USING VACUUM SQUEEZED STATES TO BEAT THE STANDARD QUANTUM LIMIT IN GRAVITATIONAL-WAVE DETECTORS

AIMS OF THE CALVA EXPERIMENT

- Develop quantum-optics tools for gravitational-wave detectors
- Enable exploration of new astrophysical sources: more massive and/or more distant

Gravitational waves (GW)

ORIGIN AND EFFECTS OF GW (EINSTEIN, 1916)

" Oscillations of the space-time curvature produced by accelerated masses, and propagating at the speed of light in vacuum. "

Gravitational waves (GW)

ORIGIN AND EFFECTS OF GW (EINSTEIN, 1916)

" Oscillations of the space-time curvature produced by accelerated masses, and propagating at the speed of light in vacuum. "

AMPLITUDE OF A GRAVITATIONAL WAVE

• Amplitude of space-time strain at distance *r* given by:

 $\delta L/L = h(r)/2 \propto 1/r$

• Example : coalescence of black-hole binaries (1st observation, 2015)

 $m_1=m_2=30~M_{\odot}$, distance $r=400~{
m Mpc}$

$$\Rightarrow \delta L/L \sim 10^{-21}$$

Gravitational-wave (GW) detection

ORIGIN AND EFFECTS OF GW (EINSTEIN, 1916)

" Oscillations of the space-time curvature produced by accelerated masses, and propagating at the speed of light in vacuum. "

 δI

 $T_{\rm GW}/4$

Х

GW DETECTION: MICHELSON INTERFEROMETER

- Examples: LIGO / Virgo / KAGRA
 - State-of-the-art sensitivity $\leq 10^{-23}$
 - Arms length $\sim 3 4$ km ($\delta L \sim 10^{-20}$ m)
 - Suspended mirrors
 - Fabry-Perot cavities
 - Vacuum interferometer

Main noise sources affecting GW detection

CLASSICAL NOISE SOURCES

- Main sources:
 - Mechanical noise
 - Thermal (Brownian) noise
- Will be reduced in upcoming generations of GW detectors

QUANTUM NOISE SOURCES

- Radiation pressure noise
 - Dominates at low frequency
 - Amplitude-noise-related
- Photon shot noise
 - Dominates at high frequency
 - Phase-noise-related

HARNESSING QUANTUM PROPERTIES OF LIGHT TO REDUCE NOISE

• Optical Parametric Oscillator (OPO): quantum entanglement between 2 photons

HARNESSING QUANTUM PROPERTIES OF LIGHT TO REDUCE NOISE

• Optical Parametric Oscillator (OPO): quantum entanglement between 2 photons

HARNESSING QUANTUM PROPERTIES OF LIGHT TO REDUCE NOISE

Optical Parametric Oscillator (OPO): $2\omega_0$ ω_0 SHGWWW-O quantum entanglement between 2 photons Ø $\omega_0 - \Omega$ $\omega_0 - \Omega$ $\omega_0 + \Omega$ $\omega_0 + \Omega$ Coherent state \widehat{X}_{φ} \widehat{X}_{φ} \widehat{X}_a \widehat{X}_a Effect of OPO π Phase squeezing Amplitude squeezing ▲ Phase quadrature $\theta = \frac{\pi}{2}$ Coherent $\theta = 0$ ω_0 light $\Delta \varphi$ Squeezed light $\Delta \varphi$ Homodyne Amplitude quadrature $\omega_0 \pm \Omega$ detection Coherent state Squeezing (phase) (amplitude)

•

HARNESSING QUANTUM PROPERTIES OF LIGHT TO REDUCE NOISE

Implementation of squeezed states of light for Advanced-Virgo

CURRENT PROGRESS

- ✓ Phase squeezing implemented on Advanced Virgo
- 3 dB gain at high frequency
- Low-frequency noise not yet dominated by quantum sources

Implementation of squeezed states of light for Advanced-Virgo

CURRENT PROGRESS

- ✓ Phase squeezing implemented on Advanced Virgo
- 3 dB gain at high frequency
- Low-frequency noise not yet dominated by quantum sources

Manuel Andia – French-Ukrainian workshop 2021

The Exsqueez project and CALVA experiment

The Exsqueez project and CALVA experiment

Reducing factors leading to squeezing degradation (1)

This work is carried out at IJCLab on ANR project « Exsqueez »

Reducing factors leading to squeezing degradation (1)

This work is carried out at IJCLab on ANR project « Exsqueez »

OTHER FACTORS DEGRADING THE SQUEEZING

- Imperfect optical mode-matching
- Optical loss
- Squeezer instability

Reducing factors leading to squeezing degradation (1)

This work is carried out at IJCLab on ANR project « Exsqueez »

- Imperfect optical mode-matching
- **Optical** loss
- Squeezer instability

- In-air, frequency-dependent squeezing: O4 (2022–2023)
- Under vacuum for O5 (2024?) depending on Exsqueez findings

Reducing factors leading to squeezing degradation (2)

CONTROLLING LENGTH OF FILTER CAVITY

- State-of-the-art performance sought after
- Length control via control laser
 - $-\frac{\Delta L}{L} = \frac{\Delta f}{f}$
 - Example:
 - $-\Delta f \simeq 20 \text{ Hz} \Leftrightarrow \Delta L = 4 \text{ pm} (L = 50 \text{m}, \lambda_{laser} = 1064 \text{nm})$
 - Corresponds to ~1 dB of squeezing degradation (for 10 dB of squeezing produced)

CHARACTERISING STABILISATION OF SQUEEZING PUMP LASER

• 1st study of impact on squeezing quality

Reducing quantum noise over the whole frequency range

ADAPTING THE SQUEEZING TRANSITION FREQUENCY

- Control finesse of filter cavity
 - Tunable mirror "QFilter"
 - − Pre-cavity ⇔ mirror with tunable reflectivity

Reducing quantum noise over the whole frequency range

ADAPTING THE SQUEEZING TRANSITION FREQUENCY

- Control finesse of filter cavity
 - Tunable mirror "QFilter,,
 - − Pre-cavity ⇔ mirror with tunable reflectivity
- Allows for tunability of Ω_t
 - 700 Hz (Exsqueez, no QFilter) → 30 Hz (Adv Virgo)
 - Equivalent to $\mathcal{F}^* = \mathcal{F} \times 20$

Long-term perspectives of the CALVA experiment

EINSTEIN TELESCOPE (LOW-FREQUENCY PART LF)

- Adapt Exsqueez and QFilter to a new wavelength (1.55 μm?)
 - Cryogenic environment 10−20 K (\string thermal noise)
 - Change materials for the mirrors \rightarrow crystalline silicon
 - But crystalline silicon absorbs light at 1064 nm (Virgo)...

Long-term perspectives of the CALVA experiment

EINSTEIN TELESCOPE (LOW-FREQUENCY PART LF)

- Adapt Exsqueez and QFilter to a new wavelength (1.55 μm?)
 - Cryogenic environment 10−20 K (\> thermal noise)
 - Change materials for the mirrors \rightarrow crystalline silicon
 - But crystalline silicon absorbs light at 1064 nm (Virgo)...

Adapted from Moore et al., Classical and Quantum Gravity, 32(1):015014, 2015

Backup slides

Manuel Andia – French-Ukrainian workshop 2021

Main noise sources affecting GW detection

14/12

The Optical Parametric Oscillator

Characterisation of acoustic noise

Reducing quantum noise over the whole frequency range (2)

MASTERING OPTICAL WAVEFRONTS

- Maximise coupling between beams (improve squeezing quality)
- Thermally-Deformable Mirrors (TDM)
 - Real-time control and correction of wavefronts
 - Compatible with vacuum operation

Einstein Telescope: preliminary sensitivity

Maggiore et al., arXiv:1912.02622v4 (2020)

Manuel Andia – French-Ukrainian workshop 2021

Einstein Telescope: LF and HF parts

Maggiore et al., arXiv:1912.02622v4 (2020)

