Machine Learning for Accelerators Automatic Accelerator Tuning

Emmanuel Goutierre^{1, 2}

 1 IJCLab

²LISN

Thursday October 28, 2021

Emmanuel Goutierre (IJCLab, LISN)

Machine Learning for Accelerators

4 日 → 4 注 → 4 注 → 注 の Q C Thursday October 28, 2021 1/11

Outline

Automatic Accelerator Tuning Problem

- Mathematical Formulation
- Challenges

Machine Learning meets Accelerator Tuning

- Surrogate Models to Speedup Accelerator Optimization
- Reality Gap between Simulator and Accelerator
- Exploration vs. Exploitation Tradeoff to Discover Internal State

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Outline

Automatic Accelerator Tuning Problem

- Mathematical Formulation
- Challenges
- Machine Learning meets Accelerator Tuning
 - Surrogate Models to Speedup Accelerator Optimization
 - Reality Gap between Simulator and Accelerator
 - Exploration vs. Exploitation Tradeoff to Discover Internal State

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Mathematical Formulation of the Problem: Parameters

Accelerator Description

- \mathcal{A} : Set of controllable commands of the accelerator
- $\bullet~\Theta$: Set of non-controllable commands of the accelerator
- $\bullet \ \mathcal{O}$: Set of observations of the state of the accelerator

Mathematical Formulation of the Problem: Parameters

Accelerator Description

- \mathcal{A} : Set of controllable commands of the accelerator
- $\bullet~\Theta$: Set of non-controllable commands of the accelerator
- $\bullet \ \mathcal{O}$: Set of observations of the state of the accelerator

\mathcal{A}

- Accelerating gradient
- Solenoid strength
- RF phase

Ο...

Mathematical Formulation of the Problem: Parameters

Accelerator Description

- \mathcal{A} : Set of controllable commands of the accelerator
- Θ : Set of non-controllable commands of the accelerator
- $\bullet \ \mathcal{O}$: Set of observations of the state of the accelerator

. . .

\mathcal{A}

- Accelerating gradient
- Solenoid strength
- RF phase

Ο...

Θ

- Elements position
- Accelerating section misalignments

Mathematical Formulation of the Problem: Parameters

Accelerator Description

- \mathcal{A} : Set of controllable commands of the accelerator
- Θ : Set of non-controllable commands of the accelerator
- $\bullet \ \mathcal{O}$: Set of observations of the state of the accelerator

. . .

\mathcal{A}

- Accelerating gradient
- Solenoid strength
- RF phase

Ο...

Θ

- Elements position
- Accelerating section misalignments

\mathcal{O}

- BPM
- ICT
- Screen station

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

• . . .

Automatic Accelerator Tuning Problem Mathematical Formulation of the Problem: Optimization Function

What is the objective

• optimize
$$(\epsilon_x, \epsilon_y, \Delta E, \sigma_x, \sigma_y, \dots) = f(\theta, A)$$

Emmanuel Goutierre (IJCLab, LISN)

Machine Learning for Accelerators

Thursday October 28, 2021 5 / 11

Mathematical Formulation of the Problem: Optimization Function

What is the objective

• optimize
$$(\epsilon_x, \epsilon_y, \Delta E, \sigma_x, \sigma_y, \dots) = f(\theta, A)$$

Mathematical Formulation of the Problem: Optimization Function

What is the objective

• optimize
$$(\epsilon_x, \epsilon_y, \Delta E, \sigma_x, \sigma_y, \dots) = f(\theta, A)$$

Emmanuel Goutierre (IJCLab, LISN)

Automatic Accelerator Tuning Problem Mathematical Formulation of the Problem: Optimization Function

What is the objective

• optimize
$$(\epsilon_x, \epsilon_y, \Delta E, \sigma_x, \sigma_y, \dots) = f(\theta, A)$$

• Multi objective, parametric, black box optimization

Mathematical Formulation of the Problem: Problems

Problems ...

() The function f to optimize is rarely directly observed in real life

Emmanuel Goutierre (IJCLab, LISN)

Machine Learning for Accelerators

Thursday October 28, 2021 6 / 11

Mathematical Formulation of the Problem: Problems

Problems ...

- **()** The function *f* to optimize is rarely directly observed in real life
- Simulators computational time can be huge

Emmanuel Goutierre (IJCLab, LISN)

Mathematical Formulation of the Problem: Problems

Problems ...

- The function f to optimize is rarely directly observed in real life
- Simulators computational time can be huge
- Simulations are not perfectly representing the reality

Emmanuel Goutierre (IJCLab, LISN)

Mathematical Formulation of the Problem: Problems

Problems . . .

- The function f to optimize is rarely directly observed in real life
- Simulators computational time can be huge
- Simulations are not perfectly representing the reality
- θ is partially unknown

Mathematical Formulation of the Problem: Problems

Problems . . .

- **1** The function f to optimize is rarely directly observed in real life
- Simulators computational time can be huge
- Simulations are not perfectly representing the reality
- θ is partially unknown
- $\mathbf{0} \ \theta$ is potentially not fixed on an accelerator

4 15 16 16 15

Outline

- Mathematical Formulation
- Challenges
- Machine Learning meets Accelerator Tuning
 - Surrogate Models to Speedup Accelerator Optimization
 - Reality Gap between Simulator and Accelerator
 - Exploration vs. Exploitation Tradeoff to Discover Internal State

A B A A B A

Surrogate Models to Speedup Accelerator Optimization

Problem

• Simulators computational time can be huge (2)

Emmanuel Goutierre (IJCLab, LISN)

Machine Learning for Accelerators

Thursday October 28, 2021 8 / 11

Surrogate Models to Speedup Accelerator Optimization

Problem

• Simulators computational time can be huge (2)

Solution

Compute surrogate model

A B A A B A

Surrogate Models to Speedup Accelerator Optimization

Problem

• Simulators computational time can be huge (2)

Solution

• Compute surrogate model

Tool

• Supervised Learning and Neural Networks^a

^aEdelen et al., 2020.

Emmanuel Goutierre (IJCLab, LISN)

4 12 16 14 12 16

Problem

• Simulations are not perfectly representing the reality (3)

Emmanuel Goutierre (IJCLab, LISN)

Machine Learning for Accelerators

Problem

• Simulations are not perfectly representing the reality (3)

Solution

• Incorporate experimental data

4 12 16 14 12 16

Problem

• Simulations are not perfectly representing the reality (3)

Solution

- Incorporate experimental data
- Learn to discriminate real data from generated data

Problem

• Simulations are not perfectly representing the reality (3)

Solution

- Incorporate experimental data
- Learn to discriminate real data from generated data

Tool

- Fine Tuning
- Generative Adversarial Networks

Exploration vs. Exploitation Tradeoff to Discover Internal State

Problem

• Partially unobserved and changing environment (1, 4, 5)

Emmanuel Goutierre (IJCLab, LISN)

Machine Learning for Accelerators

Thursday October 28, 2021 10 / 11

(4) (E) (E)

Exploration vs. Exploitation Tradeoff to Discover Internal State

Problem

• Partially unobserved and changing environment (1, 4, 5)

Solution

• Partially Observable Markov Decision Process

Exploration vs. Exploitation Tradeoff to Discover Internal State

Problem

• Partially unobserved and changing environment (1, 4, 5)

Solution

• Partially Observable Markov Decision Process

Solution

• RL (Reinforcement Learning)

Emmanuel Goutierre (IJCLab, LISN)

(4) (E) (E)

Questions?

Emmanuel Goutierre (IJCLab, LISN)

Machine Learning for Accelerators

Thursday October 28, 2021 11 / 11

э

A (10) × (10)