

The Compact X-ray source ThomX: context, status and plans

Marie Jacquet on behalf ThomX collaboration *mjacquet@IJCLab.in2p3.fr*

Compton Compton Sources(CCS): principle

Brightness of intense X-ray sources

Brightness of intense X-ray sources

Brightness of intense X-ray sources

ThomX design

Nominal parameters

ThomX design

Nominal parameters

X-line integration

X-line integration

Monitoring and Focusing

X-ray experimental hutch

X-ray experimental hutch

Analysis techniques : orders of magnitude

Analysis techniques : orders of magnitude

- Tunable energy

Analysis techniques : orders of magnitude

DIFFRACTION

Also, as soon as a relatively stable beam is available,

With the ThomX update (70 MeV e- beam \rightarrow 90 keV X-ray)

PROOFS of PRINCIPLE @ Lyncean Tech. / Munich

DIFFRACTION

3D structure determination Protein MytuGCSPH

- E = 15 keV
- 5. 10⁶ ph/s, few % bw
- X beam: 120 µm on crystal

Flux and results comparable with the same analysis realized at a rotating anode

[J. Struct. Funct. Gen. 11, 2010, 91-100]

PHASE CONTRAST IMAGING

Current planning

Today: COMMISSIONING

Current planning

