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Automatic Accelerator Tuning Problem Mathematical Formulation

Automatic Accelerator Tuning Problem
Mathematical Formulation of the Problem: Parameters

Accelerator Description

A : Set of controllable commands of the accelerator

Θ : Set of non-controllable commands of the accelerator

O : Set of observations of the state of the accelerator
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Automatic Accelerator Tuning Problem Mathematical Formulation

Automatic Accelerator Tuning Problem
Mathematical Formulation of the Problem: Optimization Function

What is the objective

optimize (ϵx , ϵy ,∆E , σx , σy , . . . ) = f (θ,A)

Multi objective, parametric, black box optimization
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What is the objective

optimize (ϵx , ϵy ,∆E , σx , σy , . . . ) = f (θ,A)

Multi objective, parametric, black box optimization

θ
Accelerator Hardware

A
Controllable Accelerator settings

f
Accelerator

(
ϵx , ϵy ,∆E , σx , σy , . . .

)
Beam Parameters
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What is the objective
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θ
Simulator parameters

A
Simulator parameters

f
Simulator
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Automatic Accelerator Tuning Problem Challenges

Automatic Accelerator Tuning Problem
Mathematical Formulation of the Problem: Problems

Problems . . .

1 The function f to optimize is rarely directly observed in real life

2 Simulators computational time can be huge

3 Simulations are not perfectly representing the reality

4 θ is partially unknown

5 θ is potentially not fixed on an accelerator
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Machine Learning meets Accelerator Tuning Surrogate Models to Speedup Accelerator Optimization

Surrogate Models to Speedup Accelerator Optimization

Problem

Simulators computational time can be huge (2)

Solution

Compute surrogate model

Tool

Supervised Learning and Neural Networksa

aEdelen et al., 2020.

Emmanuel Goutierre ( IJCLab, LISN ) Machine Learning for Accelerators Thursday October 28, 2021 8 / 11



Machine Learning meets Accelerator Tuning Surrogate Models to Speedup Accelerator Optimization

Surrogate Models to Speedup Accelerator Optimization

Problem

Simulators computational time can be huge (2)

Solution
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Accelerator Parameters
f

Simulator
Beam parameters

f̂
Surrogate Model

Estimated Beam Parameters + / -
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Machine Learning meets Accelerator Tuning Reality Gap between Simulator and Accelerator

Reality Gap between Simulator and Accelerator

Problem

Simulations are not perfectly representing the reality (3)

Solution

Incorporate experimental data

Learn to discriminate real data from generated data

Tool

Fine Tuning

Generative Adversarial Networks
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Machine Learning meets Accelerator Tuning Exploration vs. Exploitation Tradeoff to Discover Internal State

Exploration vs. Exploitation Tradeoff to Discover Internal
State

Problem

Partially unobserved and changing environment (1, 4, 5)

Solution

Partially Observable Markov Decision Process

Solution

RL (Reinforcement Learning)
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Problem

Partially unobserved and changing environment (1, 4, 5)

Solution

Partially Observable Markov Decision Process

θ̂t θ̂t+1

(
θ̂t , At ,Ot+1

)

Ot At = πt

(
Ot , θ̂t

)
Ot+1 At+1 = πt+1
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Ot+2

θ θ
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)
f̂
(
θ̂t+1, At

)

Solution

RL (Reinforcement Learning)

Emmanuel Goutierre ( IJCLab, LISN ) Machine Learning for Accelerators Thursday October 28, 2021 10 / 11



Machine Learning meets Accelerator Tuning Exploration vs. Exploitation Tradeoff to Discover Internal State

Exploration vs. Exploitation Tradeoff to Discover Internal
State

Problem

Partially unobserved and changing environment (1, 4, 5)

Solution

Partially Observable Markov Decision Process

Solution

RL (Reinforcement Learning)

Emmanuel Goutierre ( IJCLab, LISN ) Machine Learning for Accelerators Thursday October 28, 2021 10 / 11



Machine Learning meets Accelerator Tuning Exploration vs. Exploitation Tradeoff to Discover Internal State

Questions?
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