Chasing QCD Signatures in Nuclei with Lambda Fragmentation Study

"Exploring QCD with Tagged Processes" Workshop

October 22nd, 2021

Lamiaa El Fassi Mississippi State University

Outline

- Physics Motivation
- Highlights of Previous Measurements
 - CLAS6 Lambda Fragmentation Study
- Summary and Outlook

How does the colored bare, quark, evolves to a fully dressed hadron?

- Study hard processes in nuclei to probe the QCD confinement dynamics:
 - ➤ Color propagation and fragmentation Hadronization process

How does the colored bare, quark, evolves to a fully dressed hadron?

- Study hard processes in nuclei to probe the QCD confinement dynamics:
 - > Color propagation and fragmentation Hadronization process
 - > Creation and evolution of small size hadrons Color Transparency (CT)

amiaa El Fass

Hard Probe .vs. Medium

- Study hard processes in nuclei to probe the QCD confinement dynamics:
 - Creation and evolution of small size hadrons Color Transparency (CT)
 - Color propagation and fragmentation Hadronization process
- Study medium modification of quark distributions EMC Effect
- Access short range structure SRC
- Perform 3-D imaging Nuclear generalized parton distributions (GPDs) and transverse momentum distributions (TMDs).

Hadronization Process: Probe of QCD Dynamics

- Explore semi-inclusive deep inelastic scattering (SIDIS) production to access the hadronization time-scales:
 - **Production time** τ_p : time spent by a deconfined quark to neutralize its color charge.
 - \sim **Formation time \tau_i:** time required to form a regular hadron (h).

Hadronization Process: Probe of QCD Dynamics

Explore semi-inclusive deep inelastic scattering (SIDIS) production to access the hadronization time-scales, and extract them via a comparison of QCD dynamics in

- **Production time** τ_p : time spent by a deconfined quark to neutralize its color charge.
- Stimulated by medium-energy loss via a gluon emission, which lead to transverse momentum (p_T) broadening.
- Formation time τ_f : time required to form a regular hadron (h).
 - Signaled by interactions with known hadron cross sections responsible of hadron suppression in the measured multiplicity ratios.

SIDIS Kinematics: Lambda Production

v: Electron energy loss,

■ Initial energy of a struck quark

*Q*²: Four-momentum transferred,

~ 1/(spatial resolution) of the probe

 $y = v/E_{beam}$: Electron energy fraction transferred to a struck quark,

 $W = \sqrt{M_n^2 + 2v M_n - Q^2}$: Total mass of the hadronic final state, where M_n is the nucleon mass Z_n : Fraction of the struck quark's initial energy carried by the formed hadron $(0 < Z_n < 1)$ P_n : Hadron transverse momentum with regard to the virtual photon direction.

 $x_F = \frac{P_L}{P_L^{max}}$, Feynman variable: Fraction of the center-of-mass (CM) longitudinal momentum carried by the observed hadron

SIDIS Kinematical Cuts: Lambda Production

 Q^2 : Four-momentum transferred,

- > 1 GeV², to probe the intrinsic structure of nucleons
- $y = v/E_{beam}$: Electron energy fraction transferred to a struck quark,
 - < 0.85, to reduce the size of the radiative effects on multiplicity ratios
- $W = \sqrt{M_n^2 + 2vM_n Q^2}$: Total mass of the hadronic final state, where M_n is the nucleon mass
 - > 2 GeV, to avoid a contamination from the resonance region
- x_F : Fraction of the CM longitudinal momentum carried by the observed hadron
 - > 0, selects the forward (current) fragmentation region
 - < 0, selects the backward (target-remnant) fragmentation region

Experimental Observables

Transverse Momentum Broadening

$$\Delta p_T^2 = \langle p_T^2 \rangle_A - \langle p_T^2 \rangle_D$$

Allow access to τ_p via production of different hadrons and quark flavors

Experimental Observables

Transverse Momentum Broadening

$$\Delta p_T^2 = \langle p_T^2 \rangle_A - \langle p_T^2 \rangle_D$$

Allow access to τ_p via production of different hadrons and quark flavors

Hadron Multiplicity Ratio

$$R_{M}^{h}(z, v, p_{T}^{2}, Q^{2}) = \frac{\left\{\frac{N_{h}^{DIS}(z, v, p_{T}^{2}, Q^{2})}{N_{e}^{DIS}(v, Q^{2})}\right\}_{A}}{\left\{\frac{N_{h}^{DIS}(z, v, p_{T}^{2}, Q^{2})}{N_{e}^{DIS}(v, Q^{2})}\right\}_{D}}$$

Access $\boldsymbol{\tau}_{\mathbf{f}}$ after the extraction of $\boldsymbol{\tau}_{\mathbf{p}}$ and R^h_{M}

Former Measurement: Hermes Multiplicity Ratios

0.5

Z

Former Measurement: Hermes Multiplicity Ratios

E= 27.7 GeV; Positron beam

Former Measurement: Hermes p_{τ} Broadening

- Reduced broadening at high z favors no prehadron interaction,
- Different K^+p_T broadening behavior compared to pions \Longrightarrow Flavor dependence?
- Perturbative QCD description of p_T broadening: $\Delta p_T^2 \propto \frac{dE}{dx}$, where $\Delta p_T^2 \propto L \propto A^{1/3} \& dE \propto L^2 \propto A^{2/3}$
- Similar dependence of Δp_T^2 on $A^{1/3} \& A^{2/3} \Longrightarrow$ Motivation for more studies!

CLAS6 EG2 Run-group Experiments

• Took data with the decommissioned CLAS6 spectrometer in its standard configuration and a dual targets assembly:

→ Liquid deuteron (LD2) + solid target (C or Fe or Pb or Al or Sn)

- ▶ First ever study of the hadronization process of Λ hyperon which probes the forward (current*) and backward (target**) fragmentation regions.
 - ► Separating the two regions is crucial given Λ s carry a significant fraction of the incoming proton momentum ($\equiv x_{_{\rm F}} < 0$) and small transverse momenta.

F. Ceccopieri and D. Mancusi, Eur. Phys. J. C **73**, 2435 (2013) F. Ceccopieri, Eur. Phys. J. C **76**, 69 (2016)

L. Trentadue & G. Veneziano, Phys. Lett. B 323, 201-211 (1994)

- * Current fragmentation: struck quark initiates the hadronization process
- ** Target fragmentation: target remnant moves reciprocally with regard to the virtual photon direction undergoing a target fragmentation.

- ► Identify Λ via its decay particles, π and p.
- > Use the event mixing technique to subtract the combinatorial background.

Taya Chetry

Lamiaa El Fas

- ► Identify Λ via its decay particles, π and p.
- Use the event mixing technique to subtract the combinatorial background.
- > A sample of (π^-, p) invariant mass for one $z = E_\Lambda / v$ bin after the combinatorial background subtraction to extract the Λ yield (*dashed distribution*).

- ► Identify Λ via its decay particles, π and p.
- > Use the event mixing technique to subtract the combinatorial background.
- ► A sample of (π^-, p) invariant mass for one $z = E_\Lambda/\nu$ bin after the combinatorial background subtraction to extract the Λ yield (*dashed distribution*).

Preliminary CLAS6 Λ Multiplicity Ratio Results

Preliminary CLAS6 Λ Multiplicity Ratio Results

CLAS6 Λ p_T Broadening Results: Preliminary

- ➤ Increased broadening with z and A
- \blacktriangleright Larger $p_{\scriptscriptstyle T}$ broadening compared to HERMES mesons' results
 - Could be due to the size and mass of propagating color object?

Preliminary CLAS6 Λp_T Broadening Results

- Increased broadening with z and A
- \rightarrow Larger $p_{\scriptscriptstyle T}$ broadening compared to HERMES mesons' results
 - Could be due to the size and mass of propagating color object?
 - Would it possible that the virtual photon is absorbed by a diquark instead of a single quark?

DIS channels: stable hadrons, accessible with 11 GeV Lab experiment PR12-06-117

Actively underway with existing 5 GeV data											
meson	ст	mass	flavor content	baryon	ст	mass	flavor content				
π^0	25 nm	0.13	uudd	p	stable	0.94	ud				
π^+,π^-	7.8 m	0.14	ud, du	$ar{p}$	stable	0.94	ud				
η	170 pm	0.55	uuddss	Λ	79 mm	1.1	uds				

uuddss

uuddss

uuddss

uuddss

 \overline{ds}

us, us

23 fm

 $0.98 \, \mathrm{pm}$

44 fm

8 fm

27 mm

 $3.7 \, \mathrm{m}$

 ω

 η

 $\boldsymbol{\phi}$

fI

 K^0

 K^+, K^-

0.78

0.96

1.0

1.3

0.50

0.49

13 fm

24 mm

44 mm

22 pm

87 mm

49 mm

 $\Lambda(1520)$

 Σ +

 Σ -

 Σ^0

 Ξ^0

 $\Xi^{\scriptscriptstyle -}$

1.5

1.2

1.2

1.2

1.3

1.3

uds

us

ds

uds

us

ds

DIS channels: stable hadrons, accessible with 11 GeV JLab experiment PR12-06-117

Actively underway with existing 5 GeV data

meson	ст	mass	flavor content	baryon	ст	mass	flavor content
π^0	25 nm	0.13	uudd	p	stable	0.94	ud

- Span a wider range of nuclei masses ——> Better understanding of the A dependence,
- Study the production of various hadrons Improve our understanding of hadrons' formation mechanism,
- Cover much larger kinematical coverage,
- 10 times higher luminosity compared to CLAS6 (1000 higher than Hermes),
 Determines the two hadronization time-scales and constrain the competing theoretical models with the correct production picture!

Summary and Outlook

- The hadronization study is a direct probe of the QCD confinement in cold and hot nuclear matter.
- ▶ A detailed comprehension of its mechanism helps constraining the existing theoretical models.
- Preliminary Lambda fragmentation results have a similar trend as HERMES proton results while its transverse momentum broadening is larger than those of mesons.
- CLAS12 measurements will provide the multi-dimensional data needed to extract the production and formation time-scales.
- The future EIC will allow the study of hadronization dynamics of heavy quarks in cold nuclear matter and provide a wider kinematics coverage to study the in-medium evolution as well as parton energy loss.

This work is supported in part by the US DOE contract# DE-FG02-07ER41528

Backup

10/22/21

CLAS6 Hadronization Results: Meson Channels

- Similar behavior of 3-fold π^0 , π^{\pm} and K⁰ (Phys. Lett. B **706**, 26-31 (2011)) multiplicity ratio results.
- Consistent with Hermes results!

Preliminary CLAS6 Hadronization Results: Pions Channels

> Preliminary CLAS6 charged pions results exhibit a similar behavior but smaller broadening (*slight shift was added for a clarity*).

Lambda Channel: Kinematical Distributions

Lambda Channel: Kinematical Distributions

