

Determination of CKM Angle ϕ_3 at Belle and Belle II

Yi Zhang

Fudan University, Shanghai and IJCLab, Orsay 27th October 2021

 \Box Very precise theoretical prediction $\frac{\delta \phi_3}{\phi_2} \sim 10^{-7}_{\text{arxiv:1308.5663}}$

Test physics beyond SM

 D^0 \square 3 main methods to extract ϕ_3 : \bar{u} GLW method: CP eigenstates: K^-K^+ , $\pi^-\pi^+$, $K_S^0\pi^0$

□ The interference between color-favored and color-suppressed processes can be related : $\frac{A^{suppr.}[B^- \to \overline{D^0}K^-]}{A^{favor.}[B^- \to D^0K^-]} = r_B e^{i(\delta_B - \phi_3)}$

 $r_{\rm B}$ -the magnitude of the ratio of amplitudes ~0.1; $\delta_{\rm B}$ -strong-phase difference

ADS method: DCS modes: $K^+\pi^-$, $K^+\pi^-\pi^0$

BPGGSZ method: self-conjugate multibody final states: $K_S^0 \pi^+ \pi^-$, ٠ $K_{S}^{0}K^{+}K^{-}, K_{S}^{0}\pi^{+}\pi^{-}\pi^{0}$

 \square Foreseen precision of ϕ_3 is expected to be $\mathcal{O}(1^\circ)$ (current worldaverage $\delta \phi \sim 4^{\circ}$) with the full Belle II dataset of 50 ab^{-1}

$$\phi_3/\gamma \equiv arg \left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$$

BtoCharm Status

Exp: 7-18 - All runs

Study of $B \rightarrow D_{fav}^{(*)}h$ with 62.8 fb⁻¹ Belle II data

- The improved measurement of the color-favored hadronic two body decay of B meson helps to a better understanding of QCD effects
- **D**ecay ratio to be extracted:

$$R^{D(*)} = \frac{\Gamma[B \to D^{(*)}K]}{\Gamma[[B \to D^{(*)}\pi]} \simeq \tan^2 \theta_C \left(\frac{f_K}{f_\pi}\right)^2$$

which will eliminate some systematic uncertainties

- \implies R2<0.3 is sufficient to suppress the background
- $\square Unbinned 1D simultaneous fit of \Delta E$

$$N_{KID<0.6}^{D^{(*)}\pi} = (1 - \kappa_{KID>0.6}) N_{Total}^{D^{(*)}\pi}$$

$$N_{KID<0.6}^{D^{(*)}K} = (1 - \epsilon_{KID>0.6}) R^{(*)} N_{Total}^{D^{(*)}\pi}$$

$$N_{KID>0.6}^{D^{(*)}K} = \epsilon_{KID>0.6} R^{(*)} N_{Total}^{D^{(*)}\pi}$$

$$N_{KID>0.6}^{D^{(*)}\pi} = \kappa_{KID<0.6} N_{Total}^{D^{(*)}\pi}$$

pion enhanced
$$\mathcal{L}(K/\pi) < 0.6$$

kaon enhanced $\mathcal{L}(K/\pi) > 0.6$
kaon enhanced

 κ - pion fake rate(free); ϵ -kaon efficiency(fixed from official PID table); KID –short for binary PID likelihood $\mathcal{L}(K/\pi) = \frac{\mathcal{L}(K)}{\mathcal{L}(K) + \mathcal{L}(\pi)}$ $h = \pi, K$ arXiv:2104.03628

Study of $B \rightarrow D_{fav}^{(*)}h$ done with 62.8 fb⁻¹ Belle II data

$h = \pi, K$ arXiv:2104.03628

□ A conference paper in winter 2021

BPGGSZ Method Study of $B^- \rightarrow D(\rightarrow K_S^0 h^+ h^-)h^-$

https://arxiv.org/abs/2110.12125 $h = \pi, K$

First Belle + Belle II analysis Done By Niharika Rout, Jim Libby, Karim Trabelsi

- $\square B^- \rightarrow D(\rightarrow K_S^0 \pi^+ \pi^-) K$ is golden mode at Belle II
- □ Sensitivity to ϕ_3 by comparing D Dalitz (fit with full amplitude model)distribution of B^- and B^+ : $A_B = \overline{A}(m_-^2, m_+^2) + r_B e^{i(\delta_B + \phi_3)} A(m_+^2, m_-^2)$
- \square Model-dependent analysis have model uncertainty up to 3° -9°
- **Using binned model-independent approach**
 - Optimal binning of the D Dalitz plot which gives the maximum sensitivity to ϕ_3
 - Observed yields in each bin can be related to physics parameters of interest and D^0 decay information

 $\mathsf{N}_{i}^{\pm} = \mathsf{h}_{\mathsf{B}^{\pm}} \left[\mathsf{F}_{i} + \mathsf{r}_{\mathsf{B}}^{2} \overline{\mathsf{F}}_{i} + 2\sqrt{\mathsf{F}_{i} \overline{\mathsf{F}}_{i}} (\mathsf{c}_{i} x_{\pm} + \mathsf{s}_{i} y_{\pm}) \right].$

- $h_{B^{\pm}}$:Normalization constant
- Physics parameters of interest: $(x_{\pm}, y_{\pm}) = r_B(\cos(\phi_3 + \delta_B), \sin(\phi_3 \pm \delta_B))$
- Amplitude-averaged strong phase difference between $\overline{D^0}$ and D^0 over i^{th} bin and are obtained from external charm factories like CLEO and BESIII
- Fraction of pure D^0 decay to bin i taking into account the reconstruction and selection efficiency

https://arxiv.org/abs/2110.12125 $h = \pi, K$

BPGGSZ Method Study of $B^- \rightarrow D(\rightarrow K_S^0 h^+ h^-)h^-$ First Belle + Belle II analysis Done By Niharika Rout, Jim Libby, Karim Trabelsi

- □ Analysis with $711fb^{-1}$ Belle data and $128fb^{-1}$ Belle II data
- □ Unbinned 2D simultaneous fit of ΔE versus C' (right plot) for $B^- \rightarrow D^0 (K_S^0 \pi^+ \pi^-) K^-$.

Component	PDF (ΔE)	PDF (FBDT $_{trans}$)
Signal	DG + Bifur-Gaus	poly (1st)
$B\overline{B}$ bkg	expo +(poly)	Chebychev poly-1st(2nd)
<i>qq</i> bkg	Chebychev poly (1st)	2 expo
$DK~(D\pi)$ component	DG + Bifur-Gaus	Chebychev poly (1st)

□ Performed simultaneous fit in 160 categories; 80(16×4+4×4) of Belle and 80 of Belle II

□ Signal region :

|ΔE| < 0.05 GeV
0.65 < C' < 1.0

 $(x_{\pm}, y_{\pm}) = r_B(\cos(\phi_3 + \delta_B), \sin(\phi_3 \pm \delta_B))$ are common to all the bins and are extracted from the fit

https://arxiv.org/abs/2110.12125 $h = \pi, K$

BPGGSZ Method Study of $B^- \to D(\to K_S^0 h^+ h^-) h^-$

First Belle + Belle II analysis Done By Niharika Rout, Jim Libby, Karim Trabelsi

- □ Analysis with $711fb^{-1}$ Belle data and $128fb^{-1}$ Belle II data
- □ Unbinned 2D simultaneous fit of ΔE versus C' (right plot) for $B^- \rightarrow D^0 (K_S^0 \pi^+ \pi^-) K^-$.

Component	PDF (ΔE)	PDF (FBDT $_{trans}$)
Signal	DG + Bifur-Gaus	poly (1st)
$B\overline{B}$ bkg	expo +(poly)	Chebychev poly-1st(2nd)
<i>qq</i> bkg	Chebychev poly (1st)	2 expo
$DK~(D\pi)$ component	DG + Bifur-Gaus	Chebychev poly (1st)

■ Performed simultaneous fit in 160 categories; 80(16×4+4×4) of Belle and 80 of Belle II

□ Signal region :

|Δ*E*| < 0.05 *GeV*0.65 < *C*' < 1.0

 $(x_{\pm}, y_{\pm}) = r_B(\cos(\phi_3 + \delta_B), \sin(\phi_3 \pm \delta_B))$ are common to all the bins and are extracted from the fit

pion enhanced $\mathcal{L}(K/\pi) < 0.6$

BPGGSZ Method Study of $B^- \to D(\to K_S^0 h^+ h^-)h^-$

https://arxiv.org/abs/2110.12125 $h = \pi, K$

First Belle + Belle II analysis Done By Niharika Rout, Jim Libby, Karim Trabelsi

 $\delta_B(^{\circ}) = 124.8 \pm 12.9 \text{ (stat.)} \pm 0.5 \text{ (syst.)} \pm 1.7 \text{ (ext. input)}$ $r_B^{DK} = 0.129 \pm 0.024 \text{ (stat.)} \pm 0.001 \text{ (syst.)} \pm 0.002 \text{ (ext. input)}$ $\phi_3(^{\circ}) = 78.4 \pm 11.4 \text{ (stat.)} \pm 0.5 \text{ (syst.)} \pm 1.0 \text{ (ext. input)}$

GLW Method of $B^- \rightarrow D_{CP} h^- \quad h = \pi, K$

□ Using CP eigenstates mode of K^+K^- (CP+), $K_s^0\pi^0$ (CP-)

$$D_{CP} \text{ modes interference } => \text{ relate with } \phi_3$$

$$A_{CP\pm} = \frac{\Gamma[B^- \to D_{CP}K^-] - \Gamma[B^+ \to D_{CP}K^+]}{\Gamma[B^- \to D_{CP}K^-] + \Gamma[B^+ \to D_{CP}K^+]} = \pm \frac{2r_B sin\delta_B sin\phi_3}{1 + r_B^2 \pm 2r_B cos\delta_B cos\phi_3}$$

$$R_{CP\pm} = \frac{R^{D_{CP\pm}}}{R^{D^0}} = 1 + r_B^2 \pm 2r_B cos\delta_B cos\phi_3$$

 $\square B^- \to D^0(K^-\pi^+)h^- \text{ as control modes to obtain } R^{D^0}$

□ Related measurements listed on HFLAV

 $\begin{array}{l} A(B \rightarrow f) = A = A_1 + A_2 \\ A(\bar{B} \rightarrow \bar{f}) = \bar{A} = \bar{A}_1 + \bar{A}_2 \end{array}$

Experiment	A_{CP^+}		A _{CP} -	R _{CP+}		R _{CP} -	
<u>BaBar</u> N(BB)=467M	$0.25 \pm 0.06 \pm 0.02$	-0.09	$\pm 0.07 \pm 0.02$	$1.18 \pm 0.09 \pm 0.05$	1	$.07 \pm 0.08 \pm 0.04$	<u>PRD 82 (2010) 072004</u>
<u>Belle</u> (*) N(BB)=275M	$0.06 \pm 0.14 \pm 0.05$	-0.12	$\pm 0.14 \pm 0.05$	$1.13 \pm 0.16 \pm 0.08$		$.17 \pm 0.14 \pm 0.14$	<u>PRD 73 (2006) 051106</u>
$\int \frac{\text{CDF}}{\int \text{Ldt}=1 \text{ fb}^{-1}}$	$0.39 \pm 0.17 \pm 0.04$		-	$1.30 \pm 0.24 \pm 0.12$		-	PRD 81 (2010) 031105(R)
$\frac{LHCb}{\int Ldt=8.7 \text{ fb}^{-1}}$	$0.136 \pm 0.009 \pm 0.001$		-	$0.950 \pm 0.009 \pm 0.010$		-	<u>JHEP 2104 (2021) 081</u>

CP only accessible in B Factory

Previous Belle measurement with 200 fb^{-1} (~similar size as Belle II data today)

2D Simultaneous Fit of $B^- \rightarrow D_{CP}h^-$

• Signal enhanced fit : $-0.05 \le \Delta E \le 0.05$ & C'>0.4

• Concerning fit results (13 observables and 55 free fit parameters)

Parameters(%)	R^{D^0}	$\mathbf{R}^{D_{cp+}}$	$\mathbb{R}^{D_{cp}}$	A_{D0}^{K}	A^{π}_{D0}	A_{Dcp+}^{K}	A^{π}_{Dcp+}	A_{Dcp-}^{K}	A^{π}_{Dcp-}
MC Input	8.264	8.264	8.264	0	0	0	0	0	0
Stream 3	8.38 <u>+</u> 0.15	7.72 <u>±</u> 0.58	7.96 <u>+</u> 0.58	-2.40 <u>+</u> 1.72	-0.38 <u>+</u> 0.43	9.50 <u>+</u> 6.80	-0.73 <u>+</u> 1.55	0.53 <u>+</u> 6.02	0.17 <u>±</u> 1.36

→ Uncertainty of $A_{CP\pm} \sim 6\%$

ϕ_3 Sensitivity

$B^- \to D(K_S^0 \pi^+ \pi^+) h^- M$	lode
$x_{\pm} = r_B \cos(\delta_B \pm \phi_3)$ $y_{\pm} = r_B \sin(\delta_B \pm \phi_3)$	\Rightarrow Measurement

parameter	value	
<i>x</i> ₊	-0.1194 <u>+</u> 0.0346	
<i>x</i> _	0.0945±0.0360	
y_+	-0.0634 <u>+</u> 0.0473	
<i>y</i> _	0.1192±0.0467	
arXiv:2110.12125		

- $\Rightarrow \phi_3$ Uncertainty ~10.7°
- \Rightarrow Result from analysis: ~11.0°
- \Rightarrow Estimation method is valid

GLW Method

$$x_{\pm} = r_B \cos(\delta_B \pm \phi_3) = \frac{R_1(1 \mp A_1) - R_2(1 \mp A_2)}{4}$$

parameter	Uncertainty from one stream MC
	± 0.0058
A_1	± 0.0690
R_2	± 0.0057
A_2	± 0.0650
	. 120

 $\Rightarrow \phi_3$ Uncertainty ~13°

GLW+ $B^- \rightarrow D(K_S^0 \pi^+ \pi^+) K^-$ one stream Belle MC $\Rightarrow \phi_3$ Uncertainty ~9° (will investigate further)

Summary

- Determination of CKM angle ϕ_3 is important and Belle II provides a good opportunity to extract it with high precision
- Belle II analysis of $B \rightarrow D^{(*)}h$ is done with Cabibbo favored modes to valid the performance of 62.8 fb⁻¹ Belle II data \rightarrow Performance of Belle II at this stage is similar to Belle
- Determination of ϕ_3 from the combined result of Belle + Belle II of $B^- \rightarrow D^0 (K_S^0 h^+ h^-) K^-$ is submitted to JHEP and are available on arXiv.org https://arxiv.org/abs/2110.12125
- GLW method with final states K^-K^+ , $K_S^0\pi^0$ modes is being analyzed with Belle and Belle II data samples (summer 2022). Simultaneously fitting with 6 modes to extract the signal and concerning observables.
- We estimated the GLW+BPGGSZ sensitivity of $\phi_3 \sim 9^\circ(0.711 \ ab^{-1})$, $\sim 2^\circ(10 \ ab^{-1})$

