

PALLAS - Contrôle et caractérisation d'une impulsion laser ultra intense femtoseconde

Pourquoi un laser pilote UHI pour l'accélération laser plasma

UHI: Ultra High Intensity, **puissance pic > TW**, durée < 100 fs.

Durée: Accélération laser-plasma a émergé avec l'apparition des lasers UHI avec des impulsions sub 50fs. Excitation "résonante" :

$$c au_L \sim \lambda_p/\pi$$

 au_l durée de l'impulsion laser, λ_p longueur d'onde plasma $\sim 33\,\mu$ m pour une densité électronique de $n_e=10^{18}$ cm $^{-3}$, soit $au_l\sim 35$ fs

Pourquoi un laser pilote UHI pour l'accélération laser plasma

Energie

Champ pondéromoteur laser $\propto
abla a_0^2$, potentiel normalisé

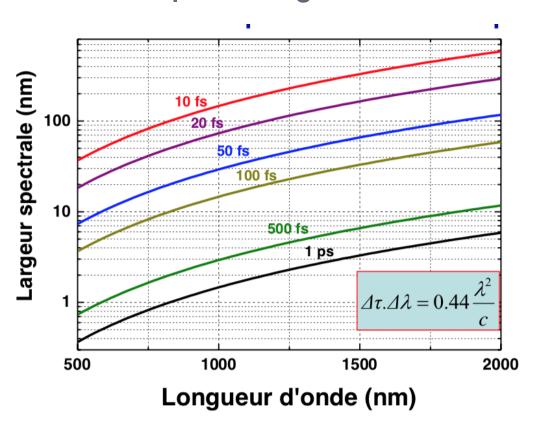
$$a_0=eE_L/m_e\omega_L c$$

$$a_0 = 0.855 \sqrt{I_L[ext{W.cm}^{-2}] \cdot \lambda_L^2[\mu m]}$$

$$a_0>1; I_L>2.2 imes10^{18} {
m W.cm^{-2}} \longrightarrow$$
 régime relativiste

Waist

En régime non-linéaire $a_0>1$ accord spatial dimension transverse laser / taille de la bulle


$$w_0^{(m)} \sim \sqrt{a_0} \lambda_p/\pi \sim 15 \mu \mathrm{m}$$

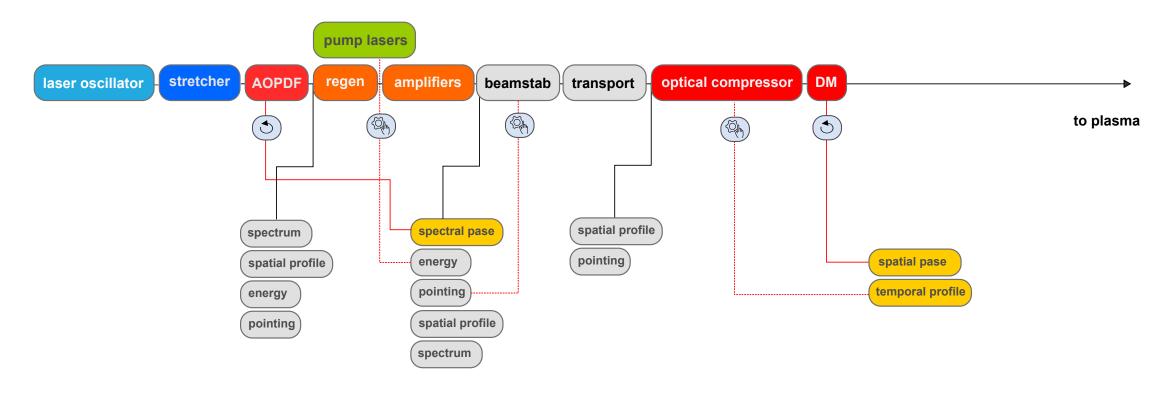
pour
$$a_0=2$$
 , $n_e=10^{18}{
m cm}^{-3}$

Conclusion: système laser >25 TW, impulsion femtoseconde, haute énergie >1J / impulsion

Rappel

Une impulsion laser ultra-courte ↔ spectre large

Challenge du contrôle laser pour l'ALP stable


Fonction du régime et schéma d'injection mais très dépendant des performances laser

- PALLAS injection par ionisation tronquée requière
 - $\circ~$ stabilité en intensité <3% la contrainte est sur le spatial $I_L=E_L/(\pi w_0^2 au_L)$
 - \circ stabilité en position du foyer $dz_0 < 50~\mu{\rm m} \Leftrightarrow < 5~{\rm nm}$ (RMS) sur les composantes du front d'onde.
 - $\circ~$ stabilité en pointé RMS $< 1 \mu$ rad
- ... sur une impulsion de 30 TW (... effet non linéaire, $n=n_0+n_1*I$).
- ... a 10 Hz (~10-30W)

Paramètres *atteignables* mais requièrent un **contrôle avancé** dans le voisinage de la zone utile (interation)

Synoptique système laser CPA 50 TW

installation laser pilote standard pour expérience ALP

valeur typique stabilité énergie <5% RMS, pointé ~10 urad RMS, durée <15% FWHM

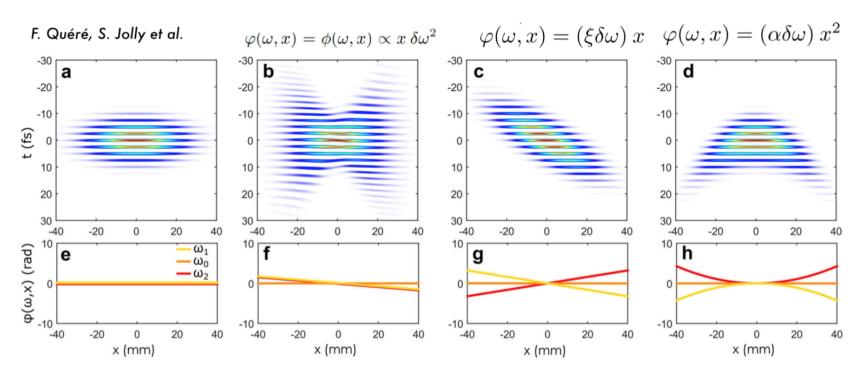
... système laser CPA 50 TW pilote d'un accélérateur laser-plasma

- + data logging, online monitoring.
- => objectifs : stabilité énergie <1% RMS, pointé ~1 urad RMS, durée <5% FWHM

Caractérisation laser - 1

- => instrumentation caracterisation du champ laser : $E_L^2(r), E_L^2(t), \phi(r), \Phi(\omega)$
 - Intégration de moyen de caractérisation développé/vendu par l'industrie photonique
 - spatial: mesure de phase (front d'onde) Shack-Hartmann ou LTSI, Intensité (CMOS/CCD),
 position (4QD, PSD)
 - temporel/spectal: mesure d'autocorrelation, Self-Referenced Spectral Interferometry,
 frequency resolved optical gating (FROG)
 - **spectral**: spectromètre 1D, 2D
- => instrumentation issue des laboratoires pour caractérisation souvent ponctuelle ...
- => effort important pour l'intégration dans "une machine" x contrôle-commande

Caractérisation laser - 2


=> Système laser CPA couple le spatial/temporel(spectral) : étireur + amplificateur + compresseur

$$arphi(\omega,\mathbf{r}) = rac{oldsymbol{arphi}(\omega_0,\mathbf{r})}{oldsymbol{arphi}(\omega)} + rac{\partial arphi(\omega_0,\mathbf{r})}{\partial \omega} \delta\omega + \phi(\omega,\mathbf{r})$$

Phase front

Pulse front

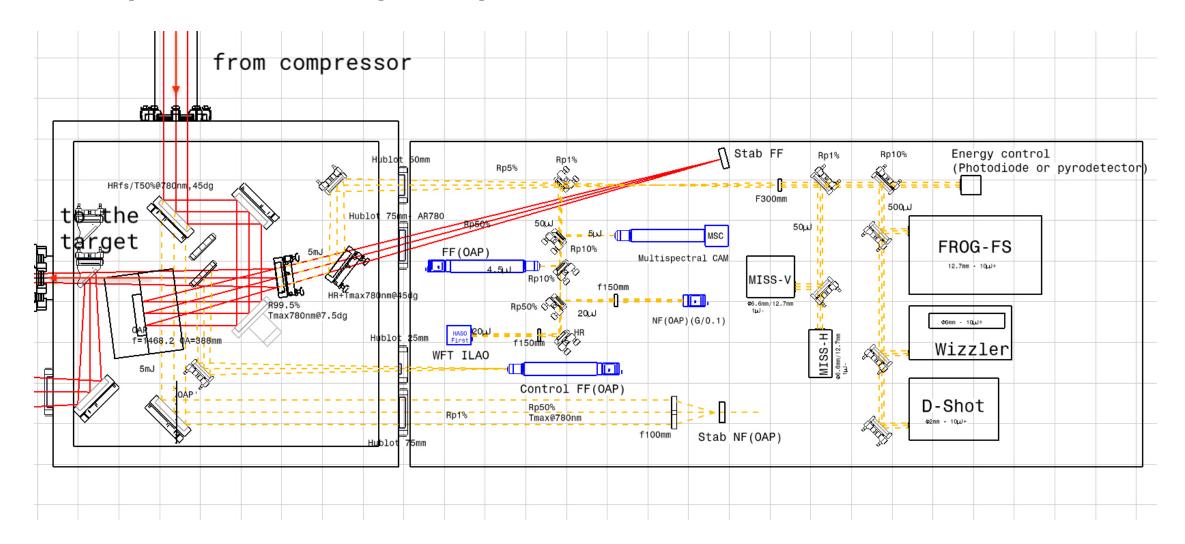
pulse shape

Caractérisation laser - 3

Négliger les effets spatio-temporel ⇔ négliger les aberrations chromatiques

- Une impulsion peut être localement courte ou une tache focale
- "temps d'arrivée" sur la cible différent

Instruments développé reconstruction de la phase par spectroscopie de Fourier résolue spatial (FF) complexe, temps de reconstruction >3 minutes


• R&D@ IJClab **projet ML-COLA** (V. Kubytskyi, M.Pittman, E. Baynard *et al.*) combine l'utilisation caméra multi-spectrale $I(x,y,\omega_i)$, i=1...8, mesure des phases $\phi(x,y)$, $\Phi(\omega)$ indépendante et utilisation machine learning pour reconstruire $\phi(x,y,\omega)$ à une répitition >1 Hz.

Moyen de correction/contrôle

intégration de solution commercial et développement avec combinaison de technologies avancées (usinage laser, spatiale...)

- phase spectral: modulateur acousto-optique (AOPDF).
- phase spatial : miroir déformable
- pointé: monture cale piezo tip/tilt combinée à des miroirs ultra-léger en SiC pour la correction sur les faisceaux grand diamètre (ARDOP/IJClab/Mersen/MRC GmbH) correction large bande (0 -400 Hz) - sonde de référence colinéaire et séparation spectrale

Exemple de mise en place pour PALLAS

Discussion

- le projet **PALLAS** nécessite de redéfinir l'état de l'art de l'opération/contrôle des lasers pilote UHI.
- pousser une maitrise technologique à l'état de l'art n'est possible qu'avec
 - les ressources (assistance techniques, opération, développement) d'expérience permettant l'aggrégation des compétences
 - une **plateforme maintenue** dans le temps
 - la possibilité de "perdre" du temps dans les détails
- Non discuté: transport laser, évolution du système laser LASERIX avec PALLAS, possibilité de mutualisation de matériel, évolution des pratiques vers des "bas taux CO2"
- ...version des slides avec les références sera updatée...

Merci

remerciements : Elsa, Julien, Moana, l'équipe ALEA et les optomécaniciens du BE qui ont de près ou de loin contribué.e.s au contenu de ces slides.