Evolution of the ILC Project & International Development Team

Maxim Titov, CEA Saclay, Irfu, France

October 27-29, 20

Instrumentation developments for high energy physics

IJCLab, Orsay - France

Future Electron-Positron Colliders: "Higgs Factory"Linear colliders: ILC, CLIC (technical extendability to TeV regime)arXiv: 1901.09829
arXiv: 1901.09825Image: Collider to Scrutinize Higgs boson characteristics
collider to Scrutinize Higgs boson characteristics

International Linear Collider (ILC): Japan (Kitakami) √s = 250 - 500 GeV, 1 TeV Length: 21 km - 31 km (50 km)

Circular colliders: CEPC, FCC-ee

From Discovery to Precision: <u>THE</u> Higgs or <u>A</u> Higgs

Measurements of Higgs properties with increasing precision are a formidable tool to look for new-physics manifestations → experimental precision approaching theory precision even before using full Run 2 statistics

ATLAS Preliminary	Stat Svst. SM
√s = 13 TeV, 24.5 - 79.8 fb ⁻¹	
$m_{H} = 125.09 \text{ GeV}, y_{H} < 2.5$	
p _{SM} = 71%	Total Stat. Syst.
ggFγγ 📫	$0.96 \pm 0.14 (\pm 0.11, \pm 0.09)$
ggF ZZ 🙀	$1.04 \stackrel{+0.16}{_{-0.15}} (\pm 0.14, \pm 0.08)$
ggF WW 📥	$1.08 \pm 0.19 (\pm 0.11, \pm 0.15)$
ggF ττ μ	$0.96 \begin{array}{c} +0.59 \\ -0.52 \end{array} (\begin{array}{c} +0.37 \\ -0.36 \end{array} , \begin{array}{c} +0.46 \\ -0.38 \end{array})$
ggF comb.	$1.04 \pm 0.09 (\pm 0.07, -0.06)$
VBF γγ 🛌	$1.39 \begin{array}{c} +0.40 \\ -0.35 \end{array} (\begin{array}{c} +0.31 \\ -0.30 \end{array} , \begin{array}{c} +0.26 \\ -0.19 \end{array})$
VBF ZZ	$2.68 \stackrel{+0.98}{_{-0.83}} (\stackrel{+0.94}{_{-0.81}} , \stackrel{+0.27}{_{-0.20}})$
VBF WW	0.59 +0.36 (+0.29 -0.35 (-0.27 , ±0.21)
VBF TT H	$1.16 \begin{array}{c} +0.58 \\ -0.53 \end{array} \begin{pmatrix} +0.42 \\ -0.40 \end{array}, \begin{array}{c} +0.40 \\ -0.35 \end{array}$
VBF bb	3.01 + 1.67 (+1.63 + 0.39) (-1.61 (-1.57 , -0.36)
VBF comb.	1.21 +0.24 (+0.18 +0.16)
VH γγ 📭 📫	$1.09 \stackrel{+0.58}{_{-0.54}} (\stackrel{+0.53}{_{-0.49}} , \stackrel{+0.25}{_{-0.22}})$
VH ZZ	0.68 +1.20 (+1.18 +0.18)
VH bb 🙀	$1.19 \begin{array}{c} +0.27 \\ -0.25 \end{array} \begin{pmatrix} +0.18 \\ -0.17 \end{array}, \begin{array}{c} +0.20 \\ -0.18 \end{array}$
VH comb.	$1.15 \begin{array}{c} \pm 0.24 \\ -0.22 \end{array} (\pm 0.16 , \begin{array}{c} \pm 0.17 \\ -0.16 \end{array})$
ttH+tH γγ 📫 🛑	1.10 +0.41 (+0.36 +0.19 -0.35 (-0.33 , -0.14)
ttH+tH VV	$1.50 \begin{array}{c} +0.59 \\ -0.57 \end{array} \begin{pmatrix} +0.43 \\ -0.42 \end{array}, \begin{array}{c} +0.41 \\ -0.38 \end{array}$
ttH+tH tt +	$1.38 \begin{array}{c} +1.13 \\ -0.96 \end{array} \begin{pmatrix} +0.84 \\ -0.76 \end{array} , \begin{array}{c} +0.75 \\ -0.59 \end{array}$
ttH+tH bb	$0.79 \stackrel{+0.60}{_{-0.59}} (\pm 0.29, \pm 0.52)$
<i>ttH</i> + <i>tH</i> comb. ₩	$1.21 \stackrel{+0.26}{_{-0.24}} (\pm 0.17, \stackrel{+0.20}{_{-0.18}})$
2 0 2 4	6 8
Peremeter permet	ized to SM value

Parameter normalized to SM value

Higgs is so simple and so unnatural → a "malicious choice"

Higgs Couplings Precision with ILC Model-Independent EFT Fit (22-parameters)

Highly model-independent analysis of EFT: Phys Rev D97, 053003 (2018)

Precision on Higgs Couplings and Synergy with HL-LHC:

~1 % required to access New Physics beyond HL-LHC direct search

~ 1 % or better reached for many couplings -> adding 500 GeV improves up to a factor of ~2

➢ ILC(250 GeV) offers quantitative and qualitative improvement beyond information accessible at hadron colliders → much better sensitivity to BSM !

Deviations Patterns to Reveal New Physics via Nature of Higgs

Precision has always been a window to new discoveries

Different BSM models predict different deviation patterns

=> Help discriminate between different Higgs models based on new physics possibilities beyond SM

> The size of the deviation depends on the new physics scale (Λ)! Decoupling Theorem: $\Lambda \uparrow \rightarrow SM$

THE COMPOSITE HICCS

The ILC250 has the capability to tell the nature of the BSM from its deviation pattern!

composite scale

250 GeV International Linear Collider Overview

Parameters
250 GeV
20km
$1.35 \text{ x} 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
5 Hz
0.73 ms
5.8 mA (in pulse)
7.7 nm@250GeV
31.5 MV/m (35 MV/m) Q ₀ = 1x10 ¹⁰

The International Linear Collider in a Nutshell

e+e- centre-of-mass energy:

- first stage: 250 GeV (20 km tunnel)
- tunable; upgrades: 500 GeV, 1 TeV
- Other options: running at Z pole
 & WW threshold

Luminosity:

- Initial design L ~ 1.35 x 10³⁴ /cm2/s (400 fb-1 during the first 4 years)
- Upgrade 2.7 x 10³⁴ /cm2 /s (doubling number of bunches per pulse – moderate cost (~10%));
- ♦ Upgrade 5.4 x 10³⁴ /cm2 /s (repetiton rate 5 → 10 Hz (expensive));

Beam polarisation

- P(e-) ≥ ±80%
- $P(e+) = \pm 30\%$, at 500 GeV upgradable to 60%

vears

ILC Site Candidate Location in Japan: Kitakami Area

Establish a site-specific Civil Engineering Design - map the (site independent) TDR baseline onto the preferred site - assuming "Kitakami" as a primary candidate

Two Validated Detector Concepts: ILD and SiD

ILD vs SiD: Two Tracking Complementary Approaches

Gaseous Tracking (ILD):

- Si + Gaseous Tracking System:
- VXD: long barrel of 3 double layers 0.3% X $_0$ / layer, $\sigma_{sp} \lesssim$ 3 μm
- Intermediate Si-tracker (SIT, SET, FTD) SIT/FTD: silicon pixel sensors (e.g. CMOS) SET: silicon strip sensors
- Time Projection Chamber with MPGD-readout High hit redundancy (200 hits / track)
 → 3D tracking / pattern recognition;
 - \rightarrow dE/dx information for PID

Silicon Tracking (SiD):

- All Si-Tracking (concept proven by CMS)
- VXD: short barrel of 5 single layers 0.15% X $_0$ / layer, $\sigma_{sp} \lesssim$ 3-5 μm
- 5 layers Silicon-strip tracker
 (25um strips, 50 um readout pitch)
- Few highly precise hits (max. 12)
- Robustness, single bunch time stamping

Scintillator ECAL **RPC DHCAL CLICPix** FCAL PiDeR LCTPC SO DEPFET **ChronoPixel** TPAC **SDHCAL RPC** Muon **KPIX GEM DHCAL** Silicon ECAL **Dual Readout** /IP Silicon ECAL (ILD) Many forms of Linear (SiD) **CMOS MAPS Collider Detector R&D efforts:** EPFE

FPCC

HCAL

- Large collaborations: CALICE, LCTPC, FCAL
- Collection of many efforts such as vertex R&Ds

Scintillator > Efforts currently not directly included in the concept groups (ILD, SiD, CLICdp), which may become important for LC in future

RPC DHCAL	Scintillat	∞	
	FCAL	CLICPix	n an s a
DEPFET SDHCAL	So TF	OI Ch PAC	spiDek ronoPixel
GEM DHCAL		Linear Collidei	Collaboration
Silicon ECAL (ILD)	on ECAL	Detector R	&D Report
(SiD) CMOS MA	NPS co	FINAL V doi:10.5281/z	VERSION enodo.3749461
PRE PFE, Pre pre to be	> Lar > Co	https://doi.org/10.5 (DOI:10.5281/z Ed: Detector R&D Liaison Maxim TITOV Institut de Recherche sur les lois Fondamentales de l'Univers (IRFU) CEA - Saclay, F-91191 Gif-sur-Yvette Cedex, France maxim.titov@cea.fr	281/zenodo.3749461 enodo.3749461) tors Detector R&D Liaison Jan F STRUBE Pacific Northwest National Laboratory 902 Battelle Boulevard Richland, WA 99352, USA University of Oregon Institute for Fundamental Science
FPCCD Collaboration High precision design	➢ Ind ator _{➢ Eff} cor bec	Februar	y 2, 2021

S

Processes and Approximate Timelines Towards Realization of ILC

* ICFA: international organization of researchers consisting of directors of world's major accelerator labs and representatives of researchers * ILC pre-lab: International research organization for the preparation of ILC based on agreements among world's major accelerator labs such as KEK, CERN, FNAL, DESY, etc.

International Development Team (IDT) Goals for 2021-2022

- Establish a preliminary list of the ILC Pre-lab tasks and deliverables (through WG2) and national/regional laboratories which might be interested in contributing to those;
- Establish Pre-lab resources needs for the regional activities and central office (a few % of ILC cost);
- ✓ Prepare a preliminary proposal for the ILC Pre-lab organization and governance:
- ✓ Finalise all the inputs needed to set-up the Pre-lab;

Proposal for the ILC Preparatory Laboratory (Pre-lab)

International Linear Collider International Development Team

1 June 2021

Abstract

During the preparatory phase of the International Linear Collider (ILC) project, all technical development and engineering design needed for the start of ILC construction must be completed, in parallel with intergovernmental discussion of governance and sharing of responsibilities and cost. The ILC Preparatory Laboratory (Pre-lab) is conceived to execute the technical and engineering work and to assist the intergovernmental discussion by providing relevant information upon request. It will be based on a worldwide partnership among laboratories with a headquarters hosted in Japan. This proposal, prepared by the ILC International Development Team and endorsed by the International Committee for Future Accelerators, describes an organisational framework and work plan for the Pre-lab. Elaboration, modification and adjustment should be introduced for its implementation, in order to incorporate requirements arising from the physics community, laboratories, and governmental authorities interested in the ILC.

IDT - WG1: Approximate Timeline of the ILC Realisation

Pre-prepa	ratory Phase		Main Preparator	y Phase		Construction Phase	
20	20.8	(2022)	About 4 years	((2026)	About 9 years	(2035)
LCB/LCC	International Development Tea	im	ILC Pre-L	ab		ILC Laboratory	
 ILC IDT (~2 yea) Prepare the weather ILC Pre-laborational as a scenario for Prepare a propand governance laboratory; 	ars): ork and deliverables boratory and work of ind regional laborat their contributions; posal for the organi ce of the ILC Pre-	ILC s of - out, ories, sation -	Pre-laboratory (~ Complete all the tech necessary to start the (infrastructure, enviro and accelerator facil Prepare scenarios for contributions to and ILC;	4 years) nical preparation e ILC project onmental impact ity) : or the regional organisation for th	ILC - - he	laboratory Construction and comm the ILC (~9-10 years); Followed by the operat the ILC; Managing the scientific of the ILC;	nissioning of ion of programme
Positive "s gove national/	igns" from the ho rnment and agree regional laborator their contribut	st country ments by th ries for prov tions	(Japan) ne viding	Positive « outc negotiations fo among the hos Members of	omes « or the rea st (Japar IDT Wo	of the inter-governme sponsibility and cost ı) and partner countri orking Group 1	ental sharing es
Set up for	ur WG1 subgrou	ps:		Paul Collier Bruce Dunham Eckhard Elsen		CERN SLAC DESY	Switzerland United States Germany
i. Pre-Lat	o organization	the Pre-I	ab	Brian Foster Juan Fuster		U. Oxford IFIC – U. Valencia	United Kingdom Spain
iii. Mooorr	concision to	etart the P	re Lah	Stuart Henderson		TRILIME	United States

iv. Process to start the Pre-Lab

Paul Collier	CERN	Switzerland
Bruce Dunham	SLAC	United States
Eckhard Elsen	DESY	Germany
Brian Foster	U. Oxford	United Kingdom
Juan Fuster	IFIC – U. Valencia	Spain
Stuart Henderson	Jefferson Lab	United States
Reiner Kruecken	TRIUMF	Canada
Joseph D. Lykken	Fermilab	United States
Maksym Titov	Irfu – CEA/Saclay	France
Satoru Yamashita	U. Tokyo	Japan

IDT – WG2: Technical Preparation Document

IDT-WG2 summarized the technical preparation as Work Packages (WPs) for the Pre-Lab stage in the Technical preparation Document

ILC - WG3: Physics and Detectors Timeline

- ✓ Oct. 25-29, 2021: ILC Workshop on Potential Experiments (ILCX2021)
- ✓ 2022-2023: The IDT calls for Eols, to be presented in a workshop after Pre-lab start
- 2022-2023: Potential start of the Pre-lab. Eol presentations in dedicated workshop. The process of moving from Eol presentations towards Lol documents is community driven. Initial dedicated ILC R&D funds will be needed.
- 2023: Lol submissions and presentations. The ILCXAC will initiate its evaluation of the Lols. R&D continues.
- 2024: ILCXAC recommendations of initial ILC experiments to proceed towards TPs. R&D towards the TPs.
- 2025: TP submissions and presentations. Continuation of R&D and recommendations by the ILCXAC based on the submit-ted TPs.
- 2026-27: Approval of the experiments, based on the TP and ILCXAC recommendations, by a committee set up by the ILC Laboratory. Recommendations to proceed towards Technical Design (TDR) Reports. Funding requests for construction are being prepared.
- 2027: The ILC laboratory allows construction to start and construction funding spending for experiments or experimental subsystems based on TDRs approvals.

"ILC as a Global Project" → international project, led by Japanese initiative

- Today, ILC is technically sound and is the only mature technology for future accelerator, ready for construction start

Important conditions for ILC realization:

- Reach common understanding of the ILC Laboratory ("a-la CERN-II") and model of cost-sharing between Japan (and Asia), US and Europe
- ➢ Global Context → ILC has to be Coexisting and Synergistic with CERN
- Create a Basis for International Cooperation in the Industrial Sector

