

Status of Belle II

karim.trabelsi@in2p3.fr 2021/10/29

- We plan to collect (at least) 50 ab^{-1} of e^+e^- collisions at (or close to) the Y(4S) resonance, so that we have:
 - a (Super) B-factory (~ $1.1 \times 10^9 \text{ B}\overline{\text{B}}$ pairs per ab⁻¹)

- a (Super) charm factory $(\sim 1.3 \times 10^9 \text{ cc} \text{ pairs per ab}^{-1})$ (but also charmonium, X, Y, Z, pentaquarks, tetraquarks, bottomonium...)
- a (Super) τ factory (~0.9 × 10⁹ $\tau^+ \tau^-$ pairs per ab⁻¹)
- exploit the clean e^+e^- environment to probe the existence of exotic hadrons, dark photons/Higgs, light Dark Matter particles, ALPs, LLPs ...

⇒ to reach $6 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$ ⇒ cumulate 50 ab⁻¹ by ~ 2031

Belle(II), LHCb side by side

Belle (II)

 $e^+e^- \rightarrow Y(4S) \rightarrow b\overline{b}$

at Y(4S): 2 B's (B⁰ or B⁺) and nothing else \Rightarrow clean events

(flavour tagging, B tagging, missing energy)

$$\begin{split} \sigma_{b\overline{b}} &\sim 1\,nb \Rightarrow 1\,\,fb^{-1}\,\,produces\,\,10^6\,B\,\overline{B}\\ \sigma_{b\overline{b}}/\sigma_{total} &\sim 1/4 \end{split}$$

LHCb

 $p p \rightarrow b \overline{b} X$ production of B^+ , B^0 , B_s , B_c , Λ_b ... but also a lot of other particles in the event \Rightarrow lower reconstruction efficiencies

 $\sigma_{b\overline{b}}$ much higher than at the $Y(4\,S)$

	√s [GeV]	σ _{ьб} [nb]	$\sigma_{_{bb}}$ / $\sigma_{_{tot}}$
HERA pA	RA pA 42 GeV		~10 ⁻⁶
Tevatron 2 TeV		5000	~10 ⁻³
8 TeV		~3x10 ⁵	~ 5x10 ⁻³
LHC	14 TeV	~6x10 ⁵	~10 ⁻²

b $\overline{\mathbf{b}}$ production cross-section at IHCb ~ 500,000 × BaBar/Belle !!

 $\sigma_{b\overline{b}}/\sigma_{total}$ much lower than at the Y(4S) \Rightarrow lower trigger efficiencies

B mesons live relativey long

mean decay length $\beta \gamma c \tau \sim 200 \mu m$ mean decay length $\beta \gamma c \tau \sim 7 mm$ data taking period(s)(displaced vertices) $[1999-2010] = 1 ab^{-1}$ $[run I: 2010-2012] = 3 fb^{-1}$,[2019-...] = ... $[run II: 2015-2018] = 6 fb^{-1}$ $[Belle II from 2019] \rightarrow 50 ab^{-1}$ [LHCb upgrade from 2021]

News from Belle II

News about SuperKEKB

 despite difficult conditions, continued to take data since March 2020 yes, no excuse... will be of little value around here...

record of KEKB/Belle 2.1×10^{34} /cm²/s currents >1A record of PEPII/BaBar 1.2×10^{34} /cm²/s currents >2A

$\mathbf{R}_{\mathbf{K}^{(*)}}$ at Belle and Belle II

 $\begin{array}{l} SM \ prediction \ very \ robust: R_K(SM) = 1 \\ [up \ tiny \ QED \ and \ lepton \ mass \ effects] \\ signs \ of \ NP \ seen \ by \ LHCb \ ? \end{array}$

Lepton (non) universality using $B \rightarrow K^{(*)} l^+ l^-$ decays

Model candidates

- ✓ Effective operator from Z' exchange
- ✓ Extra U(1) symmetry with flavor dependent charge

♦ Models with leptoquarks

- ✓ Effective operator from LQ exchange
- $\checkmark\,$ Yukawa interaction with LQs provide flavor violation

♦ Models with loop induced effective operator

- \checkmark With extended Higgs sector and/or vector like quarks/leptons
- ✓ Flavor violation from new Yukawa interactions

Leptoquarks are color-triplet bosons that carry both lepton and baryon numbers

Lot of those models predict also LFV $b \rightarrow se\mu$, $b \rightarrow se\tau$,...

 $(see \ Damir \, , \, Sebastien \, , \, Olcyr \, 's \ work)$

G.Isidori , FPCP 2020: correlations among $b \rightarrow s(d)$ ll' within the U(2)-based EFT

	μμ (ee)	ττ	νν	τμ	μe
$b \rightarrow s$	R _K , R _{K*}	$\begin{array}{c} \mathbf{B} \to \mathbf{K}^{(*)} \tau \tau \\ \hline \to 100 \times \mathrm{SM} \end{array}$	$B \rightarrow K^{(*)} \nu \nu$ $O(1)$	$\begin{array}{c} B \rightarrow K \tau \mu \\ \hline \rightarrow 10^{-6} \end{array}$	$ \begin{array}{c} \mathbf{B} \to \mathbf{K} \ \mu \mathbf{e} \\ \hline ??? \end{array} $
$b \rightarrow d$	$B_{d} \rightarrow \mu\mu$ $B \rightarrow \pi \mu\mu$ $B_{s} \rightarrow K^{(*)} \mu\mu$ $O(20\%) [R_{K}=R_{\pi}]$	$\begin{array}{c} \mathbf{B} \to \pi \ \tau\tau\\ \hline \to 100 \times \mathrm{SM} \end{array}$	$B \rightarrow \pi vv$ $O(1)$ (but	$B \rightarrow \pi \tau \mu$ $\rightarrow 10^{-7}$ the τ is much	$B \rightarrow \pi$ μe ??? ch more challenging
	I	r 7	•		

Event reconstruction in B \rightarrow K \tau l at B factories

(**FEI = Full Event Interpretation**)

 $\begin{array}{c} \underline{\underline{B}_{tag}}\\ \underline{hadronic\ tag}\\ B \rightarrow D^{(*)}\pi,\ D^{(*)}\rho \dots\\ \epsilon \sim 0.5\,\% \end{array}$

semileptonic tag $B \rightarrow D^{(*)} l \nu X$ $\epsilon \sim 2\%$

Particle	# channels (Belle)	# channels (Belle II)
D+/D*+/D _s +	18	26
D ⁰ /D*0	12	17
B+	17	29
B ⁰	14	26

Algorithm	MVA	Efficiency	Purity
Belle v1 (2004)	Cut based (Vcb)		
Belle v3 (2007)	Cut based	0.1	0.25
Belle NB (2011)	Neurobayes	0.2	0.25
Belle II FEI (2017)	Fast BDT	1 0.5	0.25

Improvement to tagging efficiency in Belle II

(think about flavour tagging at LHCb...)

physics program related to this activity $B \rightarrow K^{(*)} \tau \tau$, $K^{(*)} \nu \nu$, $D^{(*)} \tau \nu$, $\tau \nu$, $\mu \nu$ etc...

$B^+ \rightarrow K^+ \tau \ell$ search with Fei

$\underline{\mathbf{B}^{+}} \not \to \mathbf{K}^{+} \mathbf{v} \, \overline{\mathbf{v}}$

• SM predictions:

T. Blake et al, Prog. Part.Nucl. Phys.92, 50 (2017) $BR(B^+ \to K^+ \nu \bar{\nu})_{SM} = (4.6 \pm 0.5) \times 10^{-6}$, $BR(B^+ \to K^{*+} \nu \bar{\nu})_{SM} = (8.4 \pm 1.5) \times 10^{-6}$,

NOVEL <u>INCLUSIVE</u> APPROACH on <u>63 fb⁻¹</u> of Belle II data:

- Signal kaon = highest p_T track ⁻
- Associate all other tracks and clusters to other B in the event
- Use multivariate approach (2 BDTs in cascade) based on kinematics, event shape and vertexing variables to suppress background
- Signal efficiency ~ 4.3 % (SM signal)

$\underline{\mathbf{B}^{+} \rightarrow \mathbf{K}^{+} \nu \,\overline{\nu}} \text{ measurement at Belle II} \begin{bmatrix} arXiv:2104.12624 \\ accepted by PRL \end{bmatrix}$

- Check data-simulation agreement in BDTs output using B⁺→J/ψ(μ⁺μ⁻)K⁺ control sample
- Data/MC ratio in fit region: 1.06 ± 0.10

 Extract signal from simultaneous maximum likelihood fit to on-resonance + off- resonance data (taken 60MeV below Y(45) resonance) in bins of p_T(K⁺) and second BDT (BDT₂):

Signal strength:

$$\mu = 4.2^{+2.9}_{-2.8}(\text{stat})^{+1.8}_{-1.6}(\text{syst})$$

- consistent with SM exp (μ =1) at 1 σ
- consistent with background-only hypothesis at 1.3 σ
- Leading systematics: background normalisation uncertainty can be also reduced with increasing statistics

$\mathbf{B}^+ \rightarrow \mathbf{K}^+ \mathbf{v} \, \overline{\mathbf{v}}$ measurement at Belle II [arXiv:2104.12624] accepted by PRL

• No evidence for signal, upper limit on BR using CLs method (assuming SM signal)

$$\mathscr{B}(B^{\pm} \to K^{\pm} \nu \bar{\nu}) < (4.1 \pm 0.5) \times 10^{-5} @90\% \text{CL}$$

- Comparing theory and experiments: Average SN 1.1 ± 0.4 $\mathcal{B}(B^+\to K^+\nu\bar\nu) = 1.9^{+1.6}_{-1.5}\times 10^{-5}$ Belle II (63 fb^{-1} , Inclusive preliminary Belle (711 fb^{-1} , SL) When converted to the same luminosity, our measurement is better*) than semi-Belle (711 fb^{-1} , Had) 3.0 ± 1.6 PRD87, 111103 leptonic tagging by 10-20% Babar (429 fb⁻¹, Had+SL) ... and than hadronic tagging by a factor 3.5! 2 4 8 10 0) assuming the total uncertainty on the branching-fraction scales with $1/\sqrt{L}$ $10^5 \times Br(B^+ \rightarrow K^+ \nu \bar{\nu})$
- Room for improvement in K⁺ channel, application of inclusive method to other channels in progress

Signal Decays

use 72 fb⁻¹ (~1/3 of the data now on disk)

- Selected high-purity samples to limit the background-related systematic uncertainty
 - removed candidates from B decays to avoid bias on the D production vertex

Lifetime Fit

unbinned ML fit to (t,σ_t)

- Resolution and background models
 extracted on data, no input from simulation
 - resolution ~ 60-70 fs
 - MC just used for validation and to assess a few systematic uncertainties
- Blind analysis:
 - selection, validation, crosschecks and assessment of the systematic uncertainty performed before looking at the lifetime
 - except for 2019 data (~13% of the sample) unblinded since ICHEP 2020 (compatible with WA).

Results

 $\tau(D^{0}) = 410.5 \pm 1.1 \pm 0.8 \,\text{fs}$ $\tau(D^{+}) = 1030.4 \pm 4.7 \pm 3.1 \,\text{fs}$ $\tau(D^{+})/\tau(D^{0}) = 2.510 \pm 0.015$ determined considering correlations between (systematic) uncertainties

- Consistent with current world averages 410.1±1.5 fs (D^o) and 1040±7 fs (D⁺).
- World's most precise measurements of the D^o and D⁺ lifetimes
- Few ‰ accuracy (3.5‰ for the D^o and 5.4‰ for the D⁺) establishes excellent performance of our detector!
- submitted to PRL, <u>https://arxiv.org/abs/2108.03216</u>

The CKM angle ϕ_3

$$\phi_3/\gamma \equiv arg \left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$$

□ Very precise theoretical prediction $\frac{\delta \phi_3}{\phi_3} \sim 10^{-7}_{arxiv:1308.5663}$ □ Test physics beyond SM

The interference between color-favored and color-suppressed processes can be

related : $\frac{A^{suppr.}[B^{-} \rightarrow \overline{D^{0}}K^{-}]}{A^{favor.}[B^{-} \rightarrow D^{0}K^{-}]} = r_{B}e^{i(\delta_{B}-\phi_{3})}$

 r_B -the magnitude of the ratio of amplitudes ~0.1 ; δ_B -strong-phase difference

- \square 3 main methods to extract ϕ_3 :
 - GLW method: CP eigenstates: K⁻K⁺, π⁻π⁺, K⁰_Sπ⁰
 - ADS method: DCS modes: $K^+\pi^-, K^+\pi^-\pi^0$
 - BPGGSZ method: self-conjugate multibody final states: K⁰_Sπ⁺π⁻, K⁰_SK⁺K⁻, K⁰_Sπ⁺π⁻π⁰
- Foreseen precision of ϕ_3 is expected to be $\mathcal{O}(1^\circ)$ (current worldaverage $\delta \phi \sim 4^\circ$) with the full Belle II dataset of 50 ab^{-1}

2

https://arxiv.org/abs/2110.12125 $h = \pi, K$

BPGGSZ Method Study of $B^- \rightarrow D(\rightarrow K_S^0 h^+ h^-)h^-$

First Belle + Belle II analysis

- $\square B^- \to D(\to K^0_S \pi^+ \pi^-) K \text{ is golden mode at Belle II}$
- □ Sensitivity to ϕ_3 by comparing D Dalitz (fit with full amplitude model)distribution of B^- and B^+ : $A_B = \overline{A}(m_-^2, m_+^2) + r_B e^{i(\delta_B + \phi_3)} A(m_+^2, m_-^2)$

Model-dependent analysis have model uncertainty up to 3° -9°

Using binned model-independent approach

- Optimal binning of the D Dalitz plot which gives the maximum sensitivity to ϕ_3
- Observed yields in each bin can be related to physics parameters of interest and D⁰ decay information

$$\mathsf{N}_{i}^{\pm} = \mathsf{h}_{\mathsf{B}^{\pm}} \left[\mathsf{F}_{i} + \mathsf{r}_{\mathsf{B}}^{2} \overline{\mathsf{F}}_{i} + 2\sqrt{\mathsf{F}_{i} \overline{\mathsf{F}}_{i}} (\mathsf{c}_{i} x_{\pm} + \mathsf{s}_{i} y_{\pm}) \right].$$

- h_{B±} :Normalization constant
- Physics parameters of interest: $(x_{\pm}, y_{\pm}) = r_B(\cos(\phi_3 + \delta_B), \sin(\phi_3 \pm \delta_B))$
- Amplitude-averaged strong phase difference between D⁰ and D⁰ over ith bin and are obtained from external charm factories like CLEO and BESIII
- Fraction of pure D⁰ decay to bin i taking into account the reconstruction and selection efficiency

https://arxiv.org/abs/2110.12125 $h = \pi, K$

7

BPGGSZ Method Study of $B^- \rightarrow D(\rightarrow K_S^0 h^+ h^-)h^-$

First Belle + Belle II analysis

□ Analysis with $711fb^{-1}$ Belle data and $128fb^{-1}$ Belle II data

□ Unbinned 2D simultaneous fit of ΔE versus C' (right plot) for $B^- \rightarrow D^0 (K_S^0 \pi^+ \pi^-) K^-$.

Component	PDF (ΔE)	PDF (FBDT _{trans})
Signal	DG + Bifur-Gaus	poly (1st)
BB bkg	expo +(poly)	Chebychev poly-1st(2nd)
qq bkg	Chebychev poly (1st)	2 expo
$DK(D\pi)$ component	DG + Bifur-Gaus	Chebychev poly (1st)

Performed simultaneous fit in 160 categories; 80(16×4+4×4) of Belle and 80 of Belle II

Signal region :

|ΔE| < 0.05 GeV
0.65 < C' < 1.0

 $(x_{\pm}, y_{\pm}) = r_B(\cos(\phi_3 + \delta_B), \sin(\phi_3 \pm \delta_B))$ are common to all the bins and are extracted from the fit

https://arxiv.org/abs/2110.12125 $h = \pi, K$

8

BPGGSZ Method Study of $B^- \rightarrow D(\rightarrow K_S^0 h^+ h^-)h^-$ First Belle + Belle II analysis

□ Analysis with 711fb⁻¹ Belle data and 128fb⁻¹ Belle II data

□ Unbinned 2D simultaneous fit of ΔE versus C' (right plot) for $B^- \rightarrow D^0 (K_S^0 \pi^+ \pi^-) K^-$.

Component	PDF (ΔE)	PDF (FBDT _{trans})
Signal	DG + Bifur-Gaus	poly (1st)
BB bkg	expo +(poly)	Chebychev poly-1st(2nd)
qq bkg	Chebychev poly (1st)	2 expo
$DK (D\pi)$ component	DG + Bifur-Gaus	Chebychev poly (1st)

Performed simultaneous fit in 160 categories; 80(16×4+4×4) of Belle and 80 of Belle II

Signal region :

 $(x_{\pm}, y_{\pm}) = r_B(\cos(\phi_3 + \delta_B), \sin(\phi_3 \pm \delta_B))$ are common to all the bins and are extracted from the fit

BPGGSZ Method Study of $B^- \rightarrow D(\rightarrow K_S^0 h^+ h^-)h^-$

First Belle + Belle II analysis

https://arxiv.org/abs/2110.12125 $h = \pi, K$

> Belle II L ct = 128 fb

> > $B^+ \rightarrow DK^-$

K⁰_Sππ

4

Belle II

L dt = 128 fb

 $B^+ \rightarrow D\pi^-$

K⁰_Sππ

6

8-2

2 4

6

8 -2

2

K²_SKK

K[°]_sKK

0

2

0 2

Belle L dt = 7111b (*N+_N)/(*N-_N) ("N+'N)/("N-'N) 2 2 [×]م $B^+ \rightarrow DK^-$ Belle + Belle II 20, 0.1 -2 K²₈ππ K²_gKK 0 B -2 0 8 -6 2 6 -4 0 -6-4 -2 0 2 4 8 2 -0.1 Bin Bin -0.2 R 0.5 0.5 Lot = 711 1b -0.3 0.3 х^{рк} ("TN+"N)/("N-"N) (1N+-N)/(1N--N) -0.2 -0.1 0.2 0 0.1 $B^+ \rightarrow D\pi^+$ Uncertainty ~14° in earlier Belle measurement K_g⁰ππ K⁰_cKK PhysRevD.85.112014 -0.5-0.56 4 0 -2 8 2 0 2 4 6 8 -2 0 2 8 -6 -4 Preliminary result : Bin Bin, (too) conservative estimate δ_B (°) = 124.8 ± 12.9 (stat.) ± 0.5 (syst.) ± 1.7 (ext. input) ∮₃ [deg] Uncertainty Projection (July 2015) Belle II 12 $r_B^{DK} = 0.129 \pm 0.024 \text{ (stat.)} \pm 0.001 \text{ (syst.)} \pm 0.002 \text{ (ext. input)}$ $\phi_3(^\circ) = 78.4 \pm 11.4 \text{ (stat.)} \pm 0.5 \text{ (syst.)} \pm 1.0 \text{ (ext. input)}$ 10 LHCb Belle (II) 70% data Y(4S) Belle (II) all data Y(4S) 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 long way to go ... ($\Re \sigma_{\gamma} = 1^{\circ}$ or less ?)

Summary

- $\,\circ\,$ first Belle II published results with $o(100\ fb^{-1})$ detector is fully operational, ready for physics
- $^\circ~$ continue data taking until 2023 with target: $\sim 1~ab^{-1}$, $10^{35}/cm^2/s$
- ∘ followed by a LS1 to install PXD 2 layers → 50/ab by 2031...

SuperKEKB, the first new collider in particle physics since the LHC in 2008 (electron-positron (e^+e^-) rather than proton-proton (p-p))

I (A)

LER/HER

1.6/1.2

3.6/2.6

factor 2-3

φ

(mrad)

11

41.5

E (GeV)

LER/HER

3.5/8.0

4.0/7.0

KEKB

SuperKEKB

β*, (mm)

LER/HER

5.9/5.9

0.27/0.30

factor 20

β*x (cm)

LER/HER

120/120

3.2/2.5

L (cm-2s-1)

2.1 x 10³⁴

80 x 1034

 \Rightarrow to reach 6×10³⁵ cm⁻² s⁻¹ \Rightarrow cumulate 50 ab⁻¹ by ~ 2031

Super <FKB

Belle II detector

EM Calorimeter : CsI(Tl) waveform sampling

Vertex Detector 1/2 layers DEPFET + 4 layers DSSD

Installation of Vertex Detector (Fall 2018)

K_L and muon detector Resistive Plate Counter (barrel) Scintillator + WLSF + MPPC (endcaps)

Particle Identification Time-Of-Propagation counter (barrel) Prox. focusing Aerogel RICH

Central Drift Chamber He (50%):C₂H₆ (50%)small cells, long level arm, fast electronics

on - going DAQ upgrade (to be installed in 2021-2022)

PCIe 40 board, capable of reading via high speed optical links and to write to computer at rate of 100 Gb/s: limited number of boards (20) enough **to read entire Belle II detector** (P.Robbe, D.Charlet et al)

considering now VTX upgrade (2025 or later) also luminometer LumiBelle2, P.Bambade et al)

Background Description

only for the D+ channel

- The ~9% background contamination in the signal region can't be ignored → include it in the fit
- Use an empiric model derived from the data sidebands
 - simulation shows that the sidebands represent a good proxy of the background in the signal region
 - background PDF: $pdf_{bkg}(t, \sigma_t) = pdf_{bkg}(t | \sigma_t) pdf_{bkg}(\sigma_t)$

- Signal and sideband regions are fit simultaneously with all shape parameters free
 - the background fraction is constrained to the result of the mass fit

Systematics Breakdown

total uncertainties are 1.4 fs (D°) and 5.6 fs (D^{+})

- Most critical contribution to the systematic uncertainty comes from the alignment
 - affecting the length scale
 - estimated using several different versions of reconstructed misaligned signal MC samples (next slide), from the same generated sample
- Dominant systematics for the D+ is related to the backgrounds
 - to account for imperfect data-MC agreement of the decay-time distribution in the low-mass sideband

Source	Uncertainty (fs)				
	$D^0 \to K^- \pi^+$	$D^+ \to K^- \pi^+ \pi^+$			
Statistical	1.1	4.7			
Resolution model	0.16	0.39			
Backgrounds	0.24	2.52			
Detector alignment	0.72	1.70			
Momentum scale	0.19	0.48			
Input charm masses	0.01	0.03			
Total systematic	0.8	3.1			

- Both the dominant contributions can be improved:
 - reduce bkg contamination in the D+ signal region
 - improved alignment algorithm already in place

Nice complementarity

A. Angelescu et al., arXiv:2103.12504v2 (21 Apr 2021)

<u>cLFV: beyond the Standard Model</u>

$$\mathcal{B}_{\nu SM}(\tau \to \mu \gamma) = \frac{3\alpha}{32\pi} \left| U_{\tau i}^* U_{\mu i} \frac{\Delta m_{3i}^2}{m_W^2} \right|^2 < 10^{-40}$$

	I	<i>VV</i> 1				$\tau \rightarrow 3\mu$	$\tau \rightarrow \mu \gamma$	$\tau \rightarrow \mu \pi^+ \pi^-$	$\tau \rightarrow \mu K \bar{K}$	$\tau \to \mu \pi$	$\tau \to \mu \eta^{(\prime)}$	
Nodel	Reference	т→µү	т→µµµ	4-lepton	$O_{\mathrm{S},\mathrm{V}}^{4\ell}$	1	_	_	_	_	_	İ
SM+ v oscillations	EPJ C8 (1999) 513	10-40	10 ⁴⁰	dipole	• O _D	1	1	1	1	_	—	
SM+ heavy Maj v _R	PRD 66 (2002) 034008	10 ⁻⁹	10 -10		$O_V^{\mathbf{q}}$	_	_	✓ (I=1)	\checkmark (I=0,1)	_	_	
Non-universal Z'	PLB 547 (2002) 252	10 ⁻⁹	10-8	pton-gluon	O _{GG}	_	_	✓ (1=0) ✓	✓ (1=0,1) ✓	_	_	
SUSY SO(10)	PRD 68 (2003) 033012	10-8	10-10		$O_A^q \leftarrow$	—	_	_	_	✓ (I=1)	✓ (I=0)	
mSUGRA+seesaw	PRD 66 (2002) 115013	10-7	10 ⁻⁹		•0 _p •0 _{cõ}	_	_	_	_	✓ (I=1) -	✓ (1=0) ✓	
SUSY Higgs	PLB 566 (2003) 217	10-10	10-7		00	- lepton-	-quark		Celis, C	irigliano, Pa	ssemar (201-	4)
										3		

cLFV: beyond the Standard Model

 τ LFV searches at Belle II will be extremely clean with very little background (if any), thanks to pair production and double-tag analysis technique.

In contrast, hadron collider experiments must contend with larger combinatorial and specific backgrounds

Background modes normalised to $D_s \rightarrow \eta(\mu\mu\gamma)\mu\nu$ (BR ~ 10⁻⁵)

Relative

abundance

1

0.87

0.13

0.13

0.06

0.05

Most improvement in coming decade is expected from Belle II, which can reach 1×10^{-9} [arXiv:1011.0352] and will do even better if can achieve ~ zero bckgd

Many more interesting τ topics

<u>CP asymmetry</u> (CPV not yet observed in the lepton sector)

$$A_{\tau} \equiv \frac{\Gamma(\tau^{+} \rightarrow \pi^{+} K_{S}^{0} \overline{\nu}_{\tau}) - \Gamma(\tau^{-} \rightarrow \pi^{-} K_{S}^{0} \nu_{\tau})}{\Gamma(\tau^{+} \rightarrow \pi^{+} K_{S}^{0} \overline{\nu}_{\tau}) + \Gamma(\tau^{-} \rightarrow \pi^{-} K_{S}^{0} \nu_{\tau})} \qquad A_{\tau} \equiv (-3.6 \pm 2.3 \pm 1.1) \ 10^{-3} \\ (\ge 0 \pi^{0}) [Babar, PRD85, 031102 (2012)] \\ A_{\tau}^{SM} = (+3.6 \pm 0.1) \ 10^{-3} \\ (CPV \text{ in } K^{0} \text{ system}) \\ [Bigi-Sanda, Grossman-Nir] \end{cases}$$

Belle shows no indication of CP aymmetry in angular distribution of τ⁻→K_Sπ⁻ν_τ
a variety of CPV observables to be studied: τ→Kππν_τ, τ→πππν_τ rate, angular asymmetries, triple products...

EDM (CPV in tau pair production), τ Anomalous Magnetic Moment

	S.Eidelman	, M.Passera
$10^8 \cdot a_{\tau}^{\text{th}} = 117$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	QED EW hvp hvp NLO light-by-light

 $\circ~$ difficult to measure , a_{τ}^{exp} = (-0.018 ± 0.017) , DELPHI , EPJC 35 (2004) 159

Calendrier de Belle II

la vie n'est pas un long fleuve tranquille...

Main priorities (focusing on charged B modes)

- ∘ $B^- \rightarrow D^0 \pi^+ \pi^- \pi^+$: measure $D^0 a_1^+$, $D^0 \rho^0 \pi^-$, $D^0 \pi^+ \pi^- \pi^+$ NR
- Modes with one π^0 :
 - D⁰ ρ^+ , OLD (CLEO 0.9 fb⁻¹)
 - $D^{*}\pi^{+}\pi^{+}\pi^{0}$, OLD (ARGUS 0.25 fb⁻¹)
 - $D^{-}\pi^{+}\pi^{+}\pi^{0}$, never measured (guessed in DECAY.DEC file)
 - $D^{(*)0} \pi^{+} \pi^{+} \pi^{-} \pi^{0}$, OLD (CLEO 9 fb⁻¹)
- Modes with η (PYTHIA), D^{(*)0} η π⁺ (link to SL gap filled with D^{(*)0} η l^{+%}ν)
 ... also DKK^{*}...
 - ... and also add B⁰ modes

crucial for FEI hadronic modes:
better modeling = optimal result
new modes = higher efficiency
but also important for inclusive tagging
.... trained on MC

Observation of $B \rightarrow D^{(*)} K^{-\%} K^{0(*)}$ decays A.Drutskoy et al, hep-ex/0207041 [29 fb⁻¹]

BEYOND FEI - DIRECTIONS (I)

- $B \rightarrow K\tau \ell$ is the ideal mode to exploit B-tagging improvements unique case with m_{τ} as variable of signal extraction
- Multi-pion modes
 - Improve MC modelling

- PHSP model often not accurate (intermediate resonances)

- Wrong interpretation of PDG b.r.'s (double counting) -Resonant vs. NR e.g. $\overline{D}^0 \pi^+ \pi^+ \pi^-$

- Large uncertainty on high-b.r. decay modes

₽

• FEI' = Re-trained FEI + new modes $D^{*0}D_{s}^{*+}(1.7)$ $D^{*-}\pi^{+}\pi^{+}\pi^{0}(1.8)$ $\overline{D}^{(*)0}K^{(*)+}K^{(*)0}(\sim 0.5)$

- + 'Recycling'
- Decays with D* are lost as soon as one γ or π⁰ is missing
- Select the ΔE~-0.2 GeV region with known shift (missing γ or π⁰) → recoil mass is still fine!

A better MC modelling is anyway beneficial for the training of FEI and any tagging algorithms (even inclusive ones!)

BEYOND FEI - DIRECTIONS (II)

Avoid reconstructing both D's. Instead D⁰X tagging where

X has specific properties (i.e. # kaons, invariant mass etc.)

Double charm modes give small `FEI' contribution, despite the high branching ratios (DD_sX ~ 8 %, DDKX ~ 5 %) because of the full reconstruction of 2 D mesons

 Semi-inclusive approach for higher tagging efficiency