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• The magnetic moment can be determined by measuring the Λc 

polarisation passing through the bent crystal.  
• The angular distribution of the Λc decay carries information of 

polarisation however, it can not be separated so-called asymmetry 
parameter α.  

• We need to measure this parameter at LHCb in advance.
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Towards μΛc measurement 

of Ref. [10]. The primed angles refer to the direction of one of the resonance’s
daughters in the resonance’s rest frame. Note that the decay amplitudes for
each resonance may have contributions to each of the four terms in Equation
1.
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Fig. 1. Definition of angles using Λ+
c → pK

∗0
→ pK−π+ as an example. In both

figures the Λ+
c is at rest. In the first figure, which defines (θp,φp), the x-axis is along

the direction of motion of the Λ+
c in the lab frame and the z-axis is the polarization

axis, normal to the plane of production. In the second figure we define φKπ as the

angle between the plane containing the K
∗0

decay products and the plane containing
the proton and the x-axis.

Each event in the final data sample is described by five kinematic variables
of interest (two two-body masses and the decay angles θp, φp, and φKπ as
defined in Figure 1) which are determined after the pKπ reconstructed mass
is constrained to the Λc mass. We chose the quantization axis (the z-axis in
the Λc rest frame) to be normal to the Λc production plane (as defined by
p̂beam × p̂Λc

, where p̂beam is the beam direction and p̂Λc
is the Λc production

direction in the lab frame). The x-axis in the Λc rest frame is chosen to be the
direction of the Λc in the lab frame.

3 Experiment E791 and Data Selection

We analyze data from Fermilab fixed-target experiment E791, which ran dur-
ing 1991 and 1992. The data were recorded from 500 GeV/c π− beam inter-
actions in five thin target foils (one platinum, four diamond) whose centers
were separated by about 1.53 cm. The detector, described elsewhere in more
detail[11,12], was a large-acceptance, forward, two-magnet spectrometer. The
key components for this study were eight planes of multiwire proportional
chambers, and six planes of silicon microstrip detectors (SMD) before the tar-
get for beam tracking, a 17-plane SMD system and 35 drift chamber planes
downstream of the target for track and vertex reconstruction, and two multi-
cell threshold Čerenkov counters for charged particle identification.
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• Theoretical computation 
of the Λc→Kpπ decays
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Λc→(K*p, Δ++K,𝝠π)→pKπ decay  
• It was first studied by the Fermilab E791 experiment.  
• E791: amplitude analysis including 3 resonances, using the helicity 

amplitude method.
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daughters in the resonance’s rest frame. Note that the decay amplitudes for
each resonance may have contributions to each of the four terms in Equation
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3 Experiment E791 and Data Selection

We analyze data from Fermilab fixed-target experiment E791, which ran dur-
ing 1991 and 1992. The data were recorded from 500 GeV/c π− beam inter-
actions in five thin target foils (one platinum, four diamond) whose centers
were separated by about 1.53 cm. The detector, described elsewhere in more
detail[11,12], was a large-acceptance, forward, two-magnet spectrometer. The
key components for this study were eight planes of multiwire proportional
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downstream of the target for track and vertex reconstruction, and two multi-
cell threshold Čerenkov counters for charged particle identification.
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Polarisation measurement in the past…



Λc→(K*p, Δ++K,𝝠π+……..)→pKπ decay  
• The first polarisation measurement in pp collision (LHC) 
• Amplitude analysis including dozens of resonances 
• The (modified) helicity amplitude method
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Polarisation measurement at LHCb @ IJCLab
PHD @ LHCB GROUP 

E. NIEL (IJCLAB)
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Figure 5.7: Sketch of the rotation and boost sequence for the Kú and �ú chains, the azimuthal angle
of the Wigner rotation „Õ

K is shown on the last drawing, showing the final particles configuration in
the x≠y plane plane.
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Figure 5.8: Definition of the frames and angles for the three decay chains, Kú on the left, �++ and
�ú on the right.

homomorphism SU(2) æ SO(3).
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6.3. AMPLITUDE FIT

Res M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

pK channel

�ú(1405) 7 4 4 4 4 4 4 4 4 4 4 4 4

�ú(1520) 4 4 4 4 4 4 4 4 4 4 4 4 4

�ú(1600) 7 7 4 4 4 4 4 4 7 7 4 4 4

�ú(1670) 4 4 4 4 4 4 4 4 4 4 4 4 4

�ú(1690) 7 7 7 7 7 7 7 4 4 7 7 4 4

�ú(1800) 7 7 7 7 7 7 7 7 7 7 7 7 7

�ú(1810) 7 7 7 7 7 7 7 7 7 7 7 7 7

�ú(1820) 7 7 7 7 7 7 7 7 7 7 7 7 7

�ú(1830) 7 7 7 7 7 7 7 7 7 7 7 7 7

�ú(1890) 7 7 7 7 7 7 7 7 7 7 7 7 7

�ú(2000) 7 4 4 4 4 4 4 4 4 4 4 4 4

�ú(2100) 7 7 7 7 7 7 7 7 7 7 7 7 7

�ú(2110) 7 7 7 7 7 7 7 7 7 7 7 7 7

pfi channel

�++(1232) 4 4 4 4 4 4 4 4 4 4 4 4 4

�++(1600) 7 7 7 7 4 4 4 4 4 4 4 4 4

�++(1620) 7 7 7 7 7 7 4 4 4 4 4 4 7

�++(1700) 7 7 7 7 7 4 4 4 4 4 4 4 4

Kfi channel

Kú(700) 7 7 7 4 4 4 4 4 4 4 4 4 4

Kú(892) 4 4 4 4 4 4 4 4 4 4 4 4 4

Kú(1410) 7 7 7 7 7 7 7 7 7 7 4 4 7

Kú
0
(1430) 7 7 7 4 4 4 4 4 4 4 4 4 4

Fit ‰2/ndf
Npar 18 26 30 34 38 42 46 50 46 42 54 58 46
m2

pK 217.17 40.66 9.18 10.80 12.18 12.30 11.85 13.39 15.23 12.44 12.92 16.24 14.5
m2

Kfi 27.27 25.15 12.32 12.43 14.72 13.31 11.60 13.35 12.01 11.06 12.61 16.36 11.8
m2

pfi 55.82 22.64 10.60 12.24 12.50 11.82 11.12 12.02 12.10 10.47 14.44 15.12 13.9
cos(◊p) 7.50 6.48 6.28 6.62 7.20 7.73 8.19 8.56 8.07 7.34 9.19 10.11 8.13
‰ 6.59 5.44 5.50 5.57 6.35 6.68 7.05 7.63 7.04 6.62 8.30 9.18 7.36
„p 6.27 5.52 6.08 6.04 6.56 7.19 8.09 8.73 8.00 7.58 9.53 10.39 7.88
m2

pK ,m2
pfi 389.18 29.97 7.32 10.38 11.86 11.80 5.04 4.72 36.17 136.68 4.92 14.03 41.0

FF 1.030 0.932 1.100 1.030 1.119 1.102 1.129 1.125 1.106 1.113 1.065 1.136 1.094

Table 6.9: Summary of the model building procedure, each column identifies a di�erent model (named
M1, M2, M3 etc..), each line is a resonance from Ref. [11], the green tick marks indicate that the
resonance is included in the model and the red crosses that it is excluded. The last 9 lines show the
fit quality results for each model, including: the number of parameters, the single variables ‰2/ndf,
the two-dimensional ‰2/ndf and the sum of fit fractions (FF). The ‰2/ndf values in green indicate
the best models and in orange the reasonable ones.
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Theory for Polarisation measurement @ IJCLab-Kharkov

Λc→(K*p, Δ++K,𝝠π)→pKπ decay  
• Amplitude computation by Feynman diagram 
• Only intermediate 3 resonances (3/2+, 3/2-, 1-), to start… 
• Choice of frame : common for 3 resonances
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Figure 1: The pK⇡ decay plane and the p � ⌃ plane (⌃ is the polarisation axis, which

we may choose to be perpendicular to the beam and the ⇤c momentum in the laboratory

frame) in the rest frame of ⇤c.

3

We use Λc rest frame with 
• x’-y’-z’: the pKπ decay plane 
• x-z: p-Σ plane 
• z(‘): proton direction 

Brief Article

E.K.

1 Kinematical variables

We first define the 4 momentum of the final sates as follow:

⇤c ! p(p1)K(p2)⇡(p3) (1)

We work on the rest frame of ⇤c and the proton momentum to be on the the z axis:

~ez =
~p1
|~p1|

(2)

Next, we define the quantisatoin axis of the ⇤c polarisation,
~⌃, to be perpendicular to the

beam and the ⇤c momentum in the laboratory frame, i.e. ~⌃ = ~̂pbeam ⇥ ~̂p⇤c , and then, the

proton-projection axis plane to be on the x� z plane:

~ey =
~p1 ⇥ ~⌃

|~p1 ⇥ ~⌃|
(3)

Finally, we define the proton-pion plane to be the x0 � z0 plane, where z0 axis is shared

with the z axis (see Fig. 1):

~ey0 =
~p1 ⇥ ~p3
|~p1 ⇥ ~p3|

(4)

We define the angle between proton and polarisation axis to be � (sin� > 0)

cos� =
~p1 · ~⌃
|~p1 · ~⌃|

(5)

and the angle between these two planes to be ✓

cos ✓ =
~x · ~x0

|~x · ~x0| (6)

2

E.K. A. Korchin, V. Kovalchuk 

INTERNSHIP PROJECT  
OF ALEKSEY LUKIANCHUK
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• The decay rate is written by form factors and Breite-Wigner for each 
resonance, on top of the polarisation parameter ξ.  

2 The di↵erential decay rate computation

Now we compute the di↵erential decay rate for given ⇤c polarisation, ⇠, including three

resonances. First, the decay rate of the three body decay is given as

d�(⇠) =
1

(2⇡)4
1

32s3/2
|M|2dm2

12dm
2
23d✓ (18)

where the integration range is (m1 +m2)
2 < m2

12 < (M �m3)
2
and

(m2
23)max = (E⇤

2 + E⇤
3)

2 �
✓q

E⇤2
2 �m2

2 �
q
E⇤2

3 �m2
3

◆2

(19)

(m2
23)min = (E⇤

2 + E⇤
3)

2 �
✓q

E⇤2
2 �m2

2 +

q
E⇤2

3 �m2
3

◆2

(20)

with E⇤
2 = (m2

12 �m2
1 +m2

2)/2m12 and E⇤
3 = (M2 �m2

12 �m2
3)/2m12.

Or we can choose another combination

d�(⇠) =
1

(2⇡)4
1

32s3/2
|M|2dm2

12dm
2
13d✓ (21)

where the integration range is (m1 +m3)
2 < m2

13 < (M �m2)
2
and

(m2
12)max = (E⇤

1 + E⇤
2)

2 �
✓q

E⇤2
1 �m2

1 �
q
E⇤2

2 �m2
2

◆2

(22)

(m2
12)min = (E⇤

1 + E⇤
2)

2 �
✓q

E⇤2
1 �m2

1 +

q
E⇤2

2 �m2
2

◆2

(23)

with E⇤
1 = (m2

13 +m2
1 �m2

2)/2m13 and E⇤
2 = (M2 �m2

13 �m2
2)/2m13.

2.1 Amplitudes and their conjugate

The squared amplitude |M|2 =
P

�p
M†M contains three resonance contributions:

M = M⇤0BW⇤0(s12) +M�++BW�++(s13) +MK⇤BWK⇤(s23) (24)

M†
= M†

⇤0BW⇤
⇤0(s12) +M†

�++BW⇤
�++(s13) +M†

K⇤BW⇤
K⇤(s23) (25)

where BW represents the Breit-Wigner form for the resonance R:

BWR(sR) =
1

sR �m2
R + imR�R

, BW⇤
R(sR) =

1

sR �m2
R � imR�R
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We give the expression of the amplitudes and their conjugates below (the detailed

definition of the form factors and propagators are given in the appendix):

M⇤0 = u(p)�pA⇤0u⇤c(Q) (26)

M�++ = u(p)�pA�++u⇤c(Q) (27)

MK⇤ = u(p)�pAK⇤u⇤c(Q) (28)

(29)

where

A⇤0 = G⇤0BW⇤0(s12)
n
pµ�5( /q1 +m⇤0)Rµ⌫

(q1)C
⇤0
⌫

o
(30)

A�++ = G�++BW�++(s13)
n
pµ( /q2 +m�++)Rµ⌫

(q2)C
�++

⌫

o
(31)

AK⇤ = GK⇤BWK⇤(s23)
n
Rµ

(q3)C
K⇤
µ

o
(32)

The Rµ⌫(µ)
come from the propagators of the spin 3/2(1) particles and defined as

Rµ⌫
(qi) = �gµ⌫ +

1

3
�µ�⌫ +

1

3q2i
(/qi�

µq⌫i + qµi �
⌫
/qi) (33)

Rµ
(q3) = (�gµ⌫ +

qµ3 q
⌫
3

m2
K⇤

)(p3⌫ � p2⌫) (34)

The factors CR
comes from the form factors and defined as:

C⇤0
⌫ = Q⌫(C�5 +D) (35)

C�++

⌫ = Q⌫(A�5 +B) (36)

CK⇤
µ = E1�µ + E2Qµ + �5(F1�µ + F2Qµ) (37)

We provide the results for the conjugate amplitudes as well:

A†
⇤0 = �G⇤

⇤0BW⇤
⇤0(s12)

n
C⇤0†
⌫ R⌫µ

(q1)( /q1 +m⇤0)�5pµ
o

(38)

A†
�++ = G⇤

�++BW⇤
�++(s13)

n
C�++†
⌫ R⌫µ

(q2)( /q2 +m�++)pµ
o

(39)

A†
K⇤ = G⇤

K⇤BW⇤
K⇤(s23)

n
CK⇤†
µ Rµ

(q3)
o

(40)

with

C⇤0†
⌫ = Q⌫(�C⇤�5 +D⇤

) (41)

C�++†
⌫ = Q⌫(�A⇤�5 +B⇤

) (42)

CK⇤†
µ = E⇤

1�µ + E⇤
2Qµ + �5(F

⇤
1 �µ � F ⇤

2Qµ) (43)
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M�++ = u(p)�pA�++u⇤c(Q) (27)

MK⇤ = u(p)�pAK⇤u⇤c(Q) (28)

(29)

where

A⇤0 = G⇤0BW⇤0(s12)
n
pµ�5( /q1 +m⇤0)Rµ⌫

(q1)C
⇤0
⌫

o
(30)

A�++ = G�++BW�++(s13)
n
pµ( /q2 +m�++)Rµ⌫

(q2)C
�++

⌫

o
(31)

AK⇤ = GK⇤BWK⇤(s23)
n
Rµ

(q3)C
K⇤
µ

o
(32)

The Rµ⌫(µ)
come from the propagators of the spin 3/2(1) particles and defined as

Rµ⌫
(qi) = �gµ⌫ +

1

3
�µ�⌫ +

1

3q2i
(/qi�

µq⌫i + qµi �
⌫
/qi) (33)

Rµ
(q3) = (�gµ⌫ +

qµ3 q
⌫
3

m2
K⇤

)(p3⌫ � p2⌫) (34)

The factors CR
comes from the form factors and defined as:

C⇤0
⌫ = Q⌫(C�5 +D) (35)

C�++

⌫ = Q⌫(A�5 +B) (36)

CK⇤
µ = E1�µ + E2Qµ + �5(F1�µ + F2Qµ) (37)

We provide the results for the conjugate amplitudes as well:

A†
⇤0 = �G⇤

⇤0BW⇤
⇤0(s12)

n
C⇤0†
⌫ R⌫µ

(q1)( /q1 +m⇤0)�5pµ
o

(38)

A†
�++ = G⇤

�++BW⇤
�++(s13)

n
C�++†
⌫ R⌫µ

(q2)( /q2 +m�++)pµ
o

(39)

A†
K⇤ = G⇤

K⇤BW⇤
K⇤(s23)

n
CK⇤†
µ Rµ

(q3)
o

(40)

with

C⇤0†
⌫ = Q⌫(�C⇤�5 +D⇤

) (41)

C�++†
⌫ = Q⌫(�A⇤�5 +B⇤

) (42)

CK⇤†
µ = E⇤

1�µ + E⇤
2Qµ + �5(F

⇤
1 �µ � F ⇤

2Qµ) (43)

6

parity violating

Theory for Polarisation measurement @ IJCLab-Kharkov

In this work, we include only  
3 intermediate resonances:  
Λ’ (3/2-)Δ++(3/2+),K*(1-)

INTERNSHIP PROJECT  
OF ALEKSEY LUKIANCHUK

d�(⇠) =
1

(2⇡)4
1

32s3/2
|M|2 ds12ds23d cos ✓d�

<latexit sha1_base64="5Ks05JNO+ZhhOdDbX7TscYUX0yo="></latexit>
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• Our final result can be written in a simple form:  

2.2 Spin summation

After spin summation of the proton, we obtain

|M|2 = Tr
h⇣ X

R=⇤0,�++,K⇤

A†
R

⌘
(/p+mp)

⇣ X

R=⇤0,�++,K⇤

AR

⌘
P�⇤c

i
(44)

where the projection operator is defined as

P�⇤c
= u�⇤c

(Q)u�⇤c
(Q) (45)

=
1

2
(/Q+m�⇤c

)(1 + �5/a)

3 Results

3.1 The individual resonance contributions

All three resonance contributions turn out to have the same angular distribution (with
di↵erent angular coe�cients)

d�

ds12d13d cos ✓d�
= a(s12, s13)+⇠

⇣
b0(s12, s13) cos ✓ + b1(s12, s13) sin ✓ cos�+ b2(s12, s13) sin ✓ sin�| {z }

⌘b(s12,s13,cos ✓,�)

⌘

(46)
The coe�cients a, bi are the functions of Dalitz variables s12, s13 as well as the 6 hadronic

form factors, A,B, · · · , F . The goal is to determine these hadronic parameters and ⇠
simultaneously from the experimental measurements of the 4 Dalitz plots a, bi. To do so,
we first write the normalised PDF,

f̂(~v) =
a(s12, s13) + ⇠b(s12, s13, cos ✓,�)

N
(47)

where the normalisation constant N is (the b term disappears after integration of the
angles):

N =

Z
a(s12, s13) ds12ds13 (48)

6
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(46)
The coe�cients a, bi are the functions of Dalitz variables s12, s13 as well as the 6 hadronic

form factors, A,B, · · · , F . The goal is to determine these hadronic parameters and ⇠
simultaneously from the experimental measurements of the 4 Dalitz plots a, bi. To do so,
we first write the normalised PDF,

f̂(~v) =
a(s12, s13) + ⇠b(s12, s13, cos ✓,�)

N
(47)

where the normalisation constant N is (the b term disappears after integration of the
angles):

N =

Z
a(s12, s13) ds12ds13 (48)

6

a : Dalitz distribution (parity even) 
b0 : Equivalent to α (parity odd) 
b2 : triple product (CP or T odd ?)

‣ a contains |A|2, |B|2, … |Fi|2 and interferences, BC, AD, BE1,2, AF1,2….  

‣ b0 contains interferences, AB, CD, E1,2F1,2, AC, BD, AE1,2, BF1,2….  

‣ b2 contains imaginary part

A (𝒫), B(𝒫) 
C (𝒫), D(𝒫) 

E1,2 (𝒫), F1,2(𝒫) 

a, b0, b1, b2 are written by the form factors, A, B, C, D, Ei, Fi and  
the Breit-Wigner of each resonance  (see previous page).  

Theory for Polarisation measurement @ IJCLab-Kharkov

INTERNSHIP PROJECT  
OF ALEKSEY LUKIANCHUK

E.K. A. Korchin, V. Kovalchuk 



8

• Our final result can be written in a simple form:  

2.2 Spin summation

After spin summation of the proton, we obtain

|M|2 = Tr
h⇣ X

R=⇤0,�++,K⇤

A†
R

⌘
(/p+mp)

⇣ X

R=⇤0,�++,K⇤

AR

⌘
P�⇤c

i
(44)

where the projection operator is defined as

P�⇤c
= u�⇤c

(Q)u�⇤c
(Q) (45)

=
1

2
(/Q+m�⇤c

)(1 + �5/a)

3 Results

3.1 The individual resonance contributions

All three resonance contributions turn out to have the same angular distribution (with
di↵erent angular coe�cients)

d�

ds12d13d cos ✓d�
= a(s12, s13)+⇠

⇣
b0(s12, s13) cos ✓ + b1(s12, s13) sin ✓ cos�+ b2(s12, s13) sin ✓ sin�| {z }

⌘b(s12,s13,cos ✓,�)

⌘

(46)
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(46)
The coe�cients a, bi are the functions of Dalitz variables s12, s13 as well as the 6 hadronic

form factors, A,B, · · · , F . The goal is to determine these hadronic parameters and ⇠
simultaneously from the experimental measurements of the 4 Dalitz plots a, bi. To do so,
we first write the normalised PDF,

f̂(~v) =
a(s12, s13) + ⇠b(s12, s13, cos ✓,�)

N
(47)

where the normalisation constant N is (the b term disappears after integration of the
angles):

N =

Z
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6

a : Dalitz distribution (parity even) 
b0 : Equivalent to α (parity odd) 
b2 : triple product (CP or T odd ?)

‣ a contains |A|2, |B|2, … |Fi|2 and interferences, BC, AD, BE1,2, AF1,2….  

‣ b0 contains interferences, AB, CD, E1,2F1,2, AC, BD, AE1,2, BF1,2….  

‣ b2 contains imaginary part

A (𝒫), B(𝒫) 
C (𝒫), D(𝒫) 

E1,2 (𝒫), F1,2(𝒫) 

a, b0, b1, b2 are written by the form factors, A, B, C, D, Ei, Fi and  
the Breit-Wigner of each resonance  (see previous page).  

Theory for Polarisation measurement @ IJCLab-Kharkov
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E.K. A. Korchin, V. Kovalchuk 

We perform the simultaneous fit of form factor 
(A, B…Fi) and polarisation ξ using 4 dimensional 
kinematics (s12, s13, θ ϕ). 
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The sensitivity study: proof of concept

Step 1) Obtain a example MC data from LHCb (with only 3 resonances) 
Step 2) Construct our model (i.e. fitting our form factors using the MC Dalitz plot) 
Step 3) Perform the simultaneous fit using events generated using our model 

 We use the “omega” method (c.f. Gampola, tau polarisation measurement, ILC top spin measurement…).

E.K. A. Korchin, V. Kovalchuk 
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The sensitivity study: proof of concept

Step 1) Obtain a example MC data from LHCb (with only 3 resonances) 
Step 2) Construct our model (i.e. fitting our form factors using the MC Dalitz plot) 
Step 3) Perform the simultaneous fit using events generated using our model 

 We use the “omega” method (c.f. Gampola, tau polarisation measurement, ILC top spin measurement…).

P1:  p 
P2: K 
P3: pi

INTERNSHIP PROJECT  
OF FLAVIEN CALLET
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a coefficient on m12-m23 Dalitz plane b0 coefficient on m12-m23 Dalitz plane 

Δ
Λ

K*

E.K. A. Korchin, V. Kovalchuk 
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The sensitivity study: proof of concept

INTERNSHIP PROJECT  
OF FLAVIEN CALLET

w distribution for xi=±0.9

Fit result for ξ (for ξ=0.9) 
ξ=0.890±0.009 (for 200k event) 
ξ=0.882±0.028 (for 20k event)

Prelim
inary result of fit

ΔΛ

K*

w^2 weighted Dalitz plot on m12-m23 with xi=0.9 

The w^2 distribution is approximately                   
1/sigma_xi^2 distribution (sigma_xi 
=error on xi), i.e.  the plot shows the 

region of high sensitivity

E.K. A. Korchin, V. Kovalchuk 
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• The charm magnetic moment determination with bent-crystal 
requires a measurement of the 𝝠c polarisation.  

• Last few years, there have been impressive progresses on the 𝝠c 
polarisation measurement at LHCb.  

• Our theoretical computation has been finished and it is ready to be 
used for sensitivity studies. Our result can be extended to include 
more resonances.  

• The French-Ukrainian collaboration have been very fruitful! We hope 
we can continue this collaboration ! 

Conclusions and outlook



Backup



• Λc→Λπ→pππ decay  

• In this case where the first and the second decays are weak decays 
(both include parity violation), the angular dependence together with 
the information of 𝜶2=0.642±0.013 allows to determine 𝝃 and 𝜶1 
separately.   

• Problem: the decay rate is very small. 

14

8

The case of ⇤c ! ⇤⇡ followed by ⇤ ! p⇡

Let us start with computing the first decay chain ⇤c ! ⇤⇡ The parity violating interaction is induced by a weak
interaction in the form

M�⇤c ,�⇤ = u⇤(p⇤,�⇤)(A�B�5)u⇤c(p⇤c ,�⇤c) (20)

where p⇤c,⇤ is the 4 momentum and the constants A and B represent parity conserving and violating contributions,
respectively. The helicity �⇤c,⇤ is the projection of the spin in the momentum direction. We work in the rest frame of
⇤c whose projection of spin coincides with z axis. Then, we define the direction of ⇤ with polar angle ✓ and azimuthal
angle �, such that it corresponds to the angle ✓ in Eq. (18). As a result, the total amplitude can be expressed as

|M |
2 =

1 + ⇠

2

�
|M++|

2 + |M+�|
2
�
+

1� ⇠

2

�
|M�+|

2 + |M��|
2
�

/
�
|X1|

2 + |X2|
2
�
+ ⇠

�
|X1|

2
� |X2|

2
�
cos ✓ (21)

where

X1,2 = (A�B)
q

E⇤ ⌥ |~pp|+ (A+B)
q

E⇤ ± |~pp| (22)

Thus, the the asymmetry parameter ↵ is given by

↵ =
|X1|

2
� |X2|

2

|X1|
2 + |X2|

2

=
2Re(AB

⇤)|~p⇤
(E⇤ +m⇤)|A|2 + (E⇤ �m⇤)|B|2

(23)

with E⇤ and ~p⇤ being the energy and three-momentum of the final state ⇤ in the rest frame of ⇤c.
We can see, indeed ↵ is non-zero only when there is parity violating contributions (the B term). In this particular

process, the parity violating interaction produces the final states ⇤⇡ in P-wave, which decreases as the final state
momentum, |~pf |, decreases. Thus, ↵ ! 0 at the non-relativistic limit. The ↵ parameter depends on the four-

momentum of the final state in general but at the relativistic limit it becomes constant ↵ = 2Re(AB
⇤)

|A|2+|B|2 . The A and B

parameters depends on the final states and the the theoretical estimates are model dependent.
Up to now, we find the same result as Eq. (18), where we can not separately measure the ⇤c polarization from ↵.

Thus, we next consider the decay of the subsequent decay ⇤ ! p⇡. The transition amplitude can be written similarly
as the ⇤c decay:

M�⇤,�p = up(pp,�p)(a� b�5)u⇤(p⇤,�⇤) (24)

Then our di↵erential decay rate can be written as

dN

d cos ✓
= 4m2

⇤N1N2(1 + ↵1↵2 cos ✓ � ⇠(↵1 � ↵2 cos ✓)) (25)

= 4m2
⇤N1N2(1� ⇠↵1 + ↵2(↵1 + ⇠) cos ✓) (26)

where

N1 = (E⇤c +m⇤c)|A|
2 + (E⇤c �m⇤c)|B|

2 (27)

N2 = (Ep +mp)|a|
2 + (Ep �mp)|b|

2 (28)

↵1 =
2Re(AB⇤)|~p⇤c |

N1
(29)

↵2 =
2Re(ab⇤)|~pp|

N2
(30)

Note that now we are working in the rest frame of ⇤ and the ⇤c spin axis and momentum direction is chosen to
be the same. The angle ✓ is the angle between ⇤c and p. The second line of Eq. (25) shows that there are two
observables, coe�cients of non-angular dependent part, 1 � ⇠↵1, and of cos ✓ part, ↵2(↵1 + ⇠). Then using the
very well measured value of ↵2 = 0.642 ± 0.013 [37], we could achieve to obtain ↵1 and ⇠ separately. So far ↵1 is
measured with less precision, ↵1 = �0.91 ± 0.15 [37]. Measuring them with much higher statistics data of LHCb
will be very interesting for future. In particular, having the result of ⇤b polarization measurement at LHCb [38],

A,B: form factor for Λc→Λπdecay   
a,b: form factor for Λ→pπdecay  

parity violating

Polarisation measurement in the past…
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• Our final result can be written in a simple form:  

The sensitivity study: proof of concept

2.2 Spin summation

After spin summation of the proton, we obtain

|M|2 = Tr
h⇣ X

R=⇤0,�++,K⇤

A†
R

⌘
(/p+mp)

⇣ X

R=⇤0,�++,K⇤

AR

⌘
P�⇤c

i
(44)

where the projection operator is defined as

P�⇤c
= u�⇤c

(Q)u�⇤c
(Q) (45)

=
1

2
(/Q+m�⇤c

)(1 + �5/a)

3 Results

3.1 The individual resonance contributions

All three resonance contributions turn out to have the same angular distribution (with
di↵erent angular coe�cients)
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⌘

(46)
The coe�cients a, bi are the functions of Dalitz variables s12, s13 as well as the 6 hadronic

form factors, A,B, · · · , F . The goal is to determine these hadronic parameters and ⇠
simultaneously from the experimental measurements of the 4 Dalitz plots a, bi. To do so,
we first write the normalised PDF,

f̂(~v) =
a(s12, s13) + ⇠b(s12, s13, cos ✓,�)

N
(47)

where the normalisation constant N is (the b term disappears after integration of the
angles):

N =

Z
a(s12, s13) ds12ds13 (48)
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6

Step 1) Obtain an example MC data from LHCb (with only 3 resonances) 
Step 2) Construct our model (i.e. fitting our form factors using the MC Dalitz plot) 
Step 3) Perform the simultaneous fit using events generated using our model 

 We use the “omega” method (c.f. Gampola, tau polarisation measurement, ILC top spin measurement…).

We perform the simultaneous fit of form factor (A, B…Fi) and 
polarisation ξ using 4 dimensional kinematics (s12, s13, θ ϕ). 
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