

B-tagging for missing energy modes at Belle II

karim.trabelsi@ijclab.in2p3.fr 2021/10/27

$\mathbf{R}_{\mathbf{K}^{(*)}} \text{ at Belle and Belle II}$ The ''clean'' Lepton Flavor Universality ratio $\mathbf{R}_{\mathbf{K}^{(*)}} = \frac{\mathbf{Br}(\mathbf{B} \rightarrow \mathbf{K}^{(*)} \mu \mu)}{\mathbf{Br}(\mathbf{B} \rightarrow \mathbf{K}^{(*)} e e)}$ SM prediction very robust: $\mathbf{R}_{\mathbf{K}}(\mathbf{SM}) = 1$ [up tiny QED and lepton mass effects] [Belle, JHEP 2013 (2021) 105, arXiv:1908.01848]

Lepton (non) universality using $B \rightarrow K^{(*)} l^+ l^-$ decays

Model candidates

- ✓ Effective operator from Z' exchange
- ✓ Extra U(1) symmetry with flavor dependent charge

♦ Models with leptoquarks

- ✓ Effective operator from LQ exchange
- ✓ Yukawa interaction with LQs provide flavor violation

♦ Models with loop induced effective operator

- ✓ With extended Higgs sector and/or vector like quarks/leptons
- ✓ Flavor violation from new Yukawa interactions

Leptoquarks are color-triplet bosons that carry both lepton and baryon numbers

Lot of those models predict also LFV $b \rightarrow se\mu$, $b \rightarrow se\tau$,...

(see Damir, Sebastien, Olcyr's work)

G.Isidori , FPCP 2020: correlations among $b \rightarrow s(d)$ ll' within the U(2)-based EFT

	μμ (ee)	ττ	vv	τμ	μe
$b \rightarrow s$	R _K , R _{K*}	$\begin{array}{c} \mathbf{B} \to \mathbf{K}^{(*)} \tau \tau \\ \hline \to 100 \times \mathrm{SM} \end{array}$	$B \rightarrow K^{(*)} \nu \nu$ $O(1)$	$\begin{array}{c} B \rightarrow K \tau \mu \\ \hline \rightarrow 10^{-6} \end{array}$	$ \begin{array}{c} \mathbf{B} \to \mathbf{K} \ \mu \mathbf{e} \\ \hline ??? \end{array} $
$b \rightarrow d$	$\begin{split} B_d &\to \mu \mu \\ B &\to \pi \ \mu \mu \\ B_s &\to K^{(*)} \ \mu \mu \end{split}$	$\frac{B \to \pi \ \tau \tau}{\to 100 \times SM}$	$\frac{\mathbf{B} \to \pi \mathbf{v} \mathbf{v}}{\mathbf{O}(1)}$	$\frac{B \to \pi \tau \mu}{\to 10^{-7}}$	$ \begin{array}{c} \mathbf{B} \to \pi \ \mu \mathbf{e} \\ \hline ??? \end{array} $
l	$O(20\%) [R_K = R_\pi]$] 3	(but	the τ is mu	ch more challenging

Event reconstruction in B \rightarrow K \tau l at B factories

(**FEI = Full Event Interpretation**)

 $\begin{array}{c} \underline{\textbf{B}}_{\text{tag}} \\ \underline{\textbf{hadronic tag}} \\ \textbf{B} \rightarrow \textbf{D}^{(*)} \pi, \ \textbf{D}^{(*)} \rho \dots \\ \epsilon \sim 0.5 \,\% \end{array}$

semileptonic tag $B \rightarrow D^{(*)} l \nu X$ $\epsilon \sim 2\%$

Particle	# channels (Belle)	# channels (Belle II)
D+/D*+/D _s +	18	26
D ⁰ /D*0	12	17
B+	17	29
B ⁰	14	26

Algorithm	MVA	Efficiency	Purity
Belle v1 (2004)	Cut based (Vcb)		
Belle v3 (2007)	Cut based	0.1	0.25
Belle NB (2011)	Neurobayes	0.2	0.25
Belle II FEI (2017)	Fast BDT	1 0.5	0.25

Improvement to tagging efficiency in Belle II

(think about flavour tagging at LHCb...)

physics program related to this activity $B \rightarrow K^{(*)} \tau \tau$, $K^{(*)} \nu \nu$, $D^{(*)} \tau \nu$, $\tau \nu$, $\mu \nu$ etc...

$B^+ \rightarrow K^+ \tau \ell$ search with Fei

EXPLORING B^{\pm} DECAYS via MC simulation

- A lot of <u>unexplored and unknown</u> hadronic modes for FEI

7

- SL decays are almost completely covered by FEI

EXPLORING B^{\pm} DECAYS via MC simulation

	Decay mode	b.r. (%)		HAD (FEI)
**	B+> anti-D*0 a 1+	1.8716		20%
*	B+> anti-D*0 pi0 pi+ pi+ pi-	1.8497	-	2070
	B+> D_s*+ anti-D*0	1.7056		
**	B+> anti-D*0 rho+	1.5056		
**	B+> D*- pi0 pi+ pi+	1.5418		
**	B+> anti-D0 rho+	1.2754		
•	B+> D'_s1+ anti-D*0	1.1464		
*	B+> anti-D*0 pi+ pi+ pi-	1.0581		
*	B+> D_s+ anti-D0	1.0060		
*	B+> D_s+ anti-D*0	0.8181	35%	
*	B+> anti-D*0 D*+ K0	0.8151	Many b r 's were not	
**	B+> D_s*+ anti-D0	0.7562		
*	B+> anti-D*0 D0 K+	0.6422	measured at Belle&BaBar	
**	B+> anti-D*0 pi+ eta	0.6286	Old measurement by	1 5 0/
*	B+> anti-D0 D*+ K0	0.5441		15%
*	B+> anti-D*0 pi+	0.5532		
*	B+> anti-D*0 D*0 K+	0.5230	CLEO 9.1 fb ⁻¹	
**	B+> anti-D*0 rho0 rho+	0.5087		
*	B+> D*0 anti-D0 K+	0.4822	ARGUS U.2 TD ⁻¹	
*	B+> anti-D0 pi+ pi+ pi-	0.4883	$\langle \tau \rangle$	
•	B+> anti-D*0 rho+ omega	0.4581		
**	B+> anti-D*0 pi+ omega	0.4309		
**	B+> anti-D*0 pi+ pi- rho+	0.4354		
*	B+> anti-D0 pi+	0.4317	PYTHIA (FEI)	
**	B+> anti-D0 rho0 pi+	0.4113	5% 4%	SL(FEI)
**	B+> anti-D0 pi+ omega	0.3834 🔵	0,0 2,0	
**	B+> anti-D*0 pi0 rho0 pi+	0.3766	20/2	18%
•••	B+> D_s*+ anti-D_2*0	0.3630	570	1070
	B+> anti-D*0 rho+ eta	0.3562		
**	B+> anti-D0 a_1+	0.3539		
	B+> anti-D*0 pi0 pi+ omega	0.3524		
	B+> D'_s1+ anti-D0	0.3177	A lot of upovalared and u	nknown
**	B+> anti-D0 pi0 rho+	0.3155		
*	B+> anti-D*0 D+ K0	0.3087	hadronic modes for FFI	
*	B+> anti-D*0 D*+ K*0	0.2845		
•	B+> anti-D*0 pi+ rho+ rho-	0.2536	 SI decays are almost com 	pletely covered by FFI
**	B+> K*+ psi(4040)	0.2490	Se decays are annost com	

... AND MANY MORE! (Only 1/3 of hadronic modes is shown)

8

Few examples of relevant measurements

ARGUS, Z.Phys.C 48 (1990) 543-552

Decay mode	b.r. (%)
* * B+> anti-D*0 a_1+	1.8716
* B+> anti-D*0 pi0 pi+ pi+ pi-	1.8497
B+> D_s*+ anti-D*0	1.7056
* * B+> anti-D*0 rho+	1.5056
* * B+> D*- pi0 pi+ pi+	1.5418
* * B+> anti-D0 rho+	1.2754
B+> D'_s1+ anti-D*0	1.1464
* B+> anti-D*0 pi+ pi+ pi-	1.0581
* B+> D_s+ anti-D0	1.0060
* B+> D_s+ anti-D*0	0.8181
* B+> anti-D*0 D*+ K0	0.8151
* * B+> D_s*+ anti-D0	0.7562
* B+> anti-D*0 D0 K+	0.6422
* * B+> anti-D*0 pi+ eta	0.6286
* B+> anti-D0 D*+ K0	0.5441
* B+> anti-D*0 pi+	0.5532
* B+> anti-D*0 D*0 K+	0.5230
* * B+> anti-D*0 rho0 rho+	0.5087
* B+> D*0 anti-D0 K+	0.4822
* B+> anti-D0 pi+ pi+ pi-	0.4883
B+> anti-D*0 rho+ omega	0.4581
* * B+> anti-D*0 pi+ omega	0.4309
★ ★ B+> anti-D*0 pi+ pi- rho+	0.4354
* B+> anti-D0 pi+	0.4317
* * B+> anti-D0 rho0 pi+	0.4113
★ ★ B+> anti-D0 pi+ omega	0.3834
* * B+> anti-D*0 pi0 rho0 pi+	0.3766
B+> D s*+ anti-D 2*0	0.3630

	Decay mode	b.r. (%)
**	B+> anti-D*0 a_1+	1.8716
*	B+> anti-D*0 pi0 pi+ pi+ pi-	1.8497
	B+> D_s*+ anti-D*0	1.7056
**	B+> anti-D*0 rho+	1.5056
**	B+> D*- pi0 pi+ pi+	1.5418
**	B+> anti-D0 rho+	1.2754
	B+> D'_s1+ anti-D*0	1.1464
*	B+> anti-D*0 pi+ pi+ pi-	1.0581
*	B+> D_s+ anti-D0	1.0060
*	B+> D_s+ anti-D*0	0.8181
*	B+> anti-D*0 D*+ K0	0.8151
**	B+> D_s*+ anti-D0	0.7562
*	B+> anti-D*0 D0 K+	0.6422
**	B+> anti-D*0 pi+ eta	0.6286
*	B+> anti-D0 D*+ K0	0.5441
	P+ > onti D*0 nit	and the second se
*		0.5532
* *	B+> anti-D*0 D*0 K+	0.5532
* * **	B+> anti-D*0 D*0 K+ B+> anti-D*0 rho0 rho+	0.5532 0.5230 0.5087
* * * *	B+> anti-D*0 D*0 K+ B+> anti-D*0 rho0 rho+ B+> D*0 anti-D0 K+	0.5532 0.5230 0.5087 0.4822
* * * * * * * *	B+> anti-D *0 D*0 K+ B+> anti-D*0 rho0 rho+ B+> D*0 anti-D0 K+ B+> anti-D0 pi+ pi+ pi-	0.5532 0.5230 0.5087 0.4822 0.4883
*** ****	B+> anti-D *0 pi+ B+> anti-D*0 D*0 K+ B+> D*0 anti-D0 K+ B+> D*0 anti-D0 pi+ pi+ pi- B+> anti-D*0 rho+ omega	0.5532 0.5230 0.5087 0.4822 0.4883 0.4581
*****	B+> anti-D *0 pi+ B+> anti-D*0 D*0 K+ B+> D*0 anti-D0 K+ B+> anti-D0 pi+ pi+ pi- B+> anti-D*0 rho+ omega B+> anti-D*0 pi+ omega	0.5532 0.5230 0.5087 0.4822 0.4883 0.4581 0.4309
***** **	B+> anti-D *0 pi+ B+> anti-D*0 D*0 K+ B+> D*0 anti-D0 K+ B+> anti-D0 pi+ pi+ pi- B+> anti-D*0 rho+ omega B+> anti-D*0 pi+ omega B+> anti-D*0 pi+ pi- rho+	0.5532 0.5230 0.5087 0.4822 0.4883 0.4581 0.4309 0.4354
*********	B+> anti-D 0 pi+ B+> anti-D*0 D*0 K+ B+> D*0 anti-D0 K+ B+> D*0 anti-D0 K+ B+> anti-D0 pi+ pi+ pi- B+> anti-D*0 rho+ omega B+> anti-D*0 pi+ omega B+> anti-D*0 pi+ pi- rho+ B+> anti-D0 pi+	0.5532 0.5230 0.5087 0.4822 0.4883 0.4581 0.4309 0.4354 0.4317
* * * * * * * *	B+> anti-D 0 pi+ B+> anti-D*0 D*0 K+ B+> D*0 anti-D0 K+ B+> D*0 anti-D0 K+ B+> anti-D0 pi+ pi+ pi- B+> anti-D*0 rho+ omega B+> anti-D*0 pi+ omega B+> anti-D*0 pi+ pi- rho+ B+> anti-D0 pi+ B+> anti-D0 pi+	0.5532 0.5230 0.5087 0.4822 0.4883 0.4581 0.4309 0.4354 0.4317 0.4113
**********	B+> anti-D *0 pi+ B+> anti-D*0 D*0 K+ B+> D*0 anti-D0 K+ B+> anti-D0 pi+ pi+ pi- B+> anti-D*0 rho+ omega B+> anti-D*0 pi+ omega B+> anti-D*0 pi+ pi- rho+ B+> anti-D0 pi+ B+> anti-D0 pi+ B+> anti-D0 pi+ omega	0.5532 0.5230 0.5087 0.4822 0.4883 0.4581 0.4309 0.4354 0.4317 0.4113 0.3834
***********	B+> anti-D 0 pi+ B+> anti-D*0 D*0 K+ B+> D*0 anti-D0 K+ B+> D*0 anti-D0 K+ B+> anti-D0 pi+ pi+ pi- B+> anti-D*0 rho+ omega B+> anti-D*0 pi+ omega B+> anti-D*0 pi+ pi- rho+ B+> anti-D0 pi+ B+> anti-D0 pi+ B+> anti-D0 pi+ omega B+> anti-D0 pi onega	0.5532 0.5230 0.5087 0.4822 0.4883 0.4581 0.4309 0.4354 0.4317 0.4113 0.3834 0.3766

0	$B \rightarrow D^{(*)} \pi \eta$ modes at few 10^{-3} ?
\Rightarrow	related to recent paper on lepton moments ??
\Rightarrow	$B \rightarrow D^{(*)} \pi \eta$ modes \Rightarrow SL gap modes $(B \rightarrow D^{(*)} \eta l \nu)$

Decay	$\mathcal{B}(B^+)$	$\mathcal{B}(B^0)$
$B \rightarrow D \ell^+ \nu_{\ell}$ $B \rightarrow D^* \ell^+ \nu_{\ell}$	$(2.4 \pm 0.1) \times 10^{-2}$ $(5.5 \pm 0.1) \times 10^{-2}$	$(2.2 \pm 0.1) \times 10^{-2}$ $(5.1 \pm 0.1) \times 10^{-2}$
$\begin{array}{l} B \rightarrow D_1 \ell^+ \nu_\ell \\ B \rightarrow D_2^{\star} \ell^+ \nu_\ell \\ B \rightarrow D_0^{\star} \ell^+ \nu_\ell \\ B \rightarrow D_1^{\prime} \ell^+ \nu_\ell \end{array}$	$\begin{array}{c} (6.6 \pm 1.1) \times 10^{-3} \\ (2.9 \pm 0.3) \times 10^{-3} \\ (4.2 \pm 0.8) \times 10^{-3} \\ (4.2 \pm 0.9) \times 10^{-3} \end{array}$	$\begin{array}{c} (6.2 \pm 1.0) \times 10^{-3} \\ (2.7 \pm 0.3) \times 10^{-3} \\ (3.9 \pm 0.7) \times 10^{-3} \\ (3.9 \pm 0.8) \times 10^{-3} \end{array}$
$B \rightarrow D\pi\pi \ell^+ \nu_\ell$ $B \rightarrow D^*\pi\pi \ell^+ \nu_\ell$ $B \rightarrow D\eta \ell^+ \nu_\ell$ $B \rightarrow D^*\eta \ell^+ \nu_\ell$	$\begin{array}{c} (0.6 \pm 0.9) \times 10^{-3} \\ (2.2 \pm 1.0) \times 10^{-3} \\ (4.0 \pm 4.0) \times 10^{-3} \\ (4.0 \pm 4.0) \times 10^{-3} \end{array}$	$\begin{array}{c} (0.6 \pm 0.9) \times 10^{-3} \\ (2.0 \pm 1.0) \times 10^{-3} \\ (4.0 \pm 4.0) \times 10^{-3} \\ (4.0 \pm 4.0) \times 10^{-3} \end{array}$
$B \to X_e \ell^+ \nu_\ell$	$(10.8\pm 0.4)\times 10^{-2}$	$(10.1\pm 0.4)\times 10^{-2}$

⇒ but also looking closer at $D^{*0}\pi\pi\pi\pi^{0}$'s analysis of CLEO [hep-ex/0103021] with only 9/fb we can observe it or put a stringent limit

Main priorities (focusing on charged B modes)

- ∘ $B^- \rightarrow D^0 \pi^+ \pi^- \pi^+$: measure $D^0 a_1^+$, $D^0 \rho^0 \pi^-$, $D^0 \pi^+ \pi^- \pi^+$ NR
- Modes with one π^0 :
 - D⁰ ρ^+ , OLD (CLEO 0.9 fb⁻¹)
 - $D^{*}\pi^{+}\pi^{+}\pi^{0}$, OLD (ARGUS 0.25 fb⁻¹)
 - $D^{-}\pi^{+}\pi^{+}\pi^{0}$, never measured (guessed in DECAY.DEC file)
 - $D^{(*)0} \pi^{+} \pi^{+} \pi^{-} \pi^{0}$, OLD (CLEO 9 fb⁻¹)
- Modes with η (PYTHIA), D^{(*)0} η π⁺ (link to SL gap filled with D^{(*)0} η l⁺ν)
 ... also DKK^{*}...
 - ... and also add B⁰ modes

crucial for FEI hadronic modes:
better modeling = optimal result
new modes = higher efficiency
but also important for inclusive tagging
.... trained on MC

Observation of $B \rightarrow D^{(*)} K^- K^{0(*)}$ decays A.Drutskoy et al, hep-ex/0207041 [29 fb⁻¹]

BEYOND FEI - DIRECTIONS (I)

- $B \rightarrow K\tau \ell$ is the ideal mode to exploit B-tagging improvements unique case with m_{τ} as variable of signal extraction
- Multi-pion modes
 - Improve MC modelling

- PHSP model often not accurate (intermediate resonances)

- Wrong interpretation of PDG b.r.'s (double counting) -Resonant vs. NR e.g. $\overline{D}^0 \pi^+ \pi^+ \pi^-$

- Large uncertainty on high-b.r. decay modes

₽

• FEI' = Re-trained FEI + new modes $D^{*0}D_{s}^{*+}(1.7)$ $D^{*-}\pi^{+}\pi^{+}\pi^{0}(1.8)$ $\overline{D}^{(*)0}K^{(*)+}K^{(*)0}(\sim 0.5)$

- + 'Recycling'
- Decays with D* are lost as soon as one γ or π⁰ is missing
- Select the ΔE~-0.2 GeV region with known shift (missing γ or π⁰) → recoil mass is still fine!

A better MC modelling is anyway beneficial for the training of FEI and any tagging algorithms (even inclusive ones!)

BEYOND FEI - DIRECTIONS (II)

Avoid reconstructing both D's. Instead D⁰X tagging where

X has specific properties (i.e. # kaons, invariant mass etc.)

Double charm modes give small `FEI' contribution, despite the high branching ratios (DD_sX ~ 8 %, DDKX ~ 5 %) because of the full reconstruction of 2 D mesons

 Semi-inclusive approach for higher tagging efficiency

Summary

- ∘ $B \rightarrow K \tau l$ modes are the ideal environment to explore B-tagging
- The '' $B \rightarrow \tau$ '' team S. Watanuki (IJCLab \rightarrow Yonsei U.) G. de Marino V. Bertacchi (CPPM) cs-tag V.S. Vobbilisetti ($B \rightarrow K \tau \tau$) K. Trabelsi
- Better modelling is beneficial for the training of tagging algorithms (also inclusive ones!)
- New modes \Rightarrow higher efficiency

• Neutral B's $B^{0} \rightarrow K_{S}^{0} \tau l$ [S.Sandilya, Vismaya V.S. - Hyderabad] $B^{0} \rightarrow \tau l$ [M.Liu - Fudan's PhD student at IJCLab for 2 years]

[Belle, JHEP 2013 (2021) 105, arXiv:1908.01848]

Nice complementarity

A. Angelescu et al., arXiv:2103.12504v2 (21 Apr 2021)

Belle II detector

EM Calorimeter : CsI(Tl) waveform sampling

Vertex Detector 1/2 layers DEPFET + 4 layers DSSD

Installation of Vertex Detector (Fall 2018)

K_L and muon detector Resistive Plate Counter (barrel) Scintillator + WLSF + MPPC (endcaps)

Particle Identification Time-Of-Propagation counter (barrel) Prox. focusing Aerogel RICH

Central Drift Chamber He (50%):C₂H₆ (50%)small cells, long level arm, fast electronics

on - going DAQ upgrade (to be installed in 2020 - 2021)

PCIe 40 board, capable of reading via high speed optical links and to write to computer at rate of 100 Gb/s: limited number of boards (20) enough **to read entire Belle II detector** (P.Robbe, D.Charlet et al)

considering now VTX upgrade (2025 or later) also luminometer LumiBelle2, P.Bambade et al)

News about Belle II

despite difficult conditions, continued to take data since March 2020 yes, no excuse... will be of little value around here...

record of KEKB/Belle 2.1×10^{34} /cm²/s currents >1A record of PEPII/BaBar 1.2×10^{34} /cm²/s currents >2A

$3.1 \times 10^{34}/cm^2/s! \sim 2 \, fb^{-1} \, per \, day$

News about Belle II

Calendrier de Belle II

la vie n'est pas un long fleuve tranquille...

$\mathbf{B} \rightarrow \mathbf{D}^0 \pi^+ \pi^- \pi^+$

Phys.Rev.D 84 (2011) 092001

 $\mathcal{B}(\overline{B}^0 \to D_1(2420)^-\pi^+, D_1(2420)^- \to D^+\pi^-\pi^+) = (1.3 \pm 0.3^{+0.2}_{-0.3}) \times 10^{-4}$ $\mathcal{B}(B^- \to D_1(2420)^0 \pi^+, D_1(2420)^0 \to D^0 \pi^- \pi^+) = (6.3 \pm 0.9 \pm 0.9) \times 10^{-4}$ $\mathcal{B}(B^- \to D_1(2420)^0 \pi^+, D_1(2420)^0 \to D^{*+}\pi^-) = (5.8 \pm 1.0 \pm 0.9) \times 10^{-4}$ $\mathcal{B}(B^- \to D_1(2420)^0 \pi^+, D_1(2420)^0 \to D^0 \pi^+ \pi^-)_{\mathrm{non}-D^*} = (2.5 \pm 0.4 \pm 0.4) \times 10^{-4}$ $\mathcal{B}(B^- \to D_2^*(2460)^0 \pi^+, D_2^*(2460)^0 \to D^{*+}\pi^-) = (2.5 \pm 0.7 \pm 0.4) \times 10^{-4}$

• but no Da_1 result, neither $D\rho\pi$, $D3\pi$ NR

 \Rightarrow D $\rho\pi$, D 3π NR results in PDG are from CLEO (0.9 fb⁻¹) \Rightarrow used in our (Belle/Belle II) DECAY file

$\Gamma(~B^+ o \overline{D}^0 \pi^+ \pi^+ \pi^-~)/\Gamma(~B^+ o \overline{D}^0 \pi^+~)$					-
VALUE	DOCUMENT	T ID	TECN	COMMENT	
1.2 ± 0.4 OUR FIT Erro	or includes scale f	actor of 3.7	•		
$1.27 \pm 0.06 \pm 0.11$	AAIJ	2011E	LHCB	pp at 7 TeV	
References:					

+ Data

- Full PDF

---- D,(2420)0

D2*(2460)°

Comb. Back

AAIJ 2011E PR D84 092001 Measurements of the Branching Fractions for $B_{(s)} o D_{(s)} \pi \pi \pi$

and $\Lambda^0_b o \Lambda^+_c \pi \pi \pi$

$\Gamma(~B^+ o \overline{D}^0 \pi^+ \pi^+ \pi^- ext{ nonresonant}) / \Gamma_{ ext{total}}$ Γ_{108} / Γ				-
VALUE	DOCUMENT ID	TECN	COMMENT	
$0.0051 \pm 0.0034 \pm 0.0023$	¹ BORTOLETTO 1992	CLEO	$e^+ e^- o \Upsilon(4S)$	
¹ BORTOLETTO 1992 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D .				

References:

BORTOLETTO 1992 PR D45 21 Inclusive and Exclusive Decays of B Mesons to Final States Including Charm and Charmonium Mesons

$\Gamma(B^+ ightarrow \overline{D}^0 \pi^+ ho^0) / \Gamma_{ m total}$

VALUE	DOCUMENT ID	TECN	COMMENT
$0.0042 \pm 0.0023 \pm 0.0020$	¹ BORTOLETTO 1992	CLEO	$e^+ e^- o \Upsilon(4S)$
-		0	

 Γ_{109}/Γ

¹ BORTOLETTO 1992 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D.

References:

BORTOLETTO 1992 PR D45 21 Inclusive and Exclusive Decays of B Mesons to Final States Including Charm and Charmonium Mesons

$\Gamma(~B^+ o \overline{D}^0 a_1 {(1260)}^+~)/\Gamma_{ m total}$			Γ_{110}/Γ	-
VALUE	DOCUMENT ID	TECN	COMMENT	

	Beederillin		00////2///
$0.0045 \pm 0.0019 \pm 0.0031$	¹ BORTOLETTO 1992	CLEO	$e^+ e^- o \Upsilon(4S)$
¹ BORTOLETTO 1992 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D .			

References:

BORTOLETTO 1992 PR D45 21 Inclusive and Exclusive Decays of B Mesons to Final States Including Charm and Charmonium Mesons