

J/ψ inclusive photoproduction in ultra peripheral collisions

Kate Lynch IJClab & University College Dublin

in collaboration with Ronan McNulty, Charlotte Van Hulse, Carlo Flore, Jean-Philippe Lansberg & Hua-Sheng Shao, IJCLab (Orsay)

October 29th 2021

This project is supported by the European Union's Horizon 2020 research and innovation programme under Grant agreement no. 824093

K. Lynch (IJClab & UCD)

 J/ψ photoproduction

October 29th 2021 1 / 22

Quarkonium Production

J.-P. Lansberg, Phys.Rept. 889 (2020), 1-106;

• We are concerned with quarkonia which are bound states of heavy quarks.

- Because of its scale $Q\bar{Q}$ production can be calculated perturbatively.
- However quarkonium production has two associated scales heavy-quark pair production (perturbative part) and hadronisation (non-perturbative part).
- Presently no consensus on the mechanism for quarkonium production.

K. Lynch (IJClab & UCD)

 J/ψ photoproduction

Quarkonium Production Model

See Phys.Rept. 889 (2020) 1-106 and EPJC (2016) 76:107 for reviews

Popular approaches assume a factorisation between the production of the heavy quark pair (perturbative part) and its hadronisation into a meson (non-perturbative part).

- No agreement on which mechanism is dominant
- Differences in the treatment of the hadronisation
- 3 common models:
 - COLOUR EVAPORATION MODEL: based on quark-hadron duality; only the invariant mass matters; semi-soft gluons emissions; colour-wise decorrelated cc production and hadronisation;
 - COLOUR SINGLET MODEL: hadronisation w/o gluon emission; colour and spin are preserved during the hadronisation
 - NRQCD AND COLOUR OCTET MECHANISM: higher Fock states of the mesons taken into account; $Q\bar{Q}$ can be produced in octet states with different quantum # to the meson.

- 3

A D N A B N A B N A B N

See JPL. arXiv:1903.09185 [hep-ph] (Phys.Rept. 889 (2020) 1)

æ

A D N A B N A B N A B N

See JPL. arXiv:1903.09185 [hep-ph] (Phys.Rept. 889 (2020) 1) Colour-Singlet Model (CSM) long thought to be insufficient

... not as clear now

[large NLO and NNLO correction to the P_T spectrum ; but not perfect \rightarrow need a full NNLO]

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008); JPL EPJC 61 (2009) 693; H.S. Shao JHEP 1901 (2019) 112

See JPL. arXiv:1903.09185 [hep-ph] (Phys.Rept. 889 (2020) 1) Colour-Singlet Model (CSM) long thought to be insufficient

... not as clear now

[large NLO and NNLO correction to the P_{T} spectrum ; but not perfect \rightarrow need a full NNLO]

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008); JPL EPJC 61 (2009) 693; H.S. Shao JHEP 1901 (2019) 112

CSM is doing well for the P_T integrated yield

S.J. Brodsky, JPL PRD 81 (2010) 051502; Y. Feng, JPL. J.X.Wang Eur.Phys.J. C75 (2015) 313

See JPL. arXiv:1903.09185 [hep-ph] (Phys.Rept. 889 (2020) 1) Colour-Singlet Model (CSM) long thought to be insufficient

... not as clear now

[large NLO and NNLO correction to the P_T spectrum ; but not perfect \rightarrow need a full NNLO]

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008); JPL EPJC 61 (2009) 693; H.S. Shao JHEP 1901 (2019) 112

• CSM is doing well for the P_T integrated yield

S.J. Brodsky, JPL PRD 81 (2010) 051502; Y. Feng, JPL. J.X.Wang Eur.Phys.J. C75 (2015) 313

• Colour-Octet Mechanism (COM) helps in describing the P_T spectrum

See JPL. arXiv:1903.09185 [hep-ph] (Phys.Rept. 889 (2020) 1) Colour-Singlet Model (CSM) long thought to be insufficient

... not as clear now

[large NLO and NNLO correction to the P_T spectrum ; but not perfect \rightarrow need a full NNLO]

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008); JPL EPJC 61 (2009) 693; H.S. Shao JHEP 1901 (2019) 112

• CSM is doing well for the P_T integrated yield

S.J. Brodsky, JPL PRD 81 (2010) 051502; Y. Feng, JPL. J.X.Wang Eur.Phys.J. C75 (2015) 313

• Colour-Octet Mechanism (COM) helps in describing the P_T spectrum

See JPL. arXiv:1903.09185 [hep-ph] (Phys.Rept. 889 (2020) 1) Colour-Singlet Model (CSM) long thought to be insufficient

... not as clear now

[large NLO and NNLO correction to the P_T spectrum ; but not perfect \rightarrow need a full NNLO]

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008); JPL EPJC 61 (2009) 693; H.S. Shao JHEP 1901 (2019) 112

• CSM is doing well for the P_T integrated yield

S.J. Brodsky, JPL PRD 81 (2010) 051502; Y. Feng, JPL. J.X.Wang Eur.Phys.J. C75 (2015) 313

- Colour-Octet Mechanism (COM) helps in describing the P_T spectrum
- Colour-Evaporation Mechanism (CEM) tends to overshoot the data at large P_T – issue shared by some COM fits

See JPL. arXiv:1903.09185 [hep-ph] (Phys.Rept. 889 (2020) 1) Colour-Singlet Model (CSM) long thought to be insufficient

```
... not as clear now
```

[large NLO and NNLO correction to the P_T spectrum ; but not perfect \rightarrow need a full NNLO]

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008); JPL EPJC 61 (2009) 693; H.S. Shao JHEP 1901 (2019) 112

CSM is doing well for the P_T integrated yield

S.J. Brodsky, JPL PRD 81 (2010) 051502; Y. Feng, JPL. J.X.Wang Eur.Phys.J. C75 (2015) 313

< □ > < □ > < □ > < □ > < □ > < □ >

- Colour-Octet Mechanism (COM) helps in describing the P_T spectrum
- Colour-Evaporation Mechanism (CEM) tends to overshoot the data at large P_T – issue shared by some COM fits
- Each approach has trouble describing all of the data.

See JPL. arXiv:1903.09185 [hep-ph] (Phys.Rept. 889 (2020) 1) Colour-Singlet Model (CSM) long thought to be insufficient

```
... not as clear now
```

[large NLO and NNLO correction to the P_T spectrum ; but not perfect \rightarrow need a full NNLO]

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008); JPL EPJC 61 (2009) 693; H.S. Shao JHEP 1901 (2019) 112

• CSM is doing well for the P_T integrated yield

S.J. Brodsky, JPL PRD 81 (2010) 051502; Y. Feng, JPL. J.X.Wang Eur.Phys.J. C75 (2015) 313

< □ > < □ > < □ > < □ > < □ > < □ >

- Colour-Octet Mechanism (COM) helps in describing the P_T spectrum
- Colour-Evaporation Mechanism (CEM) tends to overshoot the data at large P_T – issue shared by some COM fits
- Each approach has trouble describing all of the data.
- This motivates the study of new observables

- 3

Different colliding systems; different conclusions

Plot from M. Butenschön (ICHEP 2012); Discussion in JPL, Phys.Rept. 889 (2020) 1)

э

イロト イヨト イヨト イヨト

Need for a new data set

 $\gamma g \rightarrow J/\psi X$

- This process is normally studied in lepton-proton colliders.
- Such a process is ideal because;
 - Constraints can be placed on the lepton to ensure $(p p')^2 = Q^2$ is small.
 - It is a clean environment; no difficulty in distinguishing inclusive and exclusive interactions.
- However, there are no high-energy lepton-proton colliders in function at present;
 - ▶ HERA at DESY (Hamburg, DE) was shut down in 2007.
 - ▶ EIC (BNL, US) ~10 years from data collecting.

3

• A UPC is an interaction where $b > R_A + R_B$, we assume photon induced reactions dominate.

• A UPC is an interaction where $b > R_A + R_B$, we assume photon induced reactions dominate.

• Consider \sqrt{s} large enough to produce new particles.

• A UPC is an interaction where $b > R_A + R_B$, we assume photon induced reactions dominate.

- Consider \sqrt{s} large enough to produce new particles.
- Expect photon-induced reactions with fewer particles produced.

• A UPC is an interaction where $b > R_A + R_B$, we assume photon induced reactions dominate.

- Consider \sqrt{s} large enough to produce new particles.
- Expect photon-induced reactions with fewer particles produced.
- $\rightarrow\,$ The photon probes the contents of the hadron.

Exclusive J/ψ production in *pp* collisions

Colourless exchanges via \mathbb{P}, \mathbb{O} or γ emission.

- Clean signal
 - only quarkonia and its decay products are produced.
 - protons stay intact

ALICE candidate signal for exclusive J/ψ production via UPC

Inclusive J/ψ production in pp collisions Inclusive reactions

- Inclusive photoproduction $[\gamma + p \rightarrow J/\psi + X]$ can be distinguished by requiring;
 - The photon emitting proton stays intact.
 - 2 The gluon emitting proton breaks up.

Inclusive J/ψ production in pp collisions Inclusive reactions

- Inclusive photoproduction $[\gamma + p \rightarrow J/\psi + X]$ can be distinguished by requiring;
 - The photon emitting proton stays intact.
 - Description The gluon emitting proton breaks up.

Question: can we distinguish these processes in practice? Or do the particles emitted by the inclusive hard reaction pollute the region where the intact proton emerges?

K. Lynch (IJClab & UCD)

Why inclusive UPC ?

See JPL, Phys.Rept. 889 (2020) 1

It offers new ways to test the mechanisms of inclusive production (octet vs singlet, etc ...).

Also allows one to study J/ψ inclusive photoproduction which probes the gluon PDFs

As will be discussed by Liza.

Supporting data

H1 Collaboration/Nuclear Physics B 472 (1996) 3-31

H1 Collaboration/Nuclear Physics B 472 (1996) 3-31

Exclusive and Inclusive J/ψ photoproduction data from H1 *ep* collsions (left and right).

• Similar rates for exclusive and inclusive photoproduction in ep.

LHCb have \sim 1400 J/ψ candidates for exclusive photoproduction in pp collions with 100 pb⁻¹ at $\sqrt{s} = 13$ TeV.

LHCb JHEP10(2018)167;

Goal

- To understand inclusive photoproduction mechanism in UPCs.
- To characterise inclusive J/ψ photoproduction in UPCs.
- This will be achieved by using HELAC-Onia and PYTHIA.

HELAC-Onia is a code that is able to calculate heavy quarkonium amplitudes.

H. S. Shao; Comput.Phys.Commun. 184 (2013) 2562-2570

PYTHIA 8 is the tool that will be used to hadronise the outgoing gluon and proton remnants broken by the photon.

T. Sjöstrand et. al:Comput.Phys.Commun. 178 (2008), 852-867

Les Houches event file

The Les Houches event file is produced by HELAC-Onia. It contains information about all of the particles involved in the partonic collision; particle Id, energy, momentum etc.

>																
<init></init>																
2212	23	212 2	.1500	100E+6	2 3 2.	150000E	+03	0	0	10042	10042					
9.0745309602E+01 6.5149826788E-01 1.000000000E+00 81																
<event></event>																
6	81	1.581	755E-	-02 3	3.9929	94E+00	7.299270	E-03	1.186	0000E-01						
22		0	0	0	0	0.0000	000000E+0	0 0	.000000	30000E+00	1.28335737	88E+01	1.2833573788E+01	0.000000000E+00	0.00000E+00	9.0000E+00
21	-1	0	0	103	101	0.0000	000000E+0	00	.000000	00000E+00	-1.90515139	11E+00	1.9051513911E+00	0.000000000E+00	0.000000E+00	9.0000E+00
443				0	0	3.2190	092539E+0	0 1	.183002	29049E+00	1.02853578	24E+01	1.1249448965E+01	3.000000000E+00	0.000000E+00	9.0000E+00
21				103	101	-3.2190	092539E+0	0 -1	.183002	29049E+00	6.43064572	23E-01	3.4892762134E+00	0.000000000E+00	0.000000E+00	9.0000E+00
-13			0	0	0	-2.8263	519350E-0	1 -5	.567943	34280E-01	1.83494452	66E+00	1.9382786200E+00	0.000000000E+00	0.000000E+00	9.0000E+00
13						3.5016	444474E+0	0 1	.739797	72477E+00	8.45041329	78E+00	9.3111703455E+00	0.000000000E+00	0.000000E+00	9.0000E+00

Results

- Used HELAC-Onia to generate the partonic event $[\gamma + g \rightarrow J/\psi + g]$ (*pp* photoproduction mode colpar=10).
- J/ψ decays via the dimuon channel [cc~(3S11) > m+ m- @ 0.06].
- Implemented cuts based on various experimental configurations (ATLAS, LHCb, ALICE and CMS) at the analysis level.

	LHCb	ALICE	CMS	ATLAS
$p_T^{J/\psi}$	< 0 GeV	< 0 GeV	< 6.5 GeV	<8.5 GeV
${\sf y}^{\dot{J}/\psi}$	(2,4.5)	(2.5,4)	< 2.4*	<2.1*
η^{μ}	(2,4.5)	(2.5,4)	<2.4*	<2.5*

*absolute value

Process without cuts

 $\sqrt{s} = 7$ TeV in pp collision

• p_T of ~10 GeV cross section reduced by a factor of 10^5 . 2 Asymmetry; J/ψ slightly favour moving in the direction of the γ emitting proton. October 29th 2021 K. Lynch (IJClab & UCD)

15 / 22

LHCb

LHCb detector acceptance (~ 16%) : 2 < η^{μ} < 4.5 and p_T^{μ} > 0.4 GeV, 2 < $y^{J/\psi}$ < 4.5 and $p_T^{J/\psi}$ > 0 GeV.

12

A D N A B N A B N A B N

ALICE

ALICE detector acceptance (~ 5%): 2.5 < η^{μ} < 4, 2.5 < $y^{J/\psi}$ < 4 and $p_T^{J/\psi}$ > 0 GeV.

3

(日)

CMS with low p_T

CMS detector acceptance (~7%):
$$|\eta^{\mu}| < 2.4$$
,
 $p_T^{J/\psi} > 6.5$ GeV and $|y^{J/\psi}| < 1.2$,
 $p_T^{J/\psi} > 2$ GeV and $1.2 < |y^{J/\psi}| < 1.6$,
 $p_T^{J/\psi} > 0$ and $1.6 < |y^{J/\psi}| < 2.4$.

Image: A matrix and a matrix

æ

CMS

CMS detector acceptance (\sim 0.05%): $|\eta^{\mu}|<$ 2.4, $p_{T}^{J/\psi}>$ 6.5 GeV and $|y^{J/\psi}|<$ 2.4.

12

(日)

ATLAS

ATLAS detector acceptance (\sim 0.01%): $|\eta^{\mu}|<$ 2.5, $p_T^{J/\psi}>$ 8.5 GeV and $|y^{J/\psi}|<$ 2.1.

October 29th 2021 20 / 22

æ

A D N A B N A B N A B N

Outlook

• Aim to learn the mechanism of quarkonium production through studying inclusive J/ψ photoproduction.

- The same study should be extended to the case of *pPb*.
- It has advantages over pp:
 - \blacktriangleright ~95% of photon emission is from the Pb.
 - Less pileup

Summary

- ALICE* and LHCb are sensitive in the forward rapidity region with low *p*_T, which has good statistics.
- CMS and ATLAS are sensitive in the central rapidity region but with large p_T constraint, reduced statistics but good tagging possibilities.
- CMS, ATLAS and ALICE all have a ZDC capable of vetoing an intact proton.
- In the LHCb the HeRSCHeL detector has been decommissioned.
- Currently working on understanding the output of PYTHIA 8 to see if it is in fact possible to tag J/ψ photoproduction.
- This preliminary study of the production rates with HELAC-Onia is encouraging.
- The study of the proton tagging remains to be done with PYTHIA 8 in the aforementionned experimental set ups.
- *ALICE can detect low p_T central electrons, not considered here.

- 34

J/ψ ; a mode to study quarkonium

- It is a vector meson, $\mathsf{J}^{PC}=1^{--},$ with same quantum numbers as a photon.
- Easy to detect via decay into a dimuon pair ightarrow B($\mu^+\mu^-$) pprox 6%.

K. Lynch (IJClab & UCD)

- 2

ヨト・イヨト

- Colour Evaporation Model
- any $Q\bar{Q}$ state contributes to a specific quarkonium state
- colourless pair via a simple 1/9 factor
- one non-perturbative parameter per meson, supposedly universal

- Colour Evaporation Model
- any $Q\bar{Q}$ state contributes to a specific quarkonium state
- colourless pair via a simple 1/9 factor
- one non-perturbative parameter per meson, supposedly universal
- Colour Singlet Model
 - colourless pair via colour projection; quantum numbers enforced by spin projection
 - ► one non-perturbative parameter per meson but equal to the Schrödinger wave function at the origin → no free parameter
 - this parameter is fixed by the decay width or potential models and by heavy-quark spin symmetry (HQSS)

- Colour Evaporation Model
- ▶ any $Q\bar{Q}$ state contributes to a specific quarkonium state
- colourless pair via a simple 1/9 factor
- one non-perturbative parameter per meson, supposedly universal
- Colour Singlet Model
 - colourless pair via colour projection; quantum numbers enforced by spin projection
 - ► one non-perturbative parameter per meson but equal to the Schrödinger wave function at the origin → no free parameter
 - this parameter is fixed by the decay width or potential models and

by heavy-quark spin symmetry (HQSS)

- 3 Colour Octet Mechanism
- one non-perturbative parameter per Fock State
- expansion in v²; series can be truncated
- the phenomenology partly depends on this
- The non-perterbative parameter for each fock state is related to HQSS