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This talk will be about

Quantum impurity as a central question of the
astrophysical experiment
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Quantum measurement devices with quantum impurities for
particle physics and physics of the early universe

I New era in cosmology and
particle physics through the
experiments on quantum
devices

I New pillar of the early universe
picture comparable to CMB

I Devices with quantum
impurities for the relic neutrino
detection

I Zoo of condensed matter
effects on small energy scales
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CνB and CMB
I Similarly to how relic photons form CMB,

relic neutrinos form CνB

I As the Universe expands at some
moments it becomes transparent for ν/γ.

I ‘’ Frozen picture” of the early Universe.
I The freezout of the neutrinos is much earlier than photons.

I Right now, in your room, there are 411 relic photons and 339 relic
neutrinos in every cm3.

I Most of them are relic neutrinos.

Observation of the cosmological neutrinos would then provide a window
into the 1st second of creation
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Why have we not discovered
CνB yet?



7

Riminder: what is neutrino?

(A,Z )→ (A,Z + 1) + e−+?

I Energy and angular momentum
are not conserved in β decay
processes?

I W. Pauli predicted in 1930 a
new particle to ‘’save” the
conservation laws

I Pauli originally called his new
particle “neutron” (neutral one)

I Chadwick discovered a massive nuclear particle in 1932, however it
was not Pauli’s particle.

I Fermi renamed Pauli’s particle to neutrino (“little neutral one”)
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How was the neutrino detected?

‘’I have done a terrible thing. I have postulated a particle that cannot be
detected.” (W. Pauli)

I Bethe and Peierls in 1934
estimated

σ ∼ 10−44 cm2

σThomson ∼ 10−25 cm2

σnuclear ∼ 10−26 cm2

I Neutrino was first detected in 1956
by a group led by Clyde Cowan and
Frederick Reines

I They used the enormous flux of
antineutrinos from a nuclear
reactor.

1995 - Nobel Prize
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Fermi theory

n→ p + e− + ν̄e

Fermi: β decay is a decay of neutron inside the nucleus

VF (x1, x2, x3, x4) = GF δ(x1 − x2)δ(x2 − x3)δ(x3 − x4)

One can calculate the number of transitions per unit time into some
range of final states dνf using Fermi Golden Rule

dwif = 2π
∣∣∣ 〈ψ0

f | V̂F |ψ0
i 〉
∣∣∣2δ(Ei − Ef )dνf

dΓ

dEe
=

G 2
F

2π3

√
E 2
e −m2

eEe(Q − Ee)2

Q = mN(AZX )−mN(AZ+1X
′)−me −mν̄e

I Looks like neutrinos are massless

I Along with the β decay, Fermi theory predicts neutrino capture.
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Neutrinos are massive

I In the last few decades neutrino flavor oscillations where
convincingly observed, meaning that neutrinos are massive

I Neutrino oscillations can only measure ∆m and hierarchy.
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β-decay and neutrino capture

(A,Z )→ (A,Z + 1) + e− + ν̄e (A,Z ) + νe → (A,Z + 1) + e−

I Neutrino capture is threshold-less – soft relic neutrino detection
[Weinberg, 1962].

I The 2 parts of the spectrum are separated by 2mν
1

I Before the relic neutrino detection one would be able to measure the
neutrino mass mν

1Schematic picture that assumes only one neutrino flavour.
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Relic neutrinos leave a
signature in the spectrum of a

radioactive atom

Is this goal technically
achievable?
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Challenges

I High energy precision (order of mν ∼ meV)

I Sufficient activity rate (several events per year)
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Requirements to the experiment

High enough activity High enough precision

I Low emitter Q-value (Cocco et.
al., 2007)

I High number of emitters (order
of 1025)

I Lifetime of emitter: small
enough to have a high decay
rate, but large enough not to
decay instantly

I Low emitter Q-value

I Low emitter densities - electron
free path bigger than the
system size

I Low volume

(σv)ν ∝
1

τQ3λ = (σn)−1 =

(
R2

atom

N

L3

)−1

> L

L > Ratom

√
N ∼ 1 km

Very naive estimate! In reality much bigger

∆E ∼ Vsource

Vdetector
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Requirements to the experiment

High enough activity High enough precision

I Low emitter Q-value

I High number of emitters (order
of 1025)

I Lifetime of emitter: small
enough to have a high decay
rate, but large enough not to
decay instantly

I Low emitter Q-value

I Low emitter densities - electron
free path bigger than the
system size

I Low volume

o Radioactive material in gaseous
form does not suit (0.93 eV
resolution)

o Need in the solid-state based
experiment
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PTOLEMY2 - state of the art

CνB detection experiment challemge:

I High energy resolution combined with sufficient number of events.

I Tritium as a β-decay emitter.

I Tritium is deposed on
graphene sheets (vdW forces).

I ≈ 4 CνB events per year.

I Outstanding energy resolution
of the apparatus ≈ 10 meV.

I Strong collaboration funded by
Simon’s foundation

I Collaboration between
Princeton (PI Chris Tully),
Amsterdam, Milan, Rome

2PTOLEMY collaboration ”Neutrino physics with the PTOLEMY project”, (2019)
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β-decay in Tritium 3

νe + 3H→ 3He + e
3H→ 3He + e + ν̄e

2mν
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3Mind the log scale
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So that is it?

No
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So that is it?

No
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One needs to account for the intrinsic energy resolution

The width of the peak that serves as a
signature of CνB is defined by

I energy resolution of the measurement

I physical smearing of the energies of
individual electrons

I The presence of the substrate changes the intrinsic (before
measurement) energy spectrum of the emitted electron.

I Introducing additional broadening of the electron spectrum.

I Which leads to intrinsic irreducible limitations on the energy
resolution.
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Real spectrum
Along with the finite energy resolution of the measurement device one
has to account for the intrinsic physical smearing of the energies of
individual electrons.

2mν
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Mechanisms of the intrinsic energy broadening

I Chemical bonding of the atom to the substrate.

I Impurity screening by charges in the substrate.

I X-ray edge singularity.

I Lattice vibrations

I Emission of plasmons and surface polaritons

I Creation of shock wave emission due to the motion of the emitted
electron at grazing angles at speeds exceeding the Fermi velocity

I Inhomogeneous broadening

I . . .
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Chemical bonding of the atom
to the substrate
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General mechanism of the broadening

I For a bonded system, recoil energy of the nucleus is not fixed by the
kinematics but has some distribution.

I Uncertainty4 in the velocity of the centre of mass of the nucleus

∆u ≈ ~
mnuclλnucl

.

I The energy of the electron is measured in the laboratory frame of
reference, where it acquires an uncertainty5

∆E ≈ meve∆u.

4from the Heisenberg uncertainty principle.
5∆E has the same distribution as ∆u.
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General mechanism of the broadening

∆E ≈ ~
meve

mnuclλnucl
,

I λnucl is the spread of the ground state of the nucleus that is defined
by the bonding potential.
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Bonding potential

For the heavy atom one can expand the potential near its minimum

U =
1

2
κi,j ri rj + U0

The energy uncertainty very weakly depends on the binding potential

∆E ∝ λ−1
nucl ∝ κ1/4
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Energy broadening for the β-decay of the Tritium on
graphene

∆E√
~me

≈ κ1/4︸︷︷︸
potential

√
Q

m
3/2
nucl︸ ︷︷ ︸

nucleus

The uncertainty in the electron energy ∆E :

I Is of the order of 0.5 eV.

I Is 2 orders of magnitude greater than the resolution needed to see
the CνB signal.

I Weakly depends on the potential stiffness.

I For molecular tritium the estimate is of the same order.

I Strongly depends on the radioactive nucleus.

I Agrees with the the fully quantum calculation6

6Fermi Golden Rule.
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Shape of the spectrum for the β-decay of the Tritium on
graphene7

2mν
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G̃(v) =

∫
duF(u)G(v + u).

I G - distr. of the electron velocity in the centre of mass ref. frame.

I F - distr. of the velocity of the centre of mass.

I G̃ - distr. of the electron velocity in the laboratory ref. frame.

7∆E ≈ mu∆u, therefore ∆E has the same distribution as ∆u.
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Solution 8

∆E√
~me

≈ κ1/4

√
Q

m
3/2
nucl

≡ κ1/4γ

Change the β-emitter to minimize γ

I Define the visibility as the number of
CνB events that overlap with the
continuous spectrum.

I 107Pd, 151Sm, 171Tm seem to work

I 107Pd has a very low activity

I 171Tm has ∼ 10 times less events per
year than 3H

I 151Sm has ∼ 103 times less events per
year than 3H

Zr93
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Pd107

<
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×
10

4

8Mikulenko A., Cheipesh Y., Cheianov V., Boyarsky A., soon to appear
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Is that it?

No, it is only beginning...
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Mechanisms of the intrinsic energy broadening

I Chemical bonding of the atom to the substrate.

I Impurity screening by charges in the substrate.
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I Creation of shock wave emission due to the motion of the emitted
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I Inhomogeneous broadening

I . . .
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Charge screening

Once the electron is emitted, positive ion is formed. As a response to
this, the graphene will polarize to screen the positive ion.

A screened weaker Couloumb potential effectively increases the energy
of the electron.
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Charge screening. Rough dimensional analysis

The only 2 dimensionfull quantities are

I d ≈ 3 �A - the distance of the tritium atom.

I vF ≈ 10 �A fs−1 - Fermi velocity in graphene.

The rough estimate of the relaxation time is

τrelax =
d

vf
≈ 0.3 fs (1)

The velocity of the electron near the edge of the spectrum is almost
unchanged during the flight and is

v0

c
≈ 0.27

√
E

Q
(2)
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Charge screening. Rough dimensional analysis

Such an electron will fly away from the atom on the distance

λ = veτrelax ≈
√

E

Q
0.27c × 0.3 fs ≈

√
E

Q
× 243 �A (3)

The shift in the spectrum compared to unsreened case will be

∆E (E ) = k
Ze2

λ
≈
√

E

Q
× 59 meV (4)

We see that the effect is significant and, most importantly, it is
energy-dependent.
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Charge screening. Quasiclassics

me z̈ = −∇ϕeff(z , t) = −∇ (ϕbare(z , t)− ϕpolariz(z , t))

ϕpolariz(r , t) =

∫
d~r

keQ(~r , t)√
(z + d)2 + r2

Where Q(~r , t) is the renormalized
charge which is defined by the
dielectric permittivity of graphene.
For intrinsic graphenea

ε(q, t) =
(
δ(t) +

απ

4
qe−qdJ0(vFqt)

)
aHwang, Das Sarma, PRB, 2007
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Charge screening. Quasiclassics

The work performed on the electron by graphene

W =
πα2

16EFd2︸ ︷︷ ︸
≈0.5 eV

W̃

(
vF
ve

)

I For the electron at the end of the spectrum W ≈ 75 meV
I Fermi velocity defines the relaxation time scale
I Near the edge of the spectrum W (E ) is almost linear.
I The gap will not be ”eaten” by this effect as near the edge

|dW | =
2γ

E

dW

dγ
dE ∼ 10−6dE

I Important to consider also quantum fluctuations

Var(W ) = 〈Ŵ 2〉 −W 2
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X-ray edge 9

I Same Fermi Golden Rule but also taking into account graphene

|ψ〉(0)
i = |1〉H |0〉He |1〉ν |0〉e |FS〉gr

|ψ〉(0)
f = |0〉H |1〉He |0〉ν |1〉e |λ〉gr

dwif = 2π
∣∣∣ 〈ψ0

f | V̂F |ψ0
i 〉
∣∣∣2δ(Ei − Ef )dνf

I Ion of 3He+ is a scattering center (core level hole) in the X-ray edge
singularity problem

I Energy transfer between the between the β emitters and the
graphene system leading to the smearing of the spectrum

I The smeared beta decay spectrum is the convolution between the
spectral density function of graphene A(E ) and the original beta
decay spectrum dΓ/dE .

dΓ

dE

∣∣∣∣
smeared

=

(
dΓ

dE
? A

)
(E )

9Work done by T. Zhiyang and V. Cheianov
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X-ray edge 10

I Spectral density function has an X-ray edge

A(Ω) = Θ(−Ω)
sin (πg)

π
Γ(1− g)

exp(Ω)

ξ0(−Ω)1−g , Ω =
E + Ei

ξ0
,

where g = e4/2ε2v2
F and ξ = vF/2d is the cut-off energy fixed by

the distance d from the impurity to the graphene sheet.

10Work done by T. Zhiyang and V. Cheianov
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X-ray edge 11

11Work done by T. Zhiyang and V. Cheianov
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X-ray edge. Solutions 12

Increase dielectric permittivity ε of
the substrate

Increase the distance between the
substrate and the β emitter

12Work done by T. Zhiyang and V. Cheianov
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Conclusions

I Quantum impurity problems play a key role in the new large-scale
astro-particle experiment capable to open new era in Cosmology

I Fundamental questions of particle physics and the origin of our
Universe could realistically be accessed only through the
understanding of the condensed matter effects

I Limitations due to intrinsic effects in the solid state part of the
measurement setup are crucial for the feasibility of this large-scale
experiment.

I Before scaling to to a huge number of beta emitters, a program of
theoretical and experimental study of small quantum devices with
relevant impurities is needed.

I Zoo of effects appear in the E ∼ 10 meV which needs a much better
understanding than usually in CM.

I Energy and time scales not accessible in the condensed matter
experiments before

I More questions than answers 13

13gene.cheypesh@gmail.com, v.cheianov@gmail.com, boyarsky@lorentz.leidenuniv.nl,
PTOLEMY collaboration
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Backup slides
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General shape of the spectrum
In case when the bonding potential is harmonic, the spectrum is

I Discrete near the edge.

I Continuous further from the edge.

I The envelope has a gaussian distribution.

I The distance between the discrete lines14 is ε = ~
√

κ
mnucl

.

I Biggest part of the CνB channel overlaps with the continuum.

1410 meV for the Tritium on graphene and 0.5 eV for the molecular tritium.
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Comparison with molecular Tritium
Similarities:

I Bonded by a harmonic potential (κgraphene ≈ 0.1,κmol ≈ 75).

I Localized and therefore are subjects to Heisenberg’s uncertainty
principle m∆v∆x ∼ ~.

Differences:

Atomic Tritium on graphene:

I All of the recoil energy goes to
the harmonic modes.

I May break the bound after the
recoil.

Gaseous molecular Tritium:

I Half of the recoil energy goes
to the transnational motion.

I Remains bound after the recoil.
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Neutrino flux15

15E. Vitagliano et.al. ”Grand Unified Neutrino Spectrum at Earth: Sources and
Spectral Components”, (2020)
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Neutrino flavours
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KATRIN
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PTOLEMY


