Exploring Multi-Parameter Spaces with M. M. AI

CosPT Workshop 2021- IJCLab

ITP, Universität Heidelberg

Exploring the SUSY parameter space

1. Choose parameter point
2. Calculate observables
3. Compare with data
\rightarrow Likelihood

- Challenges:
- Curse of dimensionality
- Complex hyperplanes due to relic density

- Traditional solution: MCMC
- New: learn likelihood with ML?

SUSY exploration vs Event generation

High dim. parameter space \longleftrightarrow High dim. final state

$$
\text { Likelihood } \mathcal{L} \longleftrightarrow \text { Cross section } \frac{\mathrm{d} \sigma}{\mathrm{~d} p}
$$

Narrow DM funnel \longleftrightarrow Narrow Breit Wigner
Expensive observables \longleftrightarrow Higher order cross section
\Rightarrow Explore similar techniques

Event generation in a nutshell

1. Generate phase space points
2. Calculate event weight
$w_{\text {event }}=f\left(x_{1}, Q^{2}\right) f\left(x_{2}, Q^{2}\right) \times \mathcal{M}\left(x_{1}, x_{2}, p_{1}, \ldots p_{n}\right) \times J\left(p_{i}(r)\right)^{-1}$
3. Unweighting via importance sampling
\rightarrow optimal for $w \approx 1$

Event generation in a nutshell

ML solutions for generative models

GAN

NF

ML solutions for generative models

all kinds of hybrids

NF

ML solutions for generative models

NF

Generative Adversarial Networks

Discriminator $\left[D\left(x_{f}\right) \rightarrow 1, D\left(x_{\alpha}\right) \rightarrow 0\right]$

$$
L_{D}=\langle-\log D(x)\rangle_{x \sim P_{\text {Truth }}}+\langle-\log (1-D(x))\rangle_{x \sim P_{\text {Gen }}} \rightarrow-2 \log 0.5
$$

Generator $\left[D\left(x_{6}\right) \rightarrow 1\right]$

$$
L_{G}=\langle-\log D(x)\rangle_{x \sim P_{G e n}}
$$

\Rightarrow Equilibrium
\Rightarrow New statistically independent samples

How to GAN LHC events

- $t \bar{t} \rightarrow 6$ quarks
- 18 dim output
- external masses fixed
- no momentum conservation
+ Flat observables \checkmark

- Systematic undershoot in tails [10-20\% deviation]

Training on weighted events

Low unweighting efficiencies \rightarrow bottleneck before training
\rightarrow Train on weighted events

$$
\rightarrow L_{D}=\langle-w \log D(x)\rangle_{x \sim P_{\text {Tuth }}}+\langle-\log (1-D(x))\rangle_{x \sim P_{\text {Gen }}}
$$

Populates high energy tails
Large amplification wrt. unweighted data!

Normalizing flows

Invertible neural networks

+ Bijective mapping
+ Fast evaluation in both directions
+ Tractable Jacobian
+ Enable correction for perfect precision
+ Extendable to Bayesian invertible networks
+ Trainable on either density or samples

Training on density

Sherpa [2001.05478, 2001.10028]

- $z \sim \mathcal{N} \rightarrow \mathrm{NN} \rightarrow x \sim p_{x}$
- $p_{x}(x)=p_{z}(z) \cdot J_{\mathrm{NN}}$
- Given target density $t(x)$
\rightarrow Train NN to minimize $\log \left(p_{z}(z) \cdot J_{\mathrm{NN}} / t(x)\right)$
- Problem: Calculate $f(x)$ each time

Training on samples

with T, Heimel, S. Hummerich, T. Krebs, T. Plehn, A. Rousselot, S. Vent [arXiv:2110.XXXXX]

- $x \sim p_{\text {samples }} \rightarrow \mathrm{NN} \rightarrow z$
\rightarrow Train NN to ensure $z \sim \mathcal{N}$
- Loss: Maximize posterior over network weights:

$$
\begin{aligned}
-\log (p(\theta \mid x)) & =-\log (p(x \mid \theta))-\log (p(\theta))+\text { const. } \\
& =-\log (p(z \mid \theta))-\log (J)-\log (p(\theta))+\text { const. }
\end{aligned}
$$

Results

Z+ jets

Results

Z+ jets

Uncertainties

- Bayesian approach to network parameters:

Bayesian NN

Input layer \quad hidden layer \quad output layer

- replace each weight by Gaussian $\mathcal{N}(\mu, \sigma)$
- prior is normal distribution
- sampling over network weights yields distribution

Results

Inclusive $\mathrm{Z}+$ jets production

How can we explore parameter spaces with ML?

- Speed up expensive calculations (regression networks)
- Explore parameter space with generative models (GAN, NF/INN)
- Develop iterative procedure to train while exploring

How can we explore parameter spaces with ML?

- Speed up expensive calculations (regression networks)
- Explore parameter space with generative models (GAN, NF/INN)
- Develop iterative procedure to train while exploring

