body limit 

• Conclusion

Theory: Tempere, Bruun, Massignan, Enss, 
Schmidt, Demler, Gurarie, Giorgini …



The Bose polaron
— Infinitely heavy case

• Fixed impurity in a weakly repulsive Bose gas 


• Tunable short-range attractive interactions 
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We investigate the problem of an infinitely heavy impurity interacting with a dilute Bose gas at

zero temperature. When the impurity-boson interactions are short ranged, we show that boson-

boson interactions induce a quantum blockade e↵ect, where a single boson can e↵ectively block or

screen the impurity potential. Since this behavior depends on the quantum granular nature of the

Bose gas, it cannot be captured within a standard classical-field description. Using a combination

of exact quantum Monte Carlo methods and a truncated basis approach, we show how the quantum

correlations between bosons lead to universal few-body bound states and a logarithmically slow

dependence of the polaron ground-state energy on the boson-boson scattering length. Moreover, we

expose the link between the polaron energy and the spatial structure of the quantum correlations,

spanning the infrared to ultraviolet physics.

The scenario of an infinitely heavy impurity in a quan-
tum medium is a fundamental problem in physics, with
relevance ranging from electron gases [1] to open quan-
tum systems [2]. The behavior is well understood in the
case of an ideal Fermi medium [3, 4] where the prob-
lem can be solved exactly. Here, Anderson famously
demonstrated that any interaction with the impurity
leads to the orthogonality catastrophe in the thermody-
namic limit [5]. However, there is currently much debate
over the nature of the ground state for a fixed impurity
strongly coupled to a dilute Bose gas, which is of immedi-
ate importance to ongoing cold-atom experiments [6–12].

The bosonic problem — termed the Bose polaron —
appears straightforward at first glance, since there is the
possibility of describing the condensed ground state of
the Bose gas as a classical field, e.g., in the form of a
coherent state [13–17], or governed by an e↵ective Gross-
Pitaevskii equation [18–20]. Furthermore, when the Bose
gas is non-interacting, the ground state corresponds to
all bosons occupying the lowest single-particle state in
the system, making it even simpler than the fermionic
case [21]. However, this tendency of bosons to cluster also
means that, in the absence of boson-boson interactions,
the Bose polaron ground-state energy diverges when the
impurity-boson interaction is attractive enough to sup-
port a bound state [19, 22]. Thus, it is an important
and non-trivial question how this pathological behavior
is cured by boson-boson interactions, and whether the
details of the impurity-boson interaction play a key role.
This is of particular interest in the case of short-range
resonant impurity-boson interactions, where the scatter-
ing length a ! ±1 and there is the prospect of universal
physics, independent of the microscopic details.

In this Letter, we show that in order to describe the
ground state of the Bose polaron, it is crucial to go be-
yond classical-field descriptions and include the quantum
“granular” nature of the Bose gas. Specifically, once
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FIG. 1. Bosons (circles) in the presence of an attractive impu-

rity potential. If the range of the potential r0 is comparable

to or smaller than the boson-boson scattering length aB , then

a single boson can block the potential (left). Conversely, if

r0 > aB , as for a Rydberg [9] or ionic [31] impurity, then

many bosons can interact with the potential at once (right).

the boson-boson scattering length aB is comparable to
or larger than the range r0 of the attractive impurity-
boson potential, a single boson from the gas can e↵ec-
tively screen or block the impurity potential, as illus-
trated in Fig. 1. For a su�ciently attractive impurity-
boson potential with r0 ! 0, we find that this quantum
blocking e↵ect leads to universal few-body bound states
involving the impurity, in agreement with Refs. [23, 24].
Using exact quantum Monte Carlo (QMC) methods [25–
27], we show that the polaron energy in the many-body
limit exhibits a logarithmic dependence on aB in the uni-
tary regime a ! ±1. We further illustrate the impor-
tance of quantum correlations between bosons by show-
ing that the QMC results for the polaron ground-state
energy are well captured by a truncated basis variational
approach [28–30] across a range of interactions.
Model.— We consider the following Hamiltonian for

a single infinitely heavy impurity in a Bose gas:
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trated in Fig. 1. For a su�ciently attractive impurity-
boson potential with r0 ! 0, we find that this quantum
blocking e↵ect leads to universal few-body bound states
involving the impurity, in agreement with Refs. [23, 24].
Using exact quantum Monte Carlo (QMC) methods [25–
27], we show that the polaron energy in the many-body
limit exhibits a logarithmic dependence on aB in the uni-
tary regime a ! ±1. We further illustrate the impor-
tance of quantum correlations between bosons by show-
ing that the QMC results for the polaron ground-state
energy are well captured by a truncated basis variational
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• Exactly solvable for ideal Bose gas

E =
2⇡an

m
‣ Polaron energy:

Guenther, Schmidt, Bruun, Gurarie & Massignan, PRA 2021;

Drescher, Salmhofer & Enss, PRA 2021

… but singular 
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• Impurity +  N non-interacting bosons

Levinsen, Peña Ardila, Yoshida & MMP, PRL 2021; 

Shi, Yoshida, MMP & Levinsen, PRL 2018  

‣ All bosons occupy bound state once a > 0

E = �N"b

2

The three terms correspond, respectively, to the kinetic
energy of the bosons, the boson-boson interaction, and
the boson-impurity interaction, where we have set the
system volume and ~ to one. In this model, a boson
of mass m and momentum k is created by the opera-
tor b

†
k, and we consider bosons with the quadratic dis-

persion ✏k = |k|2/2m ⌘ k
2
/2m. Furthermore, we de-

scribe their interaction using the short-range potential
V (q), which results in a low-energy boson-boson scatter-
ing length aB > 0. The interaction between the impurity
and a boson is taken to be short-ranged and of strength g

up to a momentum cuto↵ ⇤. The bare parameters g and
⇤ can be related to the physical impurity-boson scatter-
ing length a via m

2⇡a = 1
g +

P⇤
k

1
✏k
. In the following, we

take the zero-range limit r0 ! 0, which requires ⇤ ! 1.
For the QMC calculations, we solve the problem in real
space, using a Bethe-Peierls boundary condition for the
impurity-boson interactions, and taking the boson-boson
potential to be a hard-sphere potential, where the diam-
eter of the sphere coincides with the s-wave scattering
length aB (see Supplemental Material [32]).

Few-body bound states.— We first discuss the few-
body physics of an infinitely heavy impurity interacting
with NB identical bosons, where we assume that a > 0
such that the impurity potential supports a bound state.
For NB = 1, we simply have the impurity-boson bound
state with energy �"b = �1/2ma

2, while NB = 2 cor-
responds to the minimal number of bosons where boson-
boson correlations can emerge. In Fig. 2(a) we display
the QMC results for the NB = 2 energy for a range of
aB . We find that a trimer (2-boson) bound state only ex-
ists when the scattering length a is above a critical value
a
⇤
' 10aB set by the boson repulsion. Moreover, the

trimer energy remains close to �"b (i.e., the result for
NB = 1) for the plotted range of aB/a spanning several
orders of magnitude, and it only slowly approaches the re-
sult for uncorrelated bosons, �2"b, as we take aB/a ! 0.
A similar behavior is observed for NB = 3, since we see
that the tetramer (3-boson) bound state also only exists
when a > a

⇤, and the tetramer energy lies well above the
uncorrelated result, �3"b. Therefore, we conclude that
boson repulsion dominates the few-body behavior.

Indeed, we find that we can reproduce these few-body
states when the bosons only block each other at the im-
purity and are non-interacting otherwise. Such a sce-
nario is achieved with a bosonic Anderson model [23, 24],
where the impurity-boson interaction features an open
and closed channel like in a realistic cold-atom scattering
process [33]. Here, the impurity is unavailable for inter-
actions with other bosons once a boson enters the closed-
channel state, thus mimicking the quantum blockade ef-
fect in Fig. 1. We previously solved the NB = 2 prob-
lem exactly analytically for this model and we obtained
the critical scattering length a

⇤ = 3.1426|re↵ |, where re↵

is the (negative) e↵ective range of the impurity-boson
interactions [23, 24]. Moreover, we found that a

⇤ cor-

FIG. 2. (a) Trimer energy as a function of inverse scattering

length obtained from QMC (black circles), bosons with at-

tractive contact interaction (black dot dashed line), and the

Anderson model (purple dashed line). The inset compares

the tetramer energy in the QMC with those of the Ander-

son model. (b) Few-body energy at a/aB = 75 as a function

of boson number calculated within the QMC (black circles).

We also show the energy of uncorrelated bosons, E = �NB"b
(gray dashed line), and that of interacting bosons in an ef-

fective potential that accounts for three-body correlations,

Eq. (2), with U = 0.04"b = 1.5aB/ma3
(blue dotted line).

Data for the Anderson model is taken from Ref. [23].

responded to a multibody resonance beyond which all
NB > 1 bound states cease to exist. We display the re-
sults of this two-channel model in Fig. 2(a) and find good
agreement with the QMC data. This demonstrates two
points: the few-body energies universally depend on the
ratio a

⇤
/a, and the behavior is determined by quantum

blocking at the impurity.
Such few-body universality also extends to models with

zero-range boson-boson interactions. In this case, a fi-
nite positive aB requires an underlying attractive po-
tential V (q), which features Efimov physics as well as
deeply bound dimers [32]. Thus, the relevant few-body
states with e↵ective boson-boson repulsion are actually
metastable excited states. Nonetheless, it is possible to
solve for the energy of the metastable trimer state [32]
and we see that it agrees well with the results of the other
models in Fig. 2(a). We also find the critical scattering
length to be a

⇤ = 20.0aB , which di↵ers slightly from that

• Effect of boson-boson repulsion?  
 (i.e., non-zero      )aB

aB/a ' 0.01

aB = 0

• Trimer unbinds at critical interaction a* 
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• Universal bound states near a*

Few-body bound states
— Exact calculations
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Polaron ground state
— Many-body limit

• Popular approach: treat BEC as a classical field
Shchadilova, Schmidt, Grusdt & Demler, PRL 2016; 

Massignan, Yegovtsev & Gurarie, PRL 2021


 Ignores quantum “granular” nature of gas

Classical-field approach 

requires conditions:
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tum medium is a fundamental problem in physics, with
relevance ranging from electron gases [1] to open quan-
tum systems [2]. The behavior is well understood in the
case of an ideal Fermi medium [3, 4] where the prob-
lem can be solved exactly. Here, Anderson famously
demonstrated that any interaction with the impurity
leads to the orthogonality catastrophe in the thermody-
namic limit [5]. However, there is currently much debate
over the nature of the ground state for a fixed impurity
strongly coupled to a dilute Bose gas, which is of immedi-
ate importance to ongoing cold-atom experiments [6–12].

The bosonic problem — termed the Bose polaron —
appears straightforward at first glance, since there is the
possibility of describing the condensed ground state of
the Bose gas as a classical field, e.g., in the form of a
coherent state [13–17], or governed by an e↵ective Gross-
Pitaevskii equation [18–20]. Furthermore, when the Bose
gas is non-interacting, the ground state corresponds to
all bosons occupying the lowest single-particle state in
the system, making it even simpler than the fermionic
case [21]. However, this tendency of bosons to cluster also
means that, in the absence of boson-boson interactions,
the Bose polaron ground-state energy diverges when the
impurity-boson interaction is attractive enough to sup-
port a bound state [19, 22]. Thus, it is an important
and non-trivial question how this pathological behavior
is cured by boson-boson interactions, and whether the
details of the impurity-boson interaction play a key role.
This is of particular interest in the case of short-range
resonant impurity-boson interactions, where the scatter-
ing length a ! ±1 and there is the prospect of universal
physics, independent of the microscopic details.

In this Letter, we show that in order to describe the
ground state of the Bose polaron, it is crucial to go be-
yond classical-field descriptions and include the quantum
“granular” nature of the Bose gas. Specifically, once

r0 . aB r0 > aB

FIG. 1. Bosons (circles) in the presence of an attractive impu-

rity potential. If the range of the potential r0 is comparable

to or smaller than the boson-boson scattering length aB , then

a single boson can block the potential (left). Conversely, if

r0 > aB , as for a Rydberg [9] or ionic [31] impurity, then

many bosons can interact with the potential at once (right).

the boson-boson scattering length aB is comparable to
or larger than the range r0 of the attractive impurity-
boson potential, a single boson from the gas can e↵ec-
tively screen or block the impurity potential, as illus-
trated in Fig. 1. For a su�ciently attractive impurity-
boson potential with r0 ! 0, we find that this quantum
blocking e↵ect leads to universal few-body bound states
involving the impurity, in agreement with Refs. [23, 24].
Using exact quantum Monte Carlo (QMC) methods [25–
27], we show that the polaron energy in the many-body
limit exhibits a logarithmic dependence on aB in the uni-
tary regime a ! ±1. We further illustrate the impor-
tance of quantum correlations between bosons by show-
ing that the QMC results for the polaron ground-state
energy are well captured by a truncated basis variational
approach [28–30] across a range of interactions.
Model.— We consider the following Hamiltonian for

a single infinitely heavy impurity in a Bose gas:

Ĥ =
X

k

✏kb
†
kbk +

X

kk0q

V (q)

2
b
†
kb

†
k0bk0+qbk�q + g

X

kk0

b
†
kbk0 .

(1)

Crucial for short-range impurity potential! 

“quantum blockade”

r0 � aB

See also: Chen, Prokof’ev & Svistunov, PRA 2018 
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estimated from the QMC simulations for a hard-sphere
potential, indicating that finite-range e↵ects are relevant
in the relationship between a

⇤ and boson repulsion.
Within QMC, we can extend our results to even larger

NB complexes. Fixing a
⇤
/a < 1, we observe in Fig. 2(b)

that the energy strongly deviates from the uncorrelated
result E = �NB"b (dashed gray line) and appears to
saturate to a finite value with increasing NB . Moreover,
this does not match the energy of interacting bosons in
a potential, E = �NB"b + UNB(NB � 1)/2, for any in-
teraction energy U . We expect this behavior to also hold
for a non-zero range r0 as long as we satisfy the blocking
condition r0 . aB , illustrated in Fig. 1. This condition is
equivalent to requiring that the boson interaction energy,
⇠ aB/mr

3
0, exceeds the depth of the potential, ⇠ 1/mr

2
0,

assuming that the potential is close to resonance and us-
ing the fact that bosons within the potential interact over
a volume set by r

3
0 [34].

We can understand the result of Fig. 2(b) by consider-
ing instead NB � 1 bosons moving in the longer-ranged
potential originating from the infinitely heavy dimer con-
sisting of the impurity and a boson. In this case, the
range of the e↵ective potential is ⇠ a and the energy of
interacting bosons is

E = �"b � (NB � 1)"T +
U

2
(NB � 1)(NB � 2), (2)

where "T is the trimer binding energy. In Fig. 2(b) where
a � aB and "T ⌧ "b, we see that the small-NB behavior
is well captured by Eq. (2) using U ⇠ aB/ma

3. This
illustrates the importance of three-body correlations as
well as demonstrating the role of the potential range.

Many-body limit.— We now turn to the behavior of
an impurity in a Bose gas of finite density n. In the ab-
sence of the impurity and in the limit of vanishing boson-
boson interactions, the ground state is a Bose-Einstein

condensate (BEC): |�i = e

p
n(b†0�b0)

|0i, where |0i is the
vacuum state for bosons. Thus, we can replace operators
b
†
0 and b0 in the Hamiltonian (1) by

p
n. Introducing the

impurity and turning on interactions, the polaron ground
state can be written in the general form [29]

| i =
⇣
↵0 +

X

k 6=0

↵kb
†
k +

1

2

X

k1,k2 6=0

↵k1k2b
†
k1

b
†
k2

. . .

⌘
|�i ,

(3)

where the complex coe�cients ↵j are associated with
di↵erent numbers of bosons excited out of the conden-
sate, and ↵k1k2 = ↵k2k1 . In principle, one could write
the expansion in Eq. (3) in terms of Bogoliubov excita-
tions rather than bare bosonic excitations [28, 35]. How-
ever, this only modifies the operators at low momenta
k < 4

p
⇡naB , and this is not expected to a↵ect the lead-

ing order behavior of the polaron energy in the extremely
dilute limit n

1/3
aB ⌧ 1 [29]. It is also likely that the

Bogoliubov approximation breaks down in the regime of
strong impurity-boson interactions [36, 37].

FIG. 3. Ground-state energy of the infinitely heavy Bose po-

laron as a function of inverse impurity-boson scattering length

at fixed n1/3a⇤
= 0.215 (purple dashed) and n1/3a⇤

= 0.00215
(green solid). We show the results of the QMC (symbols) to-

gether with the results of the truncated basis approach in the

Anderson model with up to 3 excitations (lines). The mean-

field result, E = 2⇡na/m, is depicted as a dotted line.

Applying the Hamiltonian (1) to the state (3) and
keeping only the leading order boson-boson interaction
terms in the limit n

1/3
aB ⌧ 1, we obtain the ground-

state polaron energy [32]:

E = n

"
m

2⇡a
+
X

k

✓
1

✏k + Gk
�

1

✏k

◆#�1

. (4)

Crucially, we find that it depends on the repulsive corre-
lations between bosons via the positive function

Gk = g
p

n

 
X

k0

↵kk0/↵k �

X

k0

↵k0/↵0

!
. (5)

Note that the case of uncorrelated non-interacting bosons
corresponds to ↵kk0 = ↵k↵k0/↵0, which gives Gk = 0,
such that the polaron energy E = 2⇡na/m, in agree-
ment with previous work [19, 22]. Thus, the presence of
correlations is necessary to ensure that the ground-state
energy remains finite in the unitarity limit 1/a ! 0.
This behavior is confirmed in Fig. 3, where we display

the polaron ground-state energy obtained using exact
QMC methods for two di↵erent densities di↵ering by two
orders of magnitude. For weak impurity-boson attraction
1/n

1/3
a ⌧ �1, we recover the mean-field uncorrelated re-

sult E = 2⇡na/m, which corresponds to the leading order
dependence of Eq. (4) on a. However, as anticipated, the
energy becomes sensitive to boson-boson correlations as
we increase the interactions towards unitarity. This be-
havior is not just limited to zero-range impurity-boson
interactions since the same result is obtained for a finite-
range potential when r0 < aB [25]. Note that this be-
havior goes beyond the few-body results discussed previ-
ously since the impurity-boson bound state is either ab-

…
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estimated from the QMC simulations for a hard-sphere
potential, indicating that finite-range e↵ects are relevant
in the relationship between a

⇤ and boson repulsion.
Within QMC, we can extend our results to even larger

NB complexes. Fixing a
⇤
/a < 1, we observe in Fig. 2(b)

that the energy strongly deviates from the uncorrelated
result E = �NB"b (dashed gray line) and appears to
saturate to a finite value with increasing NB . Moreover,
this does not match the energy of interacting bosons in
a potential, E = �NB"b + UNB(NB � 1)/2, for any in-
teraction energy U . We expect this behavior to also hold
for a non-zero range r0 as long as we satisfy the blocking
condition r0 . aB , illustrated in Fig. 1. This condition is
equivalent to requiring that the boson interaction energy,
⇠ aB/mr

3
0, exceeds the depth of the potential, ⇠ 1/mr

2
0,

assuming that the potential is close to resonance and us-
ing the fact that bosons within the potential interact over
a volume set by r

3
0 [34].

We can understand the result of Fig. 2(b) by consider-
ing instead NB � 1 bosons moving in the longer-ranged
potential originating from the infinitely heavy dimer con-
sisting of the impurity and a boson. In this case, the
range of the e↵ective potential is ⇠ a and the energy of
interacting bosons is

E = �"b � (NB � 1)"T +
U

2
(NB � 1)(NB � 2), (2)

where "T is the trimer binding energy. In Fig. 2(b) where
a � aB and "T ⌧ "b, we see that the small-NB behavior
is well captured by Eq. (2) using U ⇠ aB/ma

3. This
illustrates the importance of three-body correlations as
well as demonstrating the role of the potential range.

Many-body limit.— We now turn to the behavior of
an impurity in a Bose gas of finite density n. In the ab-
sence of the impurity and in the limit of vanishing boson-
boson interactions, the ground state is a Bose-Einstein

condensate (BEC): |�i = e

p
n(b†0�b0)

|0i, where |0i is the
vacuum state for bosons. Thus, we can replace operators
b
†
0 and b0 in the Hamiltonian (1) by

p
n. Introducing the

impurity and turning on interactions, the polaron ground
state can be written in the general form [29]

| i =
⇣
↵0 +

X

k 6=0

↵kb
†
k +

1

2

X

k1,k2 6=0

↵k1k2b
†
k1

b
†
k2

. . .

⌘
|�i ,

(3)

where the complex coe�cients ↵j are associated with
di↵erent numbers of bosons excited out of the conden-
sate, and ↵k1k2 = ↵k2k1 . In principle, one could write
the expansion in Eq. (3) in terms of Bogoliubov excita-
tions rather than bare bosonic excitations [28, 35]. How-
ever, this only modifies the operators at low momenta
k < 4

p
⇡naB , and this is not expected to a↵ect the lead-

ing order behavior of the polaron energy in the extremely
dilute limit n

1/3
aB ⌧ 1 [29]. It is also likely that the

Bogoliubov approximation breaks down in the regime of
strong impurity-boson interactions [36, 37].

FIG. 3. Ground-state energy of the infinitely heavy Bose po-

laron as a function of inverse impurity-boson scattering length

at fixed n1/3a⇤
= 0.215 (purple dashed) and n1/3a⇤

= 0.00215
(green solid). We show the results of the QMC (symbols) to-

gether with the results of the truncated basis approach in the

Anderson model with up to 3 excitations (lines). The mean-

field result, E = 2⇡na/m, is depicted as a dotted line.

Applying the Hamiltonian (1) to the state (3) and
keeping only the leading order boson-boson interaction
terms in the limit n

1/3
aB ⌧ 1, we obtain the ground-

state polaron energy [32]:

E = n

"
m

2⇡a
+
X

k

✓
1

✏k + Gk
�

1

✏k

◆#�1

. (4)

Crucially, we find that it depends on the repulsive corre-
lations between bosons via the positive function

Gk = g
p

n

 
X

k0

↵kk0/↵k �

X

k0

↵k0/↵0

!
. (5)

Note that the case of uncorrelated non-interacting bosons
corresponds to ↵kk0 = ↵k↵k0/↵0, which gives Gk = 0,
such that the polaron energy E = 2⇡na/m, in agree-
ment with previous work [19, 22]. Thus, the presence of
correlations is necessary to ensure that the ground-state
energy remains finite in the unitarity limit 1/a ! 0.
This behavior is confirmed in Fig. 3, where we display

the polaron ground-state energy obtained using exact
QMC methods for two di↵erent densities di↵ering by two
orders of magnitude. For weak impurity-boson attraction
1/n

1/3
a ⌧ �1, we recover the mean-field uncorrelated re-

sult E = 2⇡na/m, which corresponds to the leading order
dependence of Eq. (4) on a. However, as anticipated, the
energy becomes sensitive to boson-boson correlations as
we increase the interactions towards unitarity. This be-
havior is not just limited to zero-range impurity-boson
interactions since the same result is obtained for a finite-
range potential when r0 < aB [25]. Note that this be-
havior goes beyond the few-body results discussed previ-
ously since the impurity-boson bound state is either ab-

3

estimated from the QMC simulations for a hard-sphere
potential, indicating that finite-range e↵ects are relevant
in the relationship between a

⇤ and boson repulsion.
Within QMC, we can extend our results to even larger

NB complexes. Fixing a
⇤
/a < 1, we observe in Fig. 2(b)

that the energy strongly deviates from the uncorrelated
result E = �NB"b (dashed gray line) and appears to
saturate to a finite value with increasing NB . Moreover,
this does not match the energy of interacting bosons in
a potential, E = �NB"b + UNB(NB � 1)/2, for any in-
teraction energy U . We expect this behavior to also hold
for a non-zero range r0 as long as we satisfy the blocking
condition r0 . aB , illustrated in Fig. 1. This condition is
equivalent to requiring that the boson interaction energy,
⇠ aB/mr

3
0, exceeds the depth of the potential, ⇠ 1/mr

2
0,

assuming that the potential is close to resonance and us-
ing the fact that bosons within the potential interact over
a volume set by r

3
0 [34].

We can understand the result of Fig. 2(b) by consider-
ing instead NB � 1 bosons moving in the longer-ranged
potential originating from the infinitely heavy dimer con-
sisting of the impurity and a boson. In this case, the
range of the e↵ective potential is ⇠ a and the energy of
interacting bosons is

E = �"b � (NB � 1)"T +
U

2
(NB � 1)(NB � 2), (2)

where "T is the trimer binding energy. In Fig. 2(b) where
a � aB and "T ⌧ "b, we see that the small-NB behavior
is well captured by Eq. (2) using U ⇠ aB/ma

3. This
illustrates the importance of three-body correlations as
well as demonstrating the role of the potential range.

Many-body limit.— We now turn to the behavior of
an impurity in a Bose gas of finite density n. In the ab-
sence of the impurity and in the limit of vanishing boson-
boson interactions, the ground state is a Bose-Einstein

condensate (BEC): |�i = e

p
n(b†0�b0)

|0i, where |0i is the
vacuum state for bosons. Thus, we can replace operators
b
†
0 and b0 in the Hamiltonian (1) by

p
n. Introducing the

impurity and turning on interactions, the polaron ground
state can be written in the general form [29]

| i =
⇣
↵0 +

X

k 6=0

↵kb
†
k +

1

2
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k1,k2 6=0

↵k1k2b
†
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⌘
|�i ,

(3)

where the complex coe�cients ↵j are associated with
di↵erent numbers of bosons excited out of the conden-
sate, and ↵k1k2 = ↵k2k1 . In principle, one could write
the expansion in Eq. (3) in terms of Bogoliubov excita-
tions rather than bare bosonic excitations [28, 35]. How-
ever, this only modifies the operators at low momenta
k < 4

p
⇡naB , and this is not expected to a↵ect the lead-

ing order behavior of the polaron energy in the extremely
dilute limit n

1/3
aB ⌧ 1 [29]. It is also likely that the

Bogoliubov approximation breaks down in the regime of
strong impurity-boson interactions [36, 37].

FIG. 3. Ground-state energy of the infinitely heavy Bose po-

laron as a function of inverse impurity-boson scattering length

at fixed n1/3a⇤
= 0.215 (purple dashed) and n1/3a⇤

= 0.00215
(green solid). We show the results of the QMC (symbols) to-

gether with the results of the truncated basis approach in the

Anderson model with up to 3 excitations (lines). The mean-

field result, E = 2⇡na/m, is depicted as a dotted line.

Applying the Hamiltonian (1) to the state (3) and
keeping only the leading order boson-boson interaction
terms in the limit n

1/3
aB ⌧ 1, we obtain the ground-

state polaron energy [32]:

E = n

"
m

2⇡a
+
X

k

✓
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. (4)

Crucially, we find that it depends on the repulsive corre-
lations between bosons via the positive function

Gk = g
p

n
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X
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!
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Note that the case of uncorrelated non-interacting bosons
corresponds to ↵kk0 = ↵k↵k0/↵0, which gives Gk = 0,
such that the polaron energy E = 2⇡na/m, in agree-
ment with previous work [19, 22]. Thus, the presence of
correlations is necessary to ensure that the ground-state
energy remains finite in the unitarity limit 1/a ! 0.
This behavior is confirmed in Fig. 3, where we display

the polaron ground-state energy obtained using exact
QMC methods for two di↵erent densities di↵ering by two
orders of magnitude. For weak impurity-boson attraction
1/n

1/3
a ⌧ �1, we recover the mean-field uncorrelated re-

sult E = 2⇡na/m, which corresponds to the leading order
dependence of Eq. (4) on a. However, as anticipated, the
energy becomes sensitive to boson-boson correlations as
we increase the interactions towards unitarity. This be-
havior is not just limited to zero-range impurity-boson
interactions since the same result is obtained for a finite-
range potential when r0 < aB [25]. Note that this be-
havior goes beyond the few-body results discussed previ-
ously since the impurity-boson bound state is either ab-

‣ Boson-boson interactions encoded in:

very dilute BEC

Such few-body universality also extends to models
with zero-range boson-boson interactions. In this case, a
finite positive aB requires an underlying attractive poten-
tial VðqÞ, which features Efimov physics as well as
deeply bound dimers [32]. Thus, the relevant few-body
states with effective boson-boson repulsion are actually
metastable excited states. Nonetheless, it is possible to
solve for the energy of the metastable trimer state [32]
and we see that it agrees well with the results of the
other models in Fig. 2(a). We also find the critical
scattering length to be a# ¼ 20.0aB, which differs slightly
from that estimated from the QMC simulations for a
hard-sphere potential, indicating that finite-range effects
are relevant in the relationship between a# and boson
repulsion.
Within QMC, we can extend our results to even larger

NB complexes. Fixing a#=a < 1, we observe in Fig. 2(b)
that the energy strongly deviates from the uncorrelated
result E ¼ −NBεb (dashed gray line) and appears to
saturate to a finite value with increasing NB. Moreover,
this does not match the energy of interacting bosons in a
potential, E ¼ −NBεb þ UNBðNB − 1Þ=2, for any inter-
action energy U. We expect this behavior to also hold for
a nonzero range r0 as long as we satisfy the blocking
condition r0 ≲ aB, illustrated in Fig. 1. This condition is
equivalent to requiring that the boson interaction energy,
∼aB=mr30, exceeds the depth of the potential, ∼1=mr20,
assuming that the potential is close to resonance and using
the fact that bosons within the potential interact over a
volume set by r30 [42].
We can understand the result of Fig. 2(b) by considering

instead NB − 1 bosons moving in the longer-ranged poten-
tial originating from the infinitely heavy dimer consisting
of the impurity and a boson. In this case, the range of the
effective potential is ∼a and the energy of interacting
bosons is

E ¼ −εb − ðNB − 1ÞεT þ U
2
ðNB − 1ÞðNB − 2Þ; ð2Þ

where εT is the trimer binding energy. In Fig. 2(b), where
a ≫ aB and εT ≪ εb, we see that the small-NB behavior is
well captured by Eq. (2) usingU ∼ aB=ma3. This illustrates
the importance of three-body correlations as well as
demonstrating the role of the potential range.
Many-body limit.—We now turn to the behavior of an

impurity in a Bose gas of finite density n. In the absence of
the impurity and in the limit of vanishing boson-boson
interactions, the ground state is a Bose-Einstein condensate
(BEC): jΦi ¼ e

ffiffi
n

p
ðb†0−b0Þj0i, where j0i is the vacuum state

for bosons. Thus, we can replace operators b†0 and b0 in the
Hamiltonian (1) by

ffiffiffi
n

p
. Introducing the impurity and

turning on interactions, the polaron ground state can be
written in the general form [29],

jΨi¼
"
α0 þ

X

k≠0
αkb

†
k þ

1

2

X

k1;k2≠0
αk1k2

b†k1
b†k2

…
#
jΦi; ð3Þ

where the complex coefficients αj are associated with
different numbers of bosons excited out of the condensate,
and αk1k2

¼ αk2k1
. In principle, one could write the

expansion in Eq. (3) in terms of Bogoliubov excitations
rather than bare bosonic excitations [28,44]. However, this
only modifies the operators at low momenta k < 4

ffiffiffiffiffiffiffiffiffiffiffi
πnaB

p
,

and this is not expected to affect the leading order behavior
of the polaron energy in the extremely dilute limit
n1=3aB ≪ 1 [29]. It is also likely that the Bogoliubov
approximation breaks down in the regime of strong
impurity-boson interactions [45,46].
Applying the Hamiltonian (1) to the state (3) and keeping

only the leading order boson-boson interaction terms in
the limit n1=3aB ≪ 1, we obtain the ground-state polaron
energy [32]:

E ¼ n
$
m
2πa

þ
X

k

"
1

ϵk þ Gk
−

1

ϵk

#%−1
: ð4Þ

Crucially, we find that it depends on the repulsive corre-
lations between bosons via the positive function

Gk ¼ g
ffiffiffi
n

p "X

k0

αkk0=αk −
X

k0

αk0=α0

#
: ð5Þ

Note that the case of uncorrelated noninteracting bosons
corresponds to αkk0 ¼ αkαk0=α0, which givesGk ¼ 0, such
that the polaron energy E ¼ 2πna=m, in agreement with
previous work [19,22]. Thus, the presence of correlations is
necessary to ensure that the ground-state energy remains
finite in the unitarity limit 1=a → 0.
This behavior is confirmed in Fig. 3, where we display

the polaron ground-state energy obtained using exact
QMC methods for two different densities differing by 2
orders of magnitude. For weak impurity-boson attraction
1=n1=3a ≪ −1, we recover the mean-field uncorrelated
result E ¼ 2πna=m, which corresponds to the leading
order dependence of Eq. (4) on a. However, as anticipated,
the energy becomes sensitive to boson-boson correlations
as we increase the interactions toward unitarity. This
behavior is not just limited to zero-range impurity-boson
interactions since the same result is obtained for a finite-
range potential when r0 < aB [25]. Note that this behavior
goes beyond the few-body results discussed previously
since the impurity-boson bound state is either absent (when
a < 0) or larger than the interparticle spacing (n1=3a≳ 1).
To further characterize the correlations, we also calculate

the polaron energy using a variational approach [29],
where we truncate the number of bosonic excitations in
the polaron ground state in Eq. (3) [32]. Here we again use
the Anderson model to mimic the blockade effect at the
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- “Chevy-type” ansatz:    Gk = �E
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‣ Boson repulsion suppresses excitations


‣ Insensitive to microscopic details

3

estimated from the QMC simulations for a hard-sphere
potential, indicating that finite-range e↵ects are relevant
in the relationship between a

⇤ and boson repulsion.
Within QMC, we can extend our results to even larger

NB complexes. Fixing a
⇤
/a < 1, we observe in Fig. 2(b)

that the energy strongly deviates from the uncorrelated
result E = �NB"b (dashed gray line) and appears to
saturate to a finite value with increasing NB . Moreover,
this does not match the energy of interacting bosons in
a potential, E = �NB"b + UNB(NB � 1)/2, for any in-
teraction energy U . We expect this behavior to also hold
for a non-zero range r0 as long as we satisfy the blocking
condition r0 . aB , illustrated in Fig. 1. This condition is
equivalent to requiring that the boson interaction energy,
⇠ aB/mr

3
0, exceeds the depth of the potential, ⇠ 1/mr

2
0,

assuming that the potential is close to resonance and us-
ing the fact that bosons within the potential interact over
a volume set by r

3
0 [34].

We can understand the result of Fig. 2(b) by consider-
ing instead NB � 1 bosons moving in the longer-ranged
potential originating from the infinitely heavy dimer con-
sisting of the impurity and a boson. In this case, the
range of the e↵ective potential is ⇠ a and the energy of
interacting bosons is

E = �"b � (NB � 1)"T +
U

2
(NB � 1)(NB � 2), (2)

where "T is the trimer binding energy. In Fig. 2(b) where
a � aB and "T ⌧ "b, we see that the small-NB behavior
is well captured by Eq. (2) using U ⇠ aB/ma

3. This
illustrates the importance of three-body correlations as
well as demonstrating the role of the potential range.

Many-body limit.— We now turn to the behavior of
an impurity in a Bose gas of finite density n. In the ab-
sence of the impurity and in the limit of vanishing boson-
boson interactions, the ground state is a Bose-Einstein

condensate (BEC): |�i = e

p
n(b†0�b0)

|0i, where |0i is the
vacuum state for bosons. Thus, we can replace operators
b
†
0 and b0 in the Hamiltonian (1) by

p
n. Introducing the

impurity and turning on interactions, the polaron ground
state can be written in the general form [29]
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(3)

where the complex coe�cients ↵j are associated with
di↵erent numbers of bosons excited out of the conden-
sate, and ↵k1k2 = ↵k2k1 . In principle, one could write
the expansion in Eq. (3) in terms of Bogoliubov excita-
tions rather than bare bosonic excitations [28, 35]. How-
ever, this only modifies the operators at low momenta
k < 4

p
⇡naB , and this is not expected to a↵ect the lead-

ing order behavior of the polaron energy in the extremely
dilute limit n

1/3
aB ⌧ 1 [29]. It is also likely that the

Bogoliubov approximation breaks down in the regime of
strong impurity-boson interactions [36, 37].

FIG. 3. Ground-state energy of the infinitely heavy Bose po-

laron as a function of inverse impurity-boson scattering length

at fixed n1/3a⇤
= 0.215 (purple dashed) and n1/3a⇤

= 0.00215
(green solid). We show the results of the QMC (symbols) to-

gether with the results of the truncated basis approach in the

Anderson model with up to 3 excitations (lines). The mean-

field result, E = 2⇡na/m, is depicted as a dotted line.

Applying the Hamiltonian (1) to the state (3) and
keeping only the leading order boson-boson interaction
terms in the limit n

1/3
aB ⌧ 1, we obtain the ground-

state polaron energy [32]:

E = n
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+
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. (4)

Crucially, we find that it depends on the repulsive corre-
lations between bosons via the positive function

Gk = g
p

n

 
X
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!
. (5)

Note that the case of uncorrelated non-interacting bosons
corresponds to ↵kk0 = ↵k↵k0/↵0, which gives Gk = 0,
such that the polaron energy E = 2⇡na/m, in agree-
ment with previous work [19, 22]. Thus, the presence of
correlations is necessary to ensure that the ground-state
energy remains finite in the unitarity limit 1/a ! 0.
This behavior is confirmed in Fig. 3, where we display

the polaron ground-state energy obtained using exact
QMC methods for two di↵erent densities di↵ering by two
orders of magnitude. For weak impurity-boson attraction
1/n

1/3
a ⌧ �1, we recover the mean-field uncorrelated re-

sult E = 2⇡na/m, which corresponds to the leading order
dependence of Eq. (4) on a. However, as anticipated, the
energy becomes sensitive to boson-boson correlations as
we increase the interactions towards unitarity. This be-
havior is not just limited to zero-range impurity-boson
interactions since the same result is obtained for a finite-
range potential when r0 < aB [25]. Note that this be-
havior goes beyond the few-body results discussed previ-
ously since the impurity-boson bound state is either ab-
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+
U

2
d†d†dd, U ! +1

6

This is seen to vanish since the momentum sum is infrared divergent. This divergence is cured once there are
interactions between bosons and the coherence length ⇠ is finite. In this case, using the variational parameters in
Eq. (S23) and expanding to lowest order in the impurity-boson scattering length a then gives [13]
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(S27)

= �4
p

2a2⇠n, (S28)

which matches second-order perturbation theory [14].
On the other hand, we note that the Gross-Pitaevskii approach in Ref. [15] does not yield the correct residue in

the weak-coupling limit n1/3
|a| ⌧ 1, since it appears to consider everything with respect to the non-interacting BEC

rather than the weakly interacting state. Thus, instead of �
P

k �
2
k like in Eq. (S27), it gives
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�
2
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2⇡a2⇠n. (S29)

BOSONIC ANDERSON MODEL

As an alternative manner of introducing correlations between the bosons, we also consider the following model:
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X

k

✏kb
†
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†
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X

k

(d†bk + b
†
kd) +
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2
d
†
d
†
dd, (S30)

where we assume that the operator d is bosonic and we take the limit U ! +1 at the end of the calculation.
While this model features no explicit interactions between the bosons, correlations are induced by the presence of the
impurity since the impurity-boson interaction changes a boson to the auxilliary state described by the operator d (this
models the coupling of an open and a closed interaction channel in a Feshbach resonance [16]). The infinite repulsion
between d states described by the last term in Eq. (S30) then ensures that the interaction channel, which depends
on the presence of the impurity, is only available to one boson at a time. Due to the similarity with the Anderson
impurity model, we refer to Eq. (S30) as the “bosonic Anderson model”. The few-body physics of this model was
investigated in detail in Ref. [17, 18].

Truncated basis approach

To investigate the ground state of a Bose polaron within the bosonic Anderson model, we apply a variational
principle using the truncated basis ansatz. In this approach, we approximate the polaron ground state as

| i = | 0i+ | 1i+ | 2i+ | 3i , (S31)

where the states with di↵erent numbers of excitations are:
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We do not include states that have multiple bosons in the d state because such states are prohibited by the limit U !

1, as explained above. The variational parameters are determined by the variational equation @↵⇤,�⇤ h |(Ĥ � E)| i =
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impurity, and we use an effective range reff ≃ −3aB. This
ensures that the value of the three-body parameter a! that
quantifies the boson-boson repulsion matches the one from
the QMC simulations. As shown in Fig. 3, we find that the
truncated basis approach accurately reproduces the QMC
results across a wide range of n1=3a! (up to 2 orders of
magnitude) when we include up to three excitations only.
This suggests that the boson-boson repulsion suppresses
impurity-induced excitations of the condensate, and that
this suppression is universal, i.e., independent of the
microscopic origin of a!. We stress that this is a highly
quantum effect that cannot be captured by a classical mean-
field description [47].
At unitarity 1=a ¼ 0, the polaron energy takes the

universal form,

E ¼ −fðn1=3aBÞn2=3=m; ð6Þ

where fðxÞ is a dimensionless function. When aB → 0 at
fixed density, we know that E → −∞, while in the zero-
density limit n → 0, we must have E → 0 since there are
no bound states. Thus, in the limit n1=3aB → 0, we require
fðxÞ → ∞ slower than ∼1=x2. Indeed, our QMC results
reveal a logarithmically slow dependence fðxÞ ∼ − lnðxÞ,
as shown in Fig. 4. This behavior is difficult to fully capture
within the truncated basis approach [32] since it requires
an increasingly larger number of boson excitations as
n1=3aB → 0. On the other hand, if we use a coherent-state
ansatz [13] with an infinite number of excitations but only
the approximate mean-field repulsion of the Bogoliubov
Hamiltonian, then we have fðxÞ ¼

ffiffiffiffiffiffiffiffiffiffi
π=4x

p
, which drasti-

cally overestimates the change in energy (see Fig. 4).
The classical-field approach in Ref. [20] also predicts a

power-law behavior fðxÞ ∼ 1=x1=3, but this is only valid
when r0 ≫ aB, which is different from the regime consid-
ered here [48].
Indeed, the polaron energy is intimately connected to the

spatial structure of the boson-boson correlations via the
function Gk in Eq. (4), which can be viewed as an effective
interaction potential between two excited bosons. In the
infrared limit k → 0, where the bosons are at large
separation, we should recover the behavior of uncorrelated
bosons. Here, we expect that the difference in energy
between one and two excited bosons is their mean-field
interaction with the condensate, 8πaBn=m. This large-
distance infrared behavior is correctly captured by the
coherent state ansatz [13], which, however, fails at shorter
length scales since it predicts a constant Gk ¼ 8πaBn=m
for all k and a [32]. In reality, we expect the blockade effect
to dominate at short distances such that αkk0 → 0, and in
this case one can show that Gk → −E as k → ∞ [32]. This
short-distance ultraviolet behavior is captured by a “Chevy-
type” ansatz with a single boson excitation [44,50,51],
but this ansatz does not describe the large-distance physics
since it has Gk ¼ −E at all momenta. However, the
momentum dependence of Gk can be well approximated
within a truncated basis approach that includes more boson
excitations [32], as considered in this work. In particular,
our results indicate that quantum blocking at short distances
dominates the behavior of the polaron energy while the
infrared physics only provides a small correction.
Conclusion.—To conclude, we have shown that the

ground state of the Bose polaron exhibits strong quantum
correlations between bosons when the impurity-boson
potential is short-ranged. This is due to a quantum blockade
effect at the position of the impurity, which gives rise to
universal few-body bound states and a logarithmically
slow dependence of the polaron energy on boson-boson

FIG. 4. Bose polaron ground-state energy in the unitarity
regime of impurity-boson interactions, 1=a ¼ 0. The QMC
results (symbols) are consistent with a logarithmic dependence
of the form EQMC ≃ 0.36 lnð0.019n1=3aBÞn2=3=m (solid line). The
dashed red line is the prediction of the coherent state ansatz
within the Bogoliubov approximation [13].

FIG. 3. Ground-state energy of the infinitely heavy Bose
polaron as a function of inverse impurity-boson scattering length
at fixed n1=3a! ¼ 0.215 (purple dashed line) and n1=3a! ¼
0.00215 (green solid line). We show the results of the QMC
(symbols) together with the results of the truncated basis
approach in the Anderson model with up to three excitations
(lines). The mean-field result, E ¼ 2πna=m, is depicted as a
dotted line.
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ensures that the value of the three-body parameter a! that
quantifies the boson-boson repulsion matches the one from
the QMC simulations. As shown in Fig. 3, we find that the
truncated basis approach accurately reproduces the QMC
results across a wide range of n1=3a! (up to 2 orders of
magnitude) when we include up to three excitations only.
This suggests that the boson-boson repulsion suppresses
impurity-induced excitations of the condensate, and that
this suppression is universal, i.e., independent of the
microscopic origin of a!. We stress that this is a highly
quantum effect that cannot be captured by a classical mean-
field description [47].
At unitarity 1=a ¼ 0, the polaron energy takes the

universal form,
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where fðxÞ is a dimensionless function. When aB → 0 at
fixed density, we know that E → −∞, while in the zero-
density limit n → 0, we must have E → 0 since there are
no bound states. Thus, in the limit n1=3aB → 0, we require
fðxÞ → ∞ slower than ∼1=x2. Indeed, our QMC results
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spatial structure of the boson-boson correlations via the
function Gk in Eq. (4), which can be viewed as an effective
interaction potential between two excited bosons. In the
infrared limit k → 0, where the bosons are at large
separation, we should recover the behavior of uncorrelated
bosons. Here, we expect that the difference in energy
between one and two excited bosons is their mean-field
interaction with the condensate, 8πaBn=m. This large-
distance infrared behavior is correctly captured by the
coherent state ansatz [13], which, however, fails at shorter
length scales since it predicts a constant Gk ¼ 8πaBn=m
for all k and a [32]. In reality, we expect the blockade effect
to dominate at short distances such that αkk0 → 0, and in
this case one can show that Gk → −E as k → ∞ [32]. This
short-distance ultraviolet behavior is captured by a “Chevy-
type” ansatz with a single boson excitation [44,50,51],
but this ansatz does not describe the large-distance physics
since it has Gk ¼ −E at all momenta. However, the
momentum dependence of Gk can be well approximated
within a truncated basis approach that includes more boson
excitations [32], as considered in this work. In particular,
our results indicate that quantum blocking at short distances
dominates the behavior of the polaron energy while the
infrared physics only provides a small correction.
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effect at the position of the impurity, which gives rise to
universal few-body bound states and a logarithmically
slow dependence of the polaron energy on boson-boson
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regime of impurity-boson interactions, 1=a ¼ 0. The QMC
results (symbols) are consistent with a logarithmic dependence
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approach in the Anderson model with up to three excitations
(lines). The mean-field result, E ¼ 2πna=m, is depicted as a
dotted line.
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impurity, and we use an effective range reff ≃ −3aB. This
ensures that the value of the three-body parameter a! that
quantifies the boson-boson repulsion matches the one from
the QMC simulations. As shown in Fig. 3, we find that the
truncated basis approach accurately reproduces the QMC
results across a wide range of n1=3a! (up to 2 orders of
magnitude) when we include up to three excitations only.
This suggests that the boson-boson repulsion suppresses
impurity-induced excitations of the condensate, and that
this suppression is universal, i.e., independent of the
microscopic origin of a!. We stress that this is a highly
quantum effect that cannot be captured by a classical mean-
field description [47].
At unitarity 1=a ¼ 0, the polaron energy takes the

universal form,

E ¼ −fðn1=3aBÞn2=3=m; ð6Þ

where fðxÞ is a dimensionless function. When aB → 0 at
fixed density, we know that E → −∞, while in the zero-
density limit n → 0, we must have E → 0 since there are
no bound states. Thus, in the limit n1=3aB → 0, we require
fðxÞ → ∞ slower than ∼1=x2. Indeed, our QMC results
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as shown in Fig. 4. This behavior is difficult to fully capture
within the truncated basis approach [32] since it requires
an increasingly larger number of boson excitations as
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Hamiltonian, then we have fðxÞ ¼
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power-law behavior fðxÞ ∼ 1=x1=3, but this is only valid
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function Gk in Eq. (4), which can be viewed as an effective
interaction potential between two excited bosons. In the
infrared limit k → 0, where the bosons are at large
separation, we should recover the behavior of uncorrelated
bosons. Here, we expect that the difference in energy
between one and two excited bosons is their mean-field
interaction with the condensate, 8πaBn=m. This large-
distance infrared behavior is correctly captured by the
coherent state ansatz [13], which, however, fails at shorter
length scales since it predicts a constant Gk ¼ 8πaBn=m
for all k and a [32]. In reality, we expect the blockade effect
to dominate at short distances such that αkk0 → 0, and in
this case one can show that Gk → −E as k → ∞ [32]. This
short-distance ultraviolet behavior is captured by a “Chevy-
type” ansatz with a single boson excitation [44,50,51],
but this ansatz does not describe the large-distance physics
since it has Gk ¼ −E at all momenta. However, the
momentum dependence of Gk can be well approximated
within a truncated basis approach that includes more boson
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our results indicate that quantum blocking at short distances
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infrared physics only provides a small correction.
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correlations between bosons when the impurity-boson
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(lines). The mean-field result, E ¼ 2πna=m, is depicted as a
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impurity, and we use an effective range reff ≃ −3aB. This
ensures that the value of the three-body parameter a! that
quantifies the boson-boson repulsion matches the one from
the QMC simulations. As shown in Fig. 3, we find that the
truncated basis approach accurately reproduces the QMC
results across a wide range of n1=3a! (up to 2 orders of
magnitude) when we include up to three excitations only.
This suggests that the boson-boson repulsion suppresses
impurity-induced excitations of the condensate, and that
this suppression is universal, i.e., independent of the
microscopic origin of a!. We stress that this is a highly
quantum effect that cannot be captured by a classical mean-
field description [47].
At unitarity 1=a ¼ 0, the polaron energy takes the

universal form,

E ¼ −fðn1=3aBÞn2=3=m; ð6Þ

where fðxÞ is a dimensionless function. When aB → 0 at
fixed density, we know that E → −∞, while in the zero-
density limit n → 0, we must have E → 0 since there are
no bound states. Thus, in the limit n1=3aB → 0, we require
fðxÞ → ∞ slower than ∼1=x2. Indeed, our QMC results
reveal a logarithmically slow dependence fðxÞ ∼ − lnðxÞ,
as shown in Fig. 4. This behavior is difficult to fully capture
within the truncated basis approach [32] since it requires
an increasingly larger number of boson excitations as
n1=3aB → 0. On the other hand, if we use a coherent-state
ansatz [13] with an infinite number of excitations but only
the approximate mean-field repulsion of the Bogoliubov
Hamiltonian, then we have fðxÞ ¼
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cally overestimates the change in energy (see Fig. 4).
The classical-field approach in Ref. [20] also predicts a

power-law behavior fðxÞ ∼ 1=x1=3, but this is only valid
when r0 ≫ aB, which is different from the regime consid-
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spatial structure of the boson-boson correlations via the
function Gk in Eq. (4), which can be viewed as an effective
interaction potential between two excited bosons. In the
infrared limit k → 0, where the bosons are at large
separation, we should recover the behavior of uncorrelated
bosons. Here, we expect that the difference in energy
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interaction with the condensate, 8πaBn=m. This large-
distance infrared behavior is correctly captured by the
coherent state ansatz [13], which, however, fails at shorter
length scales since it predicts a constant Gk ¼ 8πaBn=m
for all k and a [32]. In reality, we expect the blockade effect
to dominate at short distances such that αkk0 → 0, and in
this case one can show that Gk → −E as k → ∞ [32]. This
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type” ansatz with a single boson excitation [44,50,51],
but this ansatz does not describe the large-distance physics
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impurity, and we use an effective range reff ≃ −3aB. This
ensures that the value of the three-body parameter a! that
quantifies the boson-boson repulsion matches the one from
the QMC simulations. As shown in Fig. 3, we find that the
truncated basis approach accurately reproduces the QMC
results across a wide range of n1=3a! (up to 2 orders of
magnitude) when we include up to three excitations only.
This suggests that the boson-boson repulsion suppresses
impurity-induced excitations of the condensate, and that
this suppression is universal, i.e., independent of the
microscopic origin of a!. We stress that this is a highly
quantum effect that cannot be captured by a classical mean-
field description [47].
At unitarity 1=a ¼ 0, the polaron energy takes the

universal form,

E ¼ −fðn1=3aBÞn2=3=m; ð6Þ

where fðxÞ is a dimensionless function. When aB → 0 at
fixed density, we know that E → −∞, while in the zero-
density limit n → 0, we must have E → 0 since there are
no bound states. Thus, in the limit n1=3aB → 0, we require
fðxÞ → ∞ slower than ∼1=x2. Indeed, our QMC results
reveal a logarithmically slow dependence fðxÞ ∼ − lnðxÞ,
as shown in Fig. 4. This behavior is difficult to fully capture
within the truncated basis approach [32] since it requires
an increasingly larger number of boson excitations as
n1=3aB → 0. On the other hand, if we use a coherent-state
ansatz [13] with an infinite number of excitations but only
the approximate mean-field repulsion of the Bogoliubov
Hamiltonian, then we have fðxÞ ¼
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cally overestimates the change in energy (see Fig. 4).
The classical-field approach in Ref. [20] also predicts a

power-law behavior fðxÞ ∼ 1=x1=3, but this is only valid
when r0 ≫ aB, which is different from the regime consid-
ered here [48].
Indeed, the polaron energy is intimately connected to the

spatial structure of the boson-boson correlations via the
function Gk in Eq. (4), which can be viewed as an effective
interaction potential between two excited bosons. In the
infrared limit k → 0, where the bosons are at large
separation, we should recover the behavior of uncorrelated
bosons. Here, we expect that the difference in energy
between one and two excited bosons is their mean-field
interaction with the condensate, 8πaBn=m. This large-
distance infrared behavior is correctly captured by the
coherent state ansatz [13], which, however, fails at shorter
length scales since it predicts a constant Gk ¼ 8πaBn=m
for all k and a [32]. In reality, we expect the blockade effect
to dominate at short distances such that αkk0 → 0, and in
this case one can show that Gk → −E as k → ∞ [32]. This
short-distance ultraviolet behavior is captured by a “Chevy-
type” ansatz with a single boson excitation [44,50,51],
but this ansatz does not describe the large-distance physics
since it has Gk ¼ −E at all momenta. However, the
momentum dependence of Gk can be well approximated
within a truncated basis approach that includes more boson
excitations [32], as considered in this work. In particular,
our results indicate that quantum blocking at short distances
dominates the behavior of the polaron energy while the
infrared physics only provides a small correction.
Conclusion.—To conclude, we have shown that the

ground state of the Bose polaron exhibits strong quantum
correlations between bosons when the impurity-boson
potential is short-ranged. This is due to a quantum blockade
effect at the position of the impurity, which gives rise to
universal few-body bound states and a logarithmically
slow dependence of the polaron energy on boson-boson

FIG. 4. Bose polaron ground-state energy in the unitarity
regime of impurity-boson interactions, 1=a ¼ 0. The QMC
results (symbols) are consistent with a logarithmic dependence
of the form EQMC ≃ 0.36 lnð0.019n1=3aBÞn2=3=m (solid line). The
dashed red line is the prediction of the coherent state ansatz
within the Bogoliubov approximation [13].

FIG. 3. Ground-state energy of the infinitely heavy Bose
polaron as a function of inverse impurity-boson scattering length
at fixed n1=3a! ¼ 0.215 (purple dashed line) and n1=3a! ¼
0.00215 (green solid line). We show the results of the QMC
(symbols) together with the results of the truncated basis
approach in the Anderson model with up to three excitations
(lines). The mean-field result, E ¼ 2πna=m, is depicted as a
dotted line.
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sent (when a < 0) or larger than the interparticle spacing
(n1/3

a & 1).
To further characterize the correlations, we also calcu-

late the polaron energy using a variational approach [29],
where we truncate the number of bosonic excitations in
the polaron ground state in Eq. (3) [32]. Here we again
use the Anderson model to mimic the blockade e↵ect at
the impurity, and we use an e↵ective range re↵ ' �3aB .
This ensures that the value of the three-body parameter
a
⇤ that quantifies the boson-boson repulsion matches the

one from the QMC simulations. As shown in Fig. 3, we
find that the truncated basis approach accurately repro-
duces the QMC results across a wide range of n

1/3
a
⇤

(up to two orders of magnitude) when we include up
to three excitations only. This suggests that the boson-
boson repulsion suppresses impurity-induced excitations
of the condensate, and that this suppression is univer-
sal, i.e., independent of the microscopic origin of a

⇤. We
stress that this is a highly quantum e↵ect that cannot be
captured by a classical mean-field description [38].

At unitarity 1/a = 0, the polaron energy takes the
universal form

E = �f(n1/3
aB)n

2/3
/m, (6)

where f(x) is a dimensionless function. When aB ! 0 at
fixed density, we know that E ! �1, while in the zero-
density limit n ! 0, we must have E ! 0 since there
are no bound states. Thus, in the limit n

1/3
aB ! 0,

we require f(x) ! 1 slower than ⇠ 1/x
2. Indeed, our

QMC results reveal a logarithmically slow dependence
f(x) ⇠ � ln(x), as shown in Fig. 4. This behavior is
di�cult to fully capture within the truncated basis ap-
proach [32] since it requires an increasingly larger num-
ber of boson excitations as n

1/3
aB ! 0. On the other

hand, if we use a coherent-state ansatz [13] with an in-
finite number of excitations but only the approximate
mean-field repulsion of the Bogoliubov Hamiltonian, then
we have f(x) =

p
⇡/4x which drastically overestimates

the change in energy (see Fig. 4). The classical-field ap-
proach in Ref. [20] also predicts a power-law behavior
f(x) ⇠ 1/x

1/3, but this is only valid when r0 � aB ,
which is di↵erent from the regime considered here [39].

Indeed, the polaron energy is intimately connected to
the spatial structure of the boson-boson correlations via
the function Gk in Eq. (4), which can be viewed as an ef-
fective interaction potential between two excited bosons.
In the infrared limit k ! 0, where the bosons are at
large separation, we should recover the behavior of un-
correlated bosons. Here, we expect that the di↵erence
in energy between one and two excited bosons is their
mean-field interaction with the condensate, 8⇡aBn/m.
This large-distance infrared behavior is correctly cap-
tured by the coherent state ansatz [13], which however
fails at shorter length scales since it predicts a constant
Gk = 8⇡aBn/m for all k and a [32]. In reality, we ex-
pect the blockade e↵ect to dominate at short distances

FIG. 4. Bose polaron ground-state energy in the unitarity

regime of impurity-boson interactions, 1/a = 0. The QMC re-

sults (symbols) are consistent with a logarithmic dependence

of the form EQMC ' 0.36 ln
⇣
0.019n1/3aB

⌘
n2/3/m (solid line).

The dashed red line is the prediction of the coherent state

ansatz within the Bogoliubov approximation [13].

such that ↵kk0 ! 0, and in this case one can show that
Gk ! �E as k ! 1 [32]. This short-distance ultravio-
let behavior is captured by a “Chevy-type” ansatz with
a single boson excitation [35, 40, 41], but this ansatz
does not describe the large-distance physics since it has
Gk = �E at all momenta. However, the momentum
dependence of Gk can be well approximated within a
truncated basis approach that includes more boson exci-
tations [32], as considered in this work. In particular, our
results indicate that quantum blocking at short distances
dominates the behavior of the polaron energy while the
infrared physics only provides a small correction.

Conclusion.— To conclude, we have shown that the
ground state of the Bose polaron exhibits strong quantum
correlations between bosons when the impurity-boson po-
tential is short-ranged. This is due to a quantum block-
ade e↵ect at the position of the impurity, which gives rise
to universal few-body bound states and a logarithmically
slow dependence of the polaron energy on boson-boson
interactions in the unitarity limit 1/a ! 0. Our results
should be directly applicable to cold-atom experiments,
where typically r0 ⇠ aB [33], and they should also ex-
tend to a heavy but finite impurity mass mI since Efi-
mov physics is exponentially suppressed as a function of
mI/m [42]. More generally, the Bose polaron scenario
could provide a route to probing and engineering quan-
tum correlations in other bosonic systems such as pho-
tons in microcavities [43, 44].
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impurity, and we use an effective range reff ≃ −3aB. This
ensures that the value of the three-body parameter a! that
quantifies the boson-boson repulsion matches the one from
the QMC simulations. As shown in Fig. 3, we find that the
truncated basis approach accurately reproduces the QMC
results across a wide range of n1=3a! (up to 2 orders of
magnitude) when we include up to three excitations only.
This suggests that the boson-boson repulsion suppresses
impurity-induced excitations of the condensate, and that
this suppression is universal, i.e., independent of the
microscopic origin of a!. We stress that this is a highly
quantum effect that cannot be captured by a classical mean-
field description [47].
At unitarity 1=a ¼ 0, the polaron energy takes the

universal form,

E ¼ −fðn1=3aBÞn2=3=m; ð6Þ

where fðxÞ is a dimensionless function. When aB → 0 at
fixed density, we know that E → −∞, while in the zero-
density limit n → 0, we must have E → 0 since there are
no bound states. Thus, in the limit n1=3aB → 0, we require
fðxÞ → ∞ slower than ∼1=x2. Indeed, our QMC results
reveal a logarithmically slow dependence fðxÞ ∼ − lnðxÞ,
as shown in Fig. 4. This behavior is difficult to fully capture
within the truncated basis approach [32] since it requires
an increasingly larger number of boson excitations as
n1=3aB → 0. On the other hand, if we use a coherent-state
ansatz [13] with an infinite number of excitations but only
the approximate mean-field repulsion of the Bogoliubov
Hamiltonian, then we have fðxÞ ¼

ffiffiffiffiffiffiffiffiffiffi
π=4x

p
, which drasti-

cally overestimates the change in energy (see Fig. 4).
The classical-field approach in Ref. [20] also predicts a

power-law behavior fðxÞ ∼ 1=x1=3, but this is only valid
when r0 ≫ aB, which is different from the regime consid-
ered here [48].
Indeed, the polaron energy is intimately connected to the

spatial structure of the boson-boson correlations via the
function Gk in Eq. (4), which can be viewed as an effective
interaction potential between two excited bosons. In the
infrared limit k → 0, where the bosons are at large
separation, we should recover the behavior of uncorrelated
bosons. Here, we expect that the difference in energy
between one and two excited bosons is their mean-field
interaction with the condensate, 8πaBn=m. This large-
distance infrared behavior is correctly captured by the
coherent state ansatz [13], which, however, fails at shorter
length scales since it predicts a constant Gk ¼ 8πaBn=m
for all k and a [32]. In reality, we expect the blockade effect
to dominate at short distances such that αkk0 → 0, and in
this case one can show that Gk → −E as k → ∞ [32]. This
short-distance ultraviolet behavior is captured by a “Chevy-
type” ansatz with a single boson excitation [44,50,51],
but this ansatz does not describe the large-distance physics
since it has Gk ¼ −E at all momenta. However, the
momentum dependence of Gk can be well approximated
within a truncated basis approach that includes more boson
excitations [32], as considered in this work. In particular,
our results indicate that quantum blocking at short distances
dominates the behavior of the polaron energy while the
infrared physics only provides a small correction.
Conclusion.—To conclude, we have shown that the

ground state of the Bose polaron exhibits strong quantum
correlations between bosons when the impurity-boson
potential is short-ranged. This is due to a quantum blockade
effect at the position of the impurity, which gives rise to
universal few-body bound states and a logarithmically
slow dependence of the polaron energy on boson-boson

FIG. 4. Bose polaron ground-state energy in the unitarity
regime of impurity-boson interactions, 1=a ¼ 0. The QMC
results (symbols) are consistent with a logarithmic dependence
of the form EQMC ≃ 0.36 lnð0.019n1=3aBÞn2=3=m (solid line). The
dashed red line is the prediction of the coherent state ansatz
within the Bogoliubov approximation [13].

FIG. 3. Ground-state energy of the infinitely heavy Bose
polaron as a function of inverse impurity-boson scattering length
at fixed n1=3a! ¼ 0.215 (purple dashed line) and n1=3a! ¼
0.00215 (green solid line). We show the results of the QMC
(symbols) together with the results of the truncated basis
approach in the Anderson model with up to three excitations
(lines). The mean-field result, E ¼ 2πna=m, is depicted as a
dotted line.
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quantifies the boson-boson repulsion matches the one from
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magnitude) when we include up to three excitations only.
This suggests that the boson-boson repulsion suppresses
impurity-induced excitations of the condensate, and that
this suppression is universal, i.e., independent of the
microscopic origin of a!. We stress that this is a highly
quantum effect that cannot be captured by a classical mean-
field description [47].
At unitarity 1=a ¼ 0, the polaron energy takes the

universal form,

E ¼ −fðn1=3aBÞn2=3=m; ð6Þ

where fðxÞ is a dimensionless function. When aB → 0 at
fixed density, we know that E → −∞, while in the zero-
density limit n → 0, we must have E → 0 since there are
no bound states. Thus, in the limit n1=3aB → 0, we require
fðxÞ → ∞ slower than ∼1=x2. Indeed, our QMC results
reveal a logarithmically slow dependence fðxÞ ∼ − lnðxÞ,
as shown in Fig. 4. This behavior is difficult to fully capture
within the truncated basis approach [32] since it requires
an increasingly larger number of boson excitations as
n1=3aB → 0. On the other hand, if we use a coherent-state
ansatz [13] with an infinite number of excitations but only
the approximate mean-field repulsion of the Bogoliubov
Hamiltonian, then we have fðxÞ ¼
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cally overestimates the change in energy (see Fig. 4).
The classical-field approach in Ref. [20] also predicts a

power-law behavior fðxÞ ∼ 1=x1=3, but this is only valid
when r0 ≫ aB, which is different from the regime consid-
ered here [48].
Indeed, the polaron energy is intimately connected to the

spatial structure of the boson-boson correlations via the
function Gk in Eq. (4), which can be viewed as an effective
interaction potential between two excited bosons. In the
infrared limit k → 0, where the bosons are at large
separation, we should recover the behavior of uncorrelated
bosons. Here, we expect that the difference in energy
between one and two excited bosons is their mean-field
interaction with the condensate, 8πaBn=m. This large-
distance infrared behavior is correctly captured by the
coherent state ansatz [13], which, however, fails at shorter
length scales since it predicts a constant Gk ¼ 8πaBn=m
for all k and a [32]. In reality, we expect the blockade effect
to dominate at short distances such that αkk0 → 0, and in
this case one can show that Gk → −E as k → ∞ [32]. This
short-distance ultraviolet behavior is captured by a “Chevy-
type” ansatz with a single boson excitation [44,50,51],
but this ansatz does not describe the large-distance physics
since it has Gk ¼ −E at all momenta. However, the
momentum dependence of Gk can be well approximated
within a truncated basis approach that includes more boson
excitations [32], as considered in this work. In particular,
our results indicate that quantum blocking at short distances
dominates the behavior of the polaron energy while the
infrared physics only provides a small correction.
Conclusion.—To conclude, we have shown that the

ground state of the Bose polaron exhibits strong quantum
correlations between bosons when the impurity-boson
potential is short-ranged. This is due to a quantum blockade
effect at the position of the impurity, which gives rise to
universal few-body bound states and a logarithmically
slow dependence of the polaron energy on boson-boson

FIG. 4. Bose polaron ground-state energy in the unitarity
regime of impurity-boson interactions, 1=a ¼ 0. The QMC
results (symbols) are consistent with a logarithmic dependence
of the form EQMC ≃ 0.36 lnð0.019n1=3aBÞn2=3=m (solid line). The
dashed red line is the prediction of the coherent state ansatz
within the Bogoliubov approximation [13].

FIG. 3. Ground-state energy of the infinitely heavy Bose
polaron as a function of inverse impurity-boson scattering length
at fixed n1=3a! ¼ 0.215 (purple dashed line) and n1=3a! ¼
0.00215 (green solid line). We show the results of the QMC
(symbols) together with the results of the truncated basis
approach in the Anderson model with up to three excitations
(lines). The mean-field result, E ¼ 2πna=m, is depicted as a
dotted line.
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FIG. 2. Ground-state polaron energy for the equal-mass case
calculated within our variational approach (lines) and in a recent
QMC study [42] (symbols). We show the results of dressing the
impurity by up to one, two, or three excitations of the Bose gas
(dotted, dashed, and solid lines, respectively), and we take n1/3R∗ =
0.015 such that we have three-body parameter n1/3|a− | ≃ 70, which
is the same as in the QMC (see text).

problem supports the formation of even larger clusters such
as tetramers [32,62] and even pentamers and hexamers [63].

In the impurity scenario, the Efimov scaling parameter λ0
depends strongly on the mass ratio. For instance, in the case of
equal masses m = mB and assuming |a| ≫ aB, we have λ0 ≃
1986.1 [61]. Furthermore, λ0 increases rapidly with m/mB
until it diverges as m/mB → ∞ [61]. This large separation
of scales between successive trimers is reflected in the ratio of
the typical length scale of the short-range interaction (which
in our case is ! R∗), and the length scale associated with
the ground-state trimer. For instance, for equal masses, the
critical scattering length at which the ground-state trimer
unbinds into the continuum is a− = − 4934R∗ [32]. This was
shown in Ref. [32] to imply that the few-body physics is
nearly model independent: No matter how one introduces an
ultraviolet cutoff, the few-body spectrum depends only on a− ,
and the details of the short-range physics only cause minute
corrections. In particular, the ratio between the ground-state
trimer and tetramer energies at unitarity was found to be
essentially universal for three different models [64].

This universality also extends to the many-body case of the
Bose polaron, since the polaron ground-state energy for the
equal-mass case was recently shown to be a universal function
of the dimensionless three-body parameter n1/3|a− | in the
unitary limit 1/a = 0 [32]. However, a remaining question is
whether the Bose polaron remains universally dependent on
the Efimov scale when the scattering length is varied away
from unitarity.

To address this question, we have calculated the polaron
ground-state energy as a function of 1/n1/3a and compared
it with the results from a recent QMC study, as displayed in
Fig. 2. Here, unlike in Eq. (29), we have included up to three
excitations of the medium, i.e., four-body correlations. We do
not write this ansatz or its associated linear equations here, but
refer the reader to Ref. [32] where these were first presented.
In the QMC calculations [42], the boson-boson repulsion
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FIG. 3. Ground-state polaron energy for the equal-mass case
calculated within our variational approach (lines) using three Bo-
goliubov excitations, compared with the experimentally measured
ground-state energy (symbols) [19] (see also Ref. [42]). We take
n= 4 × 1014cm− 3, R∗ = 60a0, and aB = 9a0 as in the experiment,
which corresponds to n1/3R∗ ≃ 0.02 and n1/3aB ≃ 3.5 × 10− 3 (solid
line). We also include the results where we take the ideal gas limit
aB → 0 (dotted line).

was modelled as a hard-sphere potential, corresponding to
n1/3aB ≃ 3.5 × 10− 3, which we convert into an Efimov three-
body parameter using the relationship a− ≃ − 2 × 104aB for
the hard-core boson model with m = mB [32].

Referring to Fig. 2, we see that the polaron energy from
the variational approach converges to the QMC result as we
increase the number of boson excitations in the ansatz. Note
that we take aB → 0 in our variational calculations, since this
is essentially indistinguishable from using the tiny n1/3aB in
the QMC calculations (see, also, Fig. 3). Crucially, we find
that including three excitations yields an excellent agreement
across the whole range of scattering lengths, while including
two excitations (three-body correlations) is already accurate
for 1/n1/3a! − 1. This is even more remarkable given that the
ground-state energy diverges when R∗ → 0 [32] in the ideal
gas limit. Thus, this explicitly demonstrates the accuracy and
universality of our approach, as well as showing that Efimov
physics is crucial for correctly predicting the ground-state
energy close to resonance.

To further expose the universal role of Efimov physics in
the Bose polaron, we also compare our calculated ground-
state energy with that recently extracted [42] from experimen-
tal measurements [19], as shown in Fig. 3. Once again, we find
very good agreement across the whole region around unitarity
when we employ a variational ansatz with three Bogoliubov
excitations. Here we use the range parameter n1/3R∗ ≃ 0.02
taken from experiment [19], which yields a slightly larger
three-body parameter n1/3|a− | than in Fig. 2. Had we used
the same parameters as in the QMC calculations, then the fit
with the experiment would have been noticeably worse, e.g.,
the calculated energy at unitarity would be shifted downwards
by 7%. However, we see that the effect of the boson-boson
interactions is essentially negligible when n1/3aB ≪ 1. There-
fore, the key length scale in the Aarhus experiment [19] is
the Efimov scale rather than the low-energy boson-boson
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FIG. 2. Ground-state polaron energy for the equal-mass case
calculated within our variational approach (lines) and in a recent
QMC study [42] (symbols). We show the results of dressing the
impurity by up to one, two, or three excitations of the Bose gas
(dotted, dashed, and solid lines, respectively), and we take n1/3R∗ =
0.015 such that we have three-body parameter n1/3|a− | ≃ 70, which
is the same as in the QMC (see text).

problem supports the formation of even larger clusters such
as tetramers [32,62] and even pentamers and hexamers [63].

In the impurity scenario, the Efimov scaling parameter λ0
depends strongly on the mass ratio. For instance, in the case of
equal masses m = mB and assuming |a| ≫ aB, we have λ0 ≃
1986.1 [61]. Furthermore, λ0 increases rapidly with m/mB
until it diverges as m/mB → ∞ [61]. This large separation
of scales between successive trimers is reflected in the ratio of
the typical length scale of the short-range interaction (which
in our case is ! R∗), and the length scale associated with
the ground-state trimer. For instance, for equal masses, the
critical scattering length at which the ground-state trimer
unbinds into the continuum is a− = − 4934R∗ [32]. This was
shown in Ref. [32] to imply that the few-body physics is
nearly model independent: No matter how one introduces an
ultraviolet cutoff, the few-body spectrum depends only on a− ,
and the details of the short-range physics only cause minute
corrections. In particular, the ratio between the ground-state
trimer and tetramer energies at unitarity was found to be
essentially universal for three different models [64].

This universality also extends to the many-body case of the
Bose polaron, since the polaron ground-state energy for the
equal-mass case was recently shown to be a universal function
of the dimensionless three-body parameter n1/3|a− | in the
unitary limit 1/a = 0 [32]. However, a remaining question is
whether the Bose polaron remains universally dependent on
the Efimov scale when the scattering length is varied away
from unitarity.

To address this question, we have calculated the polaron
ground-state energy as a function of 1/n1/3a and compared
it with the results from a recent QMC study, as displayed in
Fig. 2. Here, unlike in Eq. (29), we have included up to three
excitations of the medium, i.e., four-body correlations. We do
not write this ansatz or its associated linear equations here, but
refer the reader to Ref. [32] where these were first presented.
In the QMC calculations [42], the boson-boson repulsion
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calculated within our variational approach (lines) using three Bo-
goliubov excitations, compared with the experimentally measured
ground-state energy (symbols) [19] (see also Ref. [42]). We take
n= 4 × 1014cm− 3, R∗ = 60a0, and aB = 9a0 as in the experiment,
which corresponds to n1/3R∗ ≃ 0.02 and n1/3aB ≃ 3.5 × 10− 3 (solid
line). We also include the results where we take the ideal gas limit
aB → 0 (dotted line).

was modelled as a hard-sphere potential, corresponding to
n1/3aB ≃ 3.5 × 10− 3, which we convert into an Efimov three-
body parameter using the relationship a− ≃ − 2 × 104aB for
the hard-core boson model with m = mB [32].

Referring to Fig. 2, we see that the polaron energy from
the variational approach converges to the QMC result as we
increase the number of boson excitations in the ansatz. Note
that we take aB → 0 in our variational calculations, since this
is essentially indistinguishable from using the tiny n1/3aB in
the QMC calculations (see, also, Fig. 3). Crucially, we find
that including three excitations yields an excellent agreement
across the whole range of scattering lengths, while including
two excitations (three-body correlations) is already accurate
for 1/n1/3a! − 1. This is even more remarkable given that the
ground-state energy diverges when R∗ → 0 [32] in the ideal
gas limit. Thus, this explicitly demonstrates the accuracy and
universality of our approach, as well as showing that Efimov
physics is crucial for correctly predicting the ground-state
energy close to resonance.

To further expose the universal role of Efimov physics in
the Bose polaron, we also compare our calculated ground-
state energy with that recently extracted [42] from experimen-
tal measurements [19], as shown in Fig. 3. Once again, we find
very good agreement across the whole region around unitarity
when we employ a variational ansatz with three Bogoliubov
excitations. Here we use the range parameter n1/3R∗ ≃ 0.02
taken from experiment [19], which yields a slightly larger
three-body parameter n1/3|a− | than in Fig. 2. Had we used
the same parameters as in the QMC calculations, then the fit
with the experiment would have been noticeably worse, e.g.,
the calculated energy at unitarity would be shifted downwards
by 7%. However, we see that the effect of the boson-boson
interactions is essentially negligible when n1/3aB ≪ 1. There-
fore, the key length scale in the Aarhus experiment [19] is
the Efimov scale rather than the low-energy boson-boson
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where the first and second terms correspond to the
diagrams in Figs. 3(a) and 3(b), respectively. The
ground-state polaron energy is then determined by taking
the zero-momentum pole of the impurity propagator, which
gives E ¼ Σð0; EÞ. Note that we must include self-energy
insertions in the impurity propagator even at lowest order
(see Fig. 3) since we cannot simply take ω ¼ 0 at the pole
when aB → 0. This is in contrast to previous perturbative
treatments of the weakly interacting Bose polaron which
focused on aB > 0 [31].
In the regime of weak boson-boson interactions, where

na3B ≪ aB=jr0j ≪ 1, we obtain the ground-state polaron
energy

E≃ −
1

m

ffiffiffiffiffiffiffiffi
8πn
jr0j

s

þ 1

m

ffiffiffi
3

7

r$
8πn
jr0j5

%
1=4

: ð14Þ

This demonstrates that the energy is well defined and
bounded from below in this limit, even when the boson-
boson interactions are vanishingly small. Such behavior
arises from the fact that only one boson at a time can scatter
into the closed channel, thus producing an effective boson-
boson repulsion that restricts the density of bosons that can
cluster around the impurity. As shown in Fig. 2, the
perturbative expression correctly reproduces the energy
for the r0 model in the high-density limit. Note that the one-
excitation wave function only captures the leading-order
term in Fig. 3(a), while the wave functions with two or three
excitations correctly describe the next order correction
in 1=n1=3jr0j.
In the case of the Λ model, the high-density limit

corresponds to n1=3=Λ → ∞, which is equivalent to taking
the cutoff Λ to zero. Therefore, within our variational
approach, only two-body correlations survive, and we
obtain the equations for the wave function with one
excitation (see Appendix A). For vanishing boson-boson
interactions, this yields E ¼ −ð4πnÞ2=3=m, which is the
polaron energy of the one-excitation wave function across
all densities, as shown in Fig. 2.

C. Many-body universal regime

In the intermediate regime r ≪ n−1=3 ≪ ja−j (where r
can represent jr0j or Λ−1), the interparticle distance is well
separated from all length scales associated with the inter-
actions. If the medium were fermionic rather than bosonic,
then the polaron energy at unitarity, in the limit r → 0, would
be a universal value that only depends on the medium

density, i.e., Epol≃−4.6n2=3=m [48]. Remarkably, for the
Bose polaron, we see in Fig. 2 that the energy strongly
depends on n1=3ja−j at intermediate densities. This suggests
that there exist resonant three-body interactions, such that
there are strong three-body correlations in the system even
when the trimer binding energy is comparatively small.
Even though the energy of the Bose polaron cannot be

assigned a universal value at unitarity, we argue that it is, in
fact, a universal function of n1=3ja−j away from the high-
density regime. We have previously argued that the low-
density limit of the polaron energy universally depends on
n1=3ja−j because of the universal behavior of the few-body
states demonstrated in Sec. III. In Fig. 2, we clearly see that
this universality extends to the intermediate-density regime.
Moreover, even for the higher densities shown in Fig. 4, we
see that different microscopic models of the Bose polaron
can essentially be collapsed onto the same curve when the
ground-state energy is plotted versus n1=3ja−j. Note that the
small difference between the curves of the Λ and the r0
models is due to n1=3jr0j corrections to the two-body
scattering properties. Such a deviation from universality
would also be present in the unitary Fermi system at these
densities [89–91].
Crucially, both the results for the Λ and the r0 models

are consistent with the QMC calculation from Ref. [36]
when Eq. (12) is used to plot the QMC data in terms of
the Efimov three-body parameter. This demonstrates
that the polaron energy can be universally described in
terms of n1=30 ja−j, regardless of the microscopic details.
Furthermore, it suggests that our variational approach with
three Bogoliubov excitations captures the dominant corre-
lations in the full many-body problem, and that the Efimov

FIG. 4. Comparison of different models for the unitary Bose
polaron in the regime r ≪ n−1=3 ≪ ja−j, where r is the range of the
interactions.We show the results for the polaron energy from theΛ
model (solid line) and the r0 model (dashed line), which include up
to three excitations of the condensate and which take aB → 0. The
QMC results of Ref. [36] are shown as the gray dots. The recent
Aarhus experiment [16] is estimated to have n1=3ja−j≃100.
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Conclusion
• Quantum behavior when impurity potential is short-ranged  

• “Quantum blockade” at position of impurity


• Universal logarithmic behavior at unitarity


• Universal few-body bound states  

• Outlook 

• Directly applicable to cold-atom experiments


• Route to enhancing quantum correlations in photonic systems? 

Quantum behavior of a heavy impurity strongly coupled to a Bose gas

Jesper Levinsen,1, 2 Luis A. Peña Ardila,3 Shuhei M. Yoshida,4 and Meera M. Parish1, 2

1School of Physics and Astronomy, Monash University, Victoria 3800, Australia
2ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria 3800, Australia

3Institut für Theoretische Physik, Leibniz Universität Hannover, Germany
4Biometrics Research Laboratories, NEC Corporation, Kanagawa 211-8666, Japan

(Dated: June 14, 2021)

We investigate the problem of an infinitely heavy impurity interacting with a dilute Bose gas at

zero temperature. When the impurity-boson interactions are short ranged, we show that boson-

boson interactions induce a quantum blockade e↵ect, where a single boson can e↵ectively block or

screen the impurity potential. Since this behavior depends on the quantum granular nature of the

Bose gas, it cannot be captured within a standard classical-field description. Using a combination

of exact quantum Monte Carlo methods and a truncated basis approach, we show how the quantum

correlations between bosons lead to universal few-body bound states and a logarithmically slow

dependence of the polaron ground-state energy on the boson-boson scattering length. Moreover, we

expose the link between the polaron energy and the spatial structure of the quantum correlations,

spanning the infrared to ultraviolet physics.

The scenario of an infinitely heavy impurity in a quan-
tum medium is a fundamental problem in physics, with
relevance ranging from electron gases [1] to open quan-
tum systems [2]. The behavior is well understood in the
case of an ideal Fermi medium [3, 4] where the prob-
lem can be solved exactly. Here, Anderson famously
demonstrated that any interaction with the impurity
leads to the orthogonality catastrophe in the thermody-
namic limit [5]. However, there is currently much debate
over the nature of the ground state for a fixed impurity
strongly coupled to a dilute Bose gas, which is of immedi-
ate importance to ongoing cold-atom experiments [6–12].

The bosonic problem — termed the Bose polaron —
appears straightforward at first glance, since there is the
possibility of describing the condensed ground state of
the Bose gas as a classical field, e.g., in the form of a
coherent state [13–17], or governed by an e↵ective Gross-
Pitaevskii equation [18–20]. Furthermore, when the Bose
gas is non-interacting, the ground state corresponds to
all bosons occupying the lowest single-particle state in
the system, making it even simpler than the fermionic
case [21]. However, this tendency of bosons to cluster also
means that, in the absence of boson-boson interactions,
the Bose polaron ground-state energy diverges when the
impurity-boson interaction is attractive enough to sup-
port a bound state [19, 22]. Thus, it is an important
and non-trivial question how this pathological behavior
is cured by boson-boson interactions, and whether the
details of the impurity-boson interaction play a key role.
This is of particular interest in the case of short-range
resonant impurity-boson interactions, where the scatter-
ing length a ! ±1 and there is the prospect of universal
physics, independent of the microscopic details.

In this Letter, we show that in order to describe the
ground state of the Bose polaron, it is crucial to go be-
yond classical-field descriptions and include the quantum
“granular” nature of the Bose gas. Specifically, once

r0 . aB r0 > aB

FIG. 1. Bosons (circles) in the presence of an attractive impu-

rity potential. If the range of the potential r0 is comparable

to or smaller than the boson-boson scattering length aB , then

a single boson can block the potential (left). Conversely, if

r0 > aB , as for a Rydberg [9] or ionic [31] impurity, then

many bosons can interact with the potential at once (right).

the boson-boson scattering length aB is comparable to
or larger than the range r0 of the attractive impurity-
boson potential, a single boson from the gas can e↵ec-
tively screen or block the impurity potential, as illus-
trated in Fig. 1. For a su�ciently attractive impurity-
boson potential with r0 ! 0, we find that this quantum
blocking e↵ect leads to universal few-body bound states
involving the impurity, in agreement with Refs. [23, 24].
Using exact quantum Monte Carlo (QMC) methods [25–
27], we show that the polaron energy in the many-body
limit exhibits a logarithmic dependence on aB in the uni-
tary regime a ! ±1. We further illustrate the impor-
tance of quantum correlations between bosons by show-
ing that the QMC results for the polaron ground-state
energy are well captured by a truncated basis variational
approach [28–30] across a range of interactions.
Model.— We consider the following Hamiltonian for

a single infinitely heavy impurity in a Bose gas:

Ĥ =
X

k

✏kb
†
kbk +

X

kk0q

V (q)

2
b
†
kb

†
k0bk0+qbk�q + g

X

kk0

b
†
kbk0 .

(1)

r0 � aB
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