DVCS on a virtual pion at EIC and EICC

The pion structure

- The pion is a much simpler object than the proton (2 GPDs vs 8 GPDs):
 - => Non-perturbative techniques improved and models of Form Factors/PDFs and now GPDs can be computed.
- Although theoretically easier, experimentally it is challenging to probe its inner structure.

PDF accessed with Drell-Yan

 Impinging a pion beam onto a proton target like in COMPASS experiment, one can access the PDF of the pion via Drell-Yan.

 But accessing the pion structure with an electron beam would require a luminosity unreachable with pion beams.

The Sullivan process

 It was noticed that in the final state of electron scattering events, a nucleon was « surviving » with a low momentum transfer :

The virtual photon is interacting with the meson cloud.

PHYSICAL REVIEW D

VOLUME 5, NUMBER 7

1 APRIL 1972

One-Pion Exchange and Deep-Inelastic Electron-Nucleon Scattering

J. D. Sullivan*
National Accelerator Laboratory, Batavia, Illinois 60510
(Received 29 November 1971)

The role of one-pion exchange is examined in the deep-inelastic region for electron-nucleon scattering. Exclusive channels like πN , $\pi \Delta$ will contribute negligible, nonscaling contributions to σ_S . On the other hand, inclusive final states like N + "anything," where the detected final nucleon is slow in the lab system, afford the opportunity to experimentally determine the structure functions for electron-pion scattering provided the characteristic one-pion-exchange structure (dip or peak) is observed at small momentum transfer.

Form Factors at large momentum transfer

- By measuring ep → e n pi⁺, one can access the pion form factor.
- With t-low enough, the process can be seen as a Sullivan process.
- Now, experimentally, the measurement is quite complicated because it requires a Rosenbluth separation (Only through the longitudinal cross section).

PDFs through Sullivan process

- Same idea as the form factors however the final state is « unconstrained » apart from detecting a recoil nucleon with low-momentum transfer t.
- First measurement at HERA.
- Conditionnally approved experiment in Hall A, and as well feasible to EIC.

But are GPDs accessible via Sullivan process?

GPD : Generalized parton distributions.
 It provides correlation between longitudinal momentum and transverse position of partons in a hadron.

• It is accessible via exclusive processes, with a final state completely determined.

Deeply virtual compton scattering

•
$$Q^2 = -q^2 = -(k - k')^2$$
.

- $x_B = \frac{Q^2}{2p \cdot q}$
- x longitudinal momentum fraction carried by the active quark.
- $\xi \sim \frac{x_B}{2-x_B}$ the longitudinal momentum transfer.
- $t = (p p')^2$ squared momentum transfer to the nucleon.

The GPDs enter the DVCS amplitude through a complex integral. This integral is called a *Compton form factor* (CFF).

$$\mathcal{H}(\xi,t) = \int_{-1}^{1} H(x,\xi,t) \left(\frac{1}{\xi - x - i\epsilon} - \frac{1}{\xi + x - i\epsilon} \right) dx.$$

Photon Electroproduction

Experimentally we measure the cross section of the process $ep \rightarrow ep\gamma$.

DVCS

The measured cross section is the coherent sum of both amplitudes :

- Here an interference term appears and offers unique opportunity to access both real and imaginary parts of CFF.

Bethe-Heitler

$$\begin{split} \frac{d^5\sigma^{e\pi\to e\gamma\pi}(\lambda,\pm e)}{dy_\pi dx_B^\pi dt_\pi d\phi d\phi_e} &= \frac{d^2\sigma_0}{dQ^2 dx_B^\pi} \frac{1}{e^6} \\ &\qquad \times \left[\left| \mathcal{T}^{BH} \right|^2 + \left| \mathcal{T}^{DVCS} \right|^2 \mp \mathcal{I} \right], \\ \frac{d^2\sigma_0}{dQ^2 dx_B^\pi} &= \frac{\alpha_{\rm QED}^3 x_B^\pi y_\pi}{16\pi^2 Q^2 \sqrt{1+\epsilon^2}}, \\ \epsilon^2 &= 4m_\pi^2 (x_B^\pi)^2/Q^2, \end{split}$$

Harmonic structure of the cross section

We can partially unfold the contributions, studying the ϕ -dependence.

$$|\mathfrak{I}^{BH}|^2 = \frac{e^6 \sum_{n=0}^2 c_n^{BH} \cos(n\phi)}{x_B^2 t y^2 (1+\epsilon^2)^2 \mathfrak{P}_1(\phi) \mathfrak{P}_2(\phi)} \leftarrow \mathsf{KNOWN!}$$

$$\left|\mathfrak{T}^{DVCS}\right|^2 = \frac{e^6}{y^2 Q^2} \left\{ c_0^{DVCS} + \sum_{n=1}^2 \left[c_n^{DVCS} \cos(n\phi) + \lambda s_1^{DVCS} \sin(n\phi) \right] \right\}$$

$$\mathfrak{I} = \frac{e^6}{x_B y^3 \mathfrak{P}_1(\phi) \mathfrak{P}_2(\phi) t} \left\{ c_0^{\mathfrak{I}} + \sum_{n=1}^{3} \left[c_n^{\mathfrak{I}} \cos(n\phi) + \lambda s_n^{\mathfrak{I}} \sin(n\phi) \right] \right\}$$

Accessing the CFF

The CFFs are encapsulated in c_n and s_n , offering a parameterization of the cross section. In the leading twist approximation for unpolarized target:

$$c_0^{DVCS} \propto \mathcal{C}^{DVCS}(\mathfrak{F}, \mathfrak{F}^*) = 4(1 - x_B)\mathfrak{H}\mathfrak{H}^* + \cdots$$

$$c_1^{\mathfrak{I}} \propto Re \, \mathcal{C}^{\mathfrak{I}}(\mathfrak{F}) = F_1 \, Re\mathfrak{H} + \xi(F_1 + F_2) \, Re\widetilde{\mathfrak{H}} - \frac{t}{4M^2} F_2 \, Re\mathcal{E},$$

$$s_1^{\mathfrak{I}} \propto Im \, \mathcal{C}^{\mathfrak{I}}(\mathfrak{F}) = F_1 \, Im \mathfrak{H} + \xi(F_1 + F_2) \, Im \widetilde{\mathfrak{H}} - \frac{t}{4M^2} F_2 \, Im \mathcal{E},$$

$$(1)$$

 As already mentionned earlier, the pion has only the GPD H => the unique CFF is constrained by only playing with the beam polarization.

Related Articles

- Articles used for experimental study :
 - -EICC white paper Frontiers of Physics, Volume 16 Issue (6):64701, 2021
 - -EIC Yellow report https://arxiv.org/abs/2103.05419
- Articles used for theory :
 - -Morgado Chavez et al.,

Pion GPDs: A path toward phenomenology, arXiv 2110.06052

- -Belitsky, Muller Phys.Rev.D 79:014017, 2009
- -Amrath et al. Eur.Phys.J.C 58:179-192, 2008

Sullivan DVCS

- DVCS depends on 4 kinematical variables : Q², xB/y, t_pi, phi.
- For Sullivan DVCS, we need two additional variables to characterize the virtual pion :
 - t : momentum transfer to nucleon
 - x_pi : the energy fraction carried by the pion in the ep com-frame.
- The total cross section will be the product of the DVCS cross section and a virtual pion flux depending on t and x_pi.

$$\begin{split} \frac{d^8\sigma^{\mathrm{Sul}}(\lambda,\pm e)}{dydQ^2dt_\pi d\phi d\phi_e dt dx_\pi d\phi_n} = \\ x_\pi \frac{g_{\pi NN}^2}{16\pi^3} F(t)^2 \frac{-t}{(m_\pi^2-t)^2} \left|J_{x_B^\pi}^{Q^2}\right| \frac{d^5\sigma^{e\pi\to e\gamma\pi}(\lambda,\pm e)}{dy_\pi dx_B^\pi dt_\pi d\phi d\phi_e} \end{split}$$

Regarding the event generation

- 1) First we generate the virtual pion :
- t uniformely in [-0,6; 0],
- x_pi in a depending on t,
- and phi_N, rotation around proton axis.
- 2) Then the virtual photon is generated with :
- Q² in [1; 100] GeV²
- y depending on Q²
- phi_e, rotation around virtual photon axis
- 3) Once both virtual pion and photons are characterized, then t_pi in [-0,6; 0] and phi are generated.

Events are then weighted by the cross section and a phase space factor.

The electron ion collider

The electron-ion collider will be located in Brookheaven National Laboratory.

It will offer logitudinally polarized electron beam and transversely polarized protons.

Beams	Collision energy modes (GeV)							
	Ee	E_h	Ee	E_h	Ee	E_h	E_e	E_h
e+p	18	275	10	100	5	100	5	41

For our studies, we used a Toy geometry of the detector:

- Photon detected for |eta|<4.
- Electron detected and identified for |eta|<3,5.
- Neutron detected in the ZDC if theta<5,5 mrad.
- Pion detected either if |eta|<4 or theta between 6 and 20 mrad.

The electron ion collider in China

- -There is a project to build an electronion collider facility in China, un an upgrade of the HIAF facility.
- -Electron energy will be 3,5 GeV while proton energy will reach up to 20 GeV : More ideal to access valence region.
- -The electron longitudinal polarization will reach 80 % and an expected luminosity of 50 fb-1 / year.
- -For our study, we considered almost same geometry as for EIC except for the neutron calorimeter: No information is provided in the white paper.
- => Ideal detection of the neutron.

Detector Layout

Kinematics: t and x \pi

-t vs x_{π} , s=3 × 20, 10 fb-1

-t vs x_{π} , s=10 × 100, 10 fb-1

-t vs x_{π} , s=5 × 41, 10 fb-1

Kinematics: Q² and \xi

Electron distributions

Photon distributions

Recoil Pion distributions

Neutron distributions

Sullivan process validity

 The invariant mass of the N-pion system must be greater than 2 GeV to avoid resonances contribution (e p → e Delta gamma).

• Possible contribution from rho-to-pi but needs a model to evaluate them. The smaller the pion virtuality, the better.

Comparison for scenarii

Gluons contributing negatively to the DVCS amplitude except at small Q² because of their number.

Gluons even in the valence

Even in the valence region at EICC, gluons can be spotted by a steep Q^2 – dependence of the asymmetry at low Q^2

What remains to be done...

- The process is definitely measurable. If the model is accurate, features in BSA could help us to pin down gluon dominance.
- Now, need to plug events in real EIC simulation to determine the resolution on the kinematical variables and use a more realistic acceptance.
- Refine the binning and perform t_pi-scan studies.

More exclusive processes on pion

- Jose et al. provide us GPD models for both quarks and gluons in pion. From EIC measurements/simulation, would it be possible to retrieve the quark/gluon information from DVCS measurements?
- What about DVMP (Phi-electroproduction) on the virtual pion? Definitely helping to constrain gluonic content.
- Need to look into pi0... (Thank you Bernard)