

³He at the EIC: Neutron spin study using Double spectator tagging

Dien Nguyen

Exploring QCD with Tagged Processes October 21, 2021

The EIC: Next generation QCD machine

Versatility and high Luminosity are key: $\Box \sqrt{S}$ (ep): 20 – 140 GeV \Box Ion beam: Proton to Uranium $\Box \mathcal{L}_{max} = 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ \Box High polarization P_e = P_p ~ 70%

arXiv: 2103.05419

The EIC: Next generation QCD machine

Versatility and high Luminosity are key: $\Box \sqrt{S}$ (ep): 20 – 140 GeV Ion beam: Proton to Uranium $\Box \mathcal{L}_{max} = 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ \Box High polarization $P_e = P_p \sim 70\%$ Current polarized DIS data: 10⁴ ○ CERN △ DESY ◇ JLab-6 □ SLAC current polarized BNL-RHIC pp data: PHENIX π⁰ ▲ STAR 1-jet ▼ W bosons 10^{3} 1.VS = 140 GeV. 0.01 5 V 50.95 XX JLab-12 10 10-4 10-3 10-2 10-1 X

The EIC: Next generation QCD machine

Versatility and high Luminosity are key: $\Box \sqrt{S}$ (ep): 20 – 140 GeV lon beam: Proton to Uranium $\Box \mathcal{L}_{max} = 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ \Box High polarization $P_e = P_p \sim 70\%$ **Physics Goals:** □ Origin of nucleon spin?

□Origin of nucleon mass?

□ Properties of dense system of gluon?

EIC Comprehensive Chromodynamics Experiment

Nucleon structure functions

□ Fundamental for understanding strong interaction in QCD

□ Well measured: over 5 orders of magnitude in x, Q²

□ High precision data

Nucleon structure functions

□ Fundamental for understanding strong interaction in QCD

Polarized structure functions

Probing Spin in QCD

Understanding the spin structure of nucleon

Neutron data is needed for flavor separation

Again, neutron extraction model dependent due to nuclear corrections

> Need a novel measurement what minimize the nuclear correction

□ Facilitates effective targets not readily found in nature

□ Novel probes of partonic structure function

Forward Tagging possible @ EIC Far forward region

Protons: B0, Off-momentum detectors and Roman Pots

□ Neutron: Zero-Degree calorimeter

arXiv: 2103.05419

See talk by A. Jentsch

9

Spin structure from asymmetry data

X. Zheng et al., PRL 92, 012004 (2004); PRC 70, 065207 (2004)

³He as polarized neutron target

- Neutron carries most of the spin in polarized ³He
- $\Box A_1^n$ is extracted from inclusive DIS e-He3, A_1^{He}

Neutron pol: Pn ~ 87% Proton pol: Pp ~ 2.7%

$$A_1^n \approx \frac{1}{P_n} \frac{F_2^{^{3}\text{He}}}{F_2^n} (A_1^{^{3}\text{He}} - 2P_p \frac{F_2^p}{F_2^{^{3}\text{He}}} A_1^p)$$

A_1^n is extracted from inclusive DIS e-³He

$$A_1^n \approx \frac{1}{P_n} \frac{F_2^{^{3}\text{He}}}{F_2^n} (A_1^{^{3}\text{He}} - 2P_p \frac{F_2^p}{F_2^{^{3}\text{He}}} A_1^p)$$

Large model dependence

Effective neutron and proton polarization

 \Box Structure functions F_2

□A1p uncertainty.

Inclusive extraction has large systematic uncertainties

A1n Errors 0.15 0.06 Statistical Experimental Systematics 0.04 Radiative Correction Pisa 0.02 0.1 0 Large proton $P_p P_n$ -0.02 contribution 0.05 -0.04 $A(160^{\circ},0^{\circ})$ 0.06 Ŧ₽ 0 I∏ 0.04 0.02 0 -0.05 -0.02 -0.04 0.2 0.4 0.6 0.8 -0.06 X_{Bjorken}

PRL 113, 232505 (2014)

See talk by Douglas Higinbotham

Suppress the contribution of non-nucleonic degree of freedom

Low total momentum => "Effective" free neutron target

³He(e, e'pp)X: kinematic

Event generator and processing

Existing code assumes standing nucleons.

Add ³He light-front wave function effects (fermi motion)

CLASDIS Event
GeneratorImage: Colspan="2">Image: Classic Event
GeneratorImage: Classic Event
GeneratorImage: Classic Event
Fermi motion
correctionImage: Classic Event
Subscript
Classic Event
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
Subscript
S

Event generator and processing

Existing code assumes standing nucleons.

Add ³He light-front wave function effects (fermi motion)

Produce pseudo-data and run via EIC Simulation

arXiv: 2103.05419

Spectator momentum at the Ion Rest Frame

Spectator momentum at the Ion Rest Frame

Spectator protons = DIS off neutron

 low total spectator momentum
 = Effective "free neutron" target

Minimal nuclear effects

Event selection

DIS Selection:

- $Q^2 > 2 (GeV/c)^2$
- $W^2 > 4 (GeV/c)^2$
- 0.05 < y < 0.95

+Tagging :

- Both spectator protons detected.
- |p1 + p2| < 0.1 GeV

Projections:

Bin in x & Q²
Scale to 1 EIC year (100 fb⁻¹)

Compare uncertainties of extracted vs double tag A1n

Friscic, Nguyen, Pybus, et al., Phys. Lett. B, In-Print (2021)

$A_1^{^{3}\text{He}}$ prediction

$$A_{1}^{^{3}\text{He}} = P_{n} \frac{F_{2}^{n}}{F_{2}^{^{3}\text{He}}} A_{1}^{n} + 2P_{p} \frac{F_{2}^{p}}{F_{2}^{^{3}\text{He}}} A_{1}^{p}$$
$$\Box A_{1}^{n}, A_{1}^{p} : \text{E99117 fit}$$
$$\Box F_{2}^{p}, F_{2}^{D} : \text{E155 fit}$$
$$\Box F_{2}^{n} = F_{2}^{D} - F_{2}^{p} ; F_{2}^{^{3}\text{He}} = F_{2}^{D} + F_{2}^{p}$$
$$\Box P_{n} = 0.86 \pm 0.02 ; P_{p} = -0.028 \pm 0.004$$

 $\Box A_1^{^{3}\text{He}}$: Only includes the statistic uncertainty

Double Tagging Reduce A₁ⁿ Uncertianty

+ Valence-region Overlap \w JLab12 @ higher-Q²

 A_1^n : Also cover low-x

Double tagging @ EIC cover 0.003 < x < 0.651

❑ Significantly reduced model dependent uncertainty compare \w (e,e'): x10 @ x < 0.1 ; x2 @ x > 0.1

e³He at EIC: Other Physics measurements

Spin dependent EMC effect

 \Box Extracting the g_1^n as a function of virtuality

e³He at EIC: Other Physics measurements

Spin dependent EMC effects

\Box Tagging deuteron: $A_1^p \rightarrow g_1^p$

- Comparing g_1^p from free to bound proton
- Study feasibility for this measurement at EIC is on going

Possibility to do this measurement at CLAS12?

See talk by Sergio Scopetta

R. Milner arXiv:1809.05626

e³He at EIC: Other Physics measurements

Tagging SIDIS: Neutron spin study

□ Suppress the nuclear correction

□ Study for feasibility of this process is on going for the EIC

Neutron Spin Structure from e-³He Scattering with Double Spectator Tagging at the Electron-Ion Collider

I. Friščić^{a,b,1}, D. Nguyen^{a,b,1}, J.R. Pybus^{a,b}, A. Jentsch^c, E.P. Segarra^a, M.D. Baker^d, O. Hen^a, D.W. Higinbotham^b, R. Milner^a, A.S. Tadepalli^b, Z. Tu^c, J. Rittenhouse West^{b,e}

□ EIC capable of double spectator tagging

□ Minimize the model dependence for neutron spin structure

 \Box Large coverage range of 0.003 < x < 0.651

□ High-x reach limited by resolution

Open many other potential physics measurement at EIC

Tagging measurement: Providing – novel probes – rich physics to explore

Many thanks to:

□ JLab EIC Center & N. Isgur Fellowship

□ EIC YR Diffraction & Tagging working group

Xiaochao Zheng, Harut Avakian, Barak Schmookler for valuable discussions and suggestions