Theory and modelling of Compton light sources

Eugene Bulyak

NSC KIPT / KNU Kharkov, Ukraine

French-Ukrainian workshop Instrumentation developments for High energy physics IJClab 29 Oct 2021

Outline

- Introduction
- Total yield and spectrum
- Smearing of real collimated spectrum
- Simulations on ThomX
- Summary and outlook

Compton effect (Nobel Prize of 1927 to Arthur Holly Compton): A gamma-ray photon loses a fraction of its energy when scattered off from an electron – reveals the quantum nature of photons.

The inverse Compton radiation: low energy laser photons increase their energy when scattered off from ultrarelativistic electrons.

Figure of Merit: Spectral Brightness photon / s mm² mrad² (0.1% bandwidth)

Energies needed for applications

- X-ray range from 10 keV to 120 keV (x-ray imaging)
- 'Soft gamma-rays' 1 MeV to 6 MeV (nuclear resonance fluorescence spectroscopy)
- Hard gamma-rays more than 10 MeV (polarized positrons production)

← F.V. Hartemann *et al* (2005)

Interaction of Electron Bunch with Laser Pulse E. Bulyak and V. Skomorokhov, Phys. Rev. ST-AB 2005

d / crossing

$$Y = \frac{N_{\text{las}} N_e \sigma_{\text{C}}}{2\pi \sqrt{\sigma'_z^2 + \sigma_z^2}}$$

$$\times \frac{1}{\sqrt{\sigma_x^2 + {\sigma'_x}^2 + (\sigma_y^2 + {\sigma'_y}^2) \tan^2 \phi/2}}$$

 $\sigma'_{x,y,z}$, $\sigma_{x,y,z}$ are rms dimensions of the laser pulse and the electron bunch Yield is proportional to electron current ! Smaller ϕ – better !

Compton Radiation

Laser pulse = periodic structure (similar to undulator)

X-ray photon with a definite energy scattered off at the definite angle from electron's trajectory:

$$E_{x}pproxrac{2\gamma^{2}(1+\cos\phi)E_{ ext{las}}}{1+\gamma^{2}\psi^{2}}=rac{E_{x}^{ ext{max}}}{1+\gamma^{2}\psi^{2}}$$

 γ is the Lorentz-factor of the electron

Spectral–Angular Density Function Ideal: zero emittances and spread

Spectrum Passed Collimator

Collimated ideal spectrum \Rightarrow "Quasi monochromatic"

$$egin{aligned} &\mathcal{G}(\zeta) = 3[1/2 - \zeta(1-\zeta)] imes \ & \left[\mathrm{H}\left(\zeta - rac{1}{1+\chi_f^2}
ight) - \mathrm{H}\left(\zeta - rac{1}{1+\chi_i^2}
ight)
ight] \ & \chi_f \geq \chi_i \ ; \qquad \chi \equiv \gamma \psi \end{aligned}$$

the collimation angle scales as $1/\gamma$ e.g. 0.1% attained at $\psi\approx 31.6/\gamma\,{\rm mrad}$ Spectral brightness $\approx 1.5\times 10^{-3}\,Y\,{\rm phot}/(0.1\,\%$ bandwidth)

1. Smeared Spectral-Angular Density Function Zero emittances, finite energy spread

Spectral angular density smeared off vertically

E. Bulyak (NSC KIPT/KNU)

Spectrum Passed Collimator

For pin-hole collimation energy spread of radiation is the doubled spread of electrons

2. Smeared Spectral-Angular Density Function

Zero spread, finite emittances

Spectral angular density smeared off horizontally

E. Bulyak (NSC KIPT/KNU)

Spectrum Passed Collimator 1D case (flat beam)

$$\begin{split} & \mathcal{G}_{\psi}(\zeta, x_{i}, x_{f}) = \frac{3\left[\zeta^{2} + \left(1 - \zeta^{2}\right)^{2}\right]}{2\sqrt{2\pi}s_{\psi}} \times \\ & \left(\mathrm{erf}\left(\eta_{f}^{-}\right) + \mathrm{erf}\left(\eta_{f}^{+}\right) - \mathrm{erf}\left(\eta_{i}^{-}\right) - \mathrm{erf}\left(\eta_{i}^{+}\right)\right) \quad , \\ & \text{with } \eta_{i,f}^{\pm} = \left(x_{i,f} \pm \sqrt{1/\zeta - 1}\right)/\sqrt{2}s_{\psi}. \end{split}$$

X-ray energy spectra for angular spread 0.01, 0.1, 0.5, 1.0 into collimating range 0...0.1.

2D beam (round) produces wider spectrum

Small number of scattering per synchrotron period E. Bulyak et al IPAC 2010

Energy rms spread (squared)

$$\sigma_p^2 = \frac{7}{10} \gamma \gamma_{\rm las} \;,$$

where $\sigma_p \equiv \left. \sqrt{\langle (\gamma_i - \gamma)^2 \rangle} \right/ \gamma;$
 $\gamma_{\rm las} = E_{\rm las} / m_0 c^2 \,.$

Transverse emittances:

$$\epsilon_{x,z} = rac{3}{10} eta_{x,z}^{(CP)} rac{\gamma_{\mathrm{las}}}{\gamma} \, ,$$

with $\beta_{x,z}^{(CP)}$ magnitudes of the betatron functions at CP.

The transverse rms dimensions of the bunch at $\ensuremath{\mathsf{CP}}$

$$\sigma_{x,z}^2 = \frac{\beta_{x,z}^2 \gamma_{\rm las}}{3\gamma}$$

Quantum lifetime

At the case of a small average energy of scattered-off photons as compared with the energy acceptance of the ring:

$$\gamma^2 \gamma_{
m las} \sqrt{rac{2\pi\eta h}{\gamma\gamma_{
m rf}}} \ll 1 \; ,$$

(η is the linear momentum compaction factor; h the harmonic number; $\gamma_{\rm rf} = eV_{\rm rf} / m_0 c^2$ the reduced rf voltage) quantum losses:

$$\tau_{\rm qf}^{-1} = \frac{\omega_0 n_{\rm x}}{2\pi} \sqrt{\frac{9\gamma_{\rm rf}}{2\pi\gamma\eta h}} \exp\left(-\frac{3\gamma_{\rm rf}}{2\pi\gamma_{\rm las}\gamma^2\eta h}\right)$$

with n_x the average number of scattered-off photons by each electron per turn, ω_0 the frequency of bunches circulation along the ring orbit.

Impact of synchrotron damping

$$s_{asym}^2 = \frac{s_s^2 \epsilon_s + s_c^2 \epsilon_c}{\epsilon_s + \epsilon_c}$$

 ϵ – the partial average energy loss per turn

If Compton + SR take place, the resultant spread depends on the laser power

Ŀ

Evolution

$$s^{2}(t) = s_{asym}^{2} + (s_{0}^{2} - s_{asym}^{2}) \exp(-2t/\tau_{s})$$

with τ_s the longitudinal damping time $\tau \approx \gamma/(\epsilon_s + \epsilon_c)$ [turns] For the synchrotron dominated ring $\tau_s \simeq \text{const}$

ThomX simulations: code

A code: Monte-Carlo, Monte-Carlo, Monte-Carlo ...

input

```
ALPHA 1 = 0.125D-1
BFTAX = 0.1d0
BETAZ = 0.1d0
QX = 3.17d0
QZ = 1.74d0
emit0x = 2.1d-6
emit0z = 1.05d-6
EURF = 150.0d3
FRF = 500.0d6
HARM NUM = 30
EBEAM = 50.0d6
ELAS = 1.164d0
PHIX = 0.035
SYNLOSS = 3.0D0
SIGP X = 5.0D-5
SIGP Y = 3.0D-3
SIGP Z = 5.0D-5
P LAS = 0.02D0
```

output

MAX conversion 3.13E-004 MAX X energy (eV) 44565.0 Comp damping t 7164131.0 synch damping t 16666666.7 total damping t 5010414.87 Synch number 1.338E-002 ideal spread, 7/10 1.249E-002 emit Comp x 6.986E-010 m emit Comp z 6.986E-010 m averFI -1.187F-04 disp FI 3.96E-02 averP -2.104E-05 disp P 1.429E-03 x dim 1.66E-04 emit x 2.72E-07 z dim 1.146E-04 emit z 1.32E-07 total quanta scat 15.67

E. Bulyak (NSC KIPT/KNU)

ThomX simulations: spectra

ThomX simulations: transverse

0.6

E. Bulyak (NSC KIPT/KNU)

ThomX simulations: evolution

ThomX simulations: photon spectra

E. Bulyak (NSC KIPT/KNU)

Compton sources: theory

29.10.21 21 / 26

ThomX simulations: 200 ms (5 Hz) initial δ phase density distribution

ThomX simulations: 200 ms (5 Hz) initial δ phase density distribution

output

- total quanta scattered 188 / electron
- passed through collimator 57.23 / electron
- synchrotron dominated dynamics
- total photons scattered 5.87×10^{12}

ThomX simulations: 1 sec initial δ phase density distribution

ThomX simulations: 1 sec initial δ phase density distribution

output for 1 sec

- total quanta scattered 1026.75 / electron
- passed through collimator 394 / electron
- synchrotron dominated dynamics
- total photons scattered 6.4×10^{12}
- collimated $\gamma \psi = 0.6$ is 2.46×10^{12}

Run ThomX02j: total photons scattered $15.67 \times 50 \times 6.2415 \times 10^9 = 4.89 \times 10^{12}$ per second at 20 mJoul and 0.035 crossing angle 1.44×10^{12} passed through $\gamma \psi = 0.6$ collimator

Compton source ThomX will produce competitive X-ray beam