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Motivation
Why is B̄ → K̄`+`− interesting?

Lepton Flavour Universality (LFU) predicted by SM.

One can thus define lepton flavour universality ratios, such as
RK :

RK

[
q2

min, q
2
max

]
=

∫ q2
max

q2
min

dq2 dΓ(B→Kµ+µ−)
dq2∫ q2

max

q2
min

dq2 dΓ(B→Ke+e−)
dq2

,

where q2 = (`+ + `−)
2
.

SM predicts RK = 1, whereas LHCb reports

RK

[
1.1GeV2, 6GeV2

]
= 0.846+0.042+0.013

−0.039−0.012

This represents a 3.1 σ deviation from the SM.

=⇒ Hints to Physics beyond the SM.
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Why are QED corrections to B̄ → K̄`+`− important?

Expected to be small, since α
π ≈ 2·10−3.

Due to kinematic effects, QED corrections are of O(απ ) ln m̂` [Note:
m̂` ≡ m`

mB
].

Moreover, RK is a theoretically clean observable, since hadronic
uncertainties cancel in the ratio.

Therefore, need to make sure QED corrections properly accounted
for in experiments (PHOTOS).

Also, precise determination of CKM matrix elements.

Based on 2009:00929, with G. Isidori and R. Zwicky.
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Introduction/Motivation

Bordone et al. (1605.07633) already performed a calculation to
estimate QED corrections to RK .

However, our work represents a more complete treatment
since

I We work with the full matrix elements (real and virtual),
starting from an EFT Lagrangian description. Hence, we can
capture effects beyond collinear ln m̂` terms, such as ln m̂K

which are not necessarily small.

I Results at the double differential level are given, and hence
they can be used for angular analysis (moments).

I We present a detailed discussion on IR divergences, and
demonstrate explicitly the conditions under which they cancel.
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Differential Variables

pK

θ(2)γ

pB

q

k

p̄B -RF q -RF

θℓ

ℓ1

ℓ̄2

q0

k

pB -RF

pK

θ(1)γ

q0 -RF

θ0

ℓ1

ℓ̄2

pBpK

k

θ(4)γ

{q2
a , ca} =

 q2
` = (`1 + `2)2, c` = −

(
~̀
1·~pK
| ~̀1||~pK |

)
q−RF

[“Hadron collider”] ,

q2
0 = (pB − pK )2 , c0 = −

(
~̀
1·~pK
| ~̀1||~pK |

)
q0−RF

[“B-factory”] ,

where q − RF and q0 − RF denotes the rest frames of q ≡ `1 + `2

and q0 ≡ pB − pK = q + k respectively.
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Differential variables and cut-off

Implement a physical cut-off on the photon energy (based on the
visible kinematics),

p̄2
B ≥ m2

B (1− δex) ,

where
p̄2
B ≡ mB

2
rec = (pB − k)2 = (`1 + `2 + pK )2.

Since there is no photon-emission in the non-radiative rate, there is
no difference between the {q2, c`}- and {q2

0 , c0}-variables.
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IR Divergences

Split the differential rate as follows

d2ΓB̄→K̄`1
¯̀

2
(δex)

dq2
adca

=
d2ΓLO

dq2dc`
+
α

π

∑
i,j

Q̂i Q̂j

(
Hij + F (a)

ij (δex)
)

+O(e4) ,

where d2Γ LO corresponds to the zeroth order differential rate and
H and F stand for the virtual and real contributions
respectively.

α

π

∑
i ,j

Q̂i Q̂jHij =
1

mB
ρ`|p̄2

B→m2
B

2Re[A(2)∗A(0)] ,

α

π

∑
i ,j

Q̂i Q̂jF
(a)
ij =

1

mB

∫
dΦγ ρa |A(1)|2 ,
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IR Divergences

The integrals are split into IR sensitive parts which can be done
analytically and a necessarily regular part which is dealt with
numerically.

Hij =
d2Γ LO

dq2dc`

(
H̃(s)

ij + H̃(hc)
ij

)
+ ∆Hij ,

F (a)
ij (δex) =

d2Γ LO

dq2dc`
F̃ (s)
ij (ωs) + F̃ (hc)(a)

ij (δ) + ∆F (a)
ij (δ) ,

with H̃(s)
ij (H̃(hc)

ij ) and F̃ (s)
ij (F̃ (hc)(a)

ij ), containing all soft
(hard-collinear) singularities, whereas ∆H and ∆F are
regular.

We adopt the phase space slicing method, which requires the
introduction of two auxiliary (unphysical) cut-offs ωs,c ,

δ ≡ {δex, ωs , ωc} , ωs � 1 ,
ωc

ωs
� 1 .
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IR Divergences and Cancellation

Phase Space slicing conditions

p̄2
B ≥ m2

B (1− ωs) ⇐⇒ EpB−RF
γ ≤ ωsmB

2
,

k ·`1,2 ≤ ωcm
2
B

All soft divergences cancel between real and virtual, independent of
the choice of differential variables.

In the phase space slicing method, they are replaced by ln(ωs),
which then cancel in the sum of the F terms.
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IR Divergences: Hard Collinear Real

In the collinear limit (k ||`1), the matrix element squared
factorises:

|A(1)
`1||γ |

2 =
e2

(k ·`1)
Q̂2
`1
P̃f→f γ(z)|A(0)(q2

0 , c0)|2 +O(m2
`1

) ,

where |A(0)(q2
0 , c0)|2 = |A(0)

B̄→K̄`1γ
¯̀
2
|2 and P̃f→f γ(z) is the collinear

part of the splitting function for a fermion to a photon

P̃f→f γ(z) ≡
(

1 + z2

1− z

)
.

z gives the momentum fraction of the photon and lepton.

`1 = z`1γ

k = (1− z) `1γ

which then implies

q2 = zq2
0
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IR Divergences: Cancellation of hc logs

In {q2
0 , c0} variables,

d2Γ

dq2
0dc0

∣∣∣∣
ln m̂`1

=
d2Γ LO

dq2
0dc0

(α
π

)
Q̂2
`1

ln m̂`1 × C
(0)
`1

,

where

C
(0)
`1

=

[
3

2
+ 2 ln z̄(ωs)

]
F̃ (hc)

+

[
−1− 2 ln z̄(ωs)

]
F̃ (s)

+

[
3

2
− 2

]
H̃

= 0

On the other hand, in {q2, c`} variables,

d2Γ

dq2dc`

∣∣∣
hc

=
α

π
(Q̂2

`1
Khc(q2, c`) ln m̂`1 + Q̂2

`2
Khc(q2,−c`) ln m̂`2) ,

where Khc(q2, c`) is a non-vanishing function.

After integration over q2 and c`, the above vanishes.

However, with a cut-off δex, collinear logs survive in both
differential variables!
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IR Divergences: Structure-dependent terms

Q: Do we miss any ln m̂` contributions due to structure
dependence, by doing an EFT calculation?

A: No, gauge invariance ensures that there are no such additional
contributions.

However, using the EFT analysis, we do not capture ln m̂K effects,
which can be quite significant (LCSR approach: ongoing
work).
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Results

We consider relative corrections. For a single differential in
d
dq2

a
,

∆(a)(q2
a ; δex) =

(
dΓLO

dq2
a

)−1
dΓ(δex)

dq2
a

∣∣∣
α
,

where the numerator and denominator are integrated separately
over

∫ 1
−1 dca respectively.

It is important to integrate the QED correction and the LO
separately as this corresponds to the experimental situation.

QED corrections to B̄ → K̄`+`− 13/18



Results: B̄0 → K̄ 0`+`− in q2
a
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I In photon-inclusive case (δex = δinc
ex , dashed lines), all IR

sensitive terms cancel in the q2
0 variable locally.

I (Approximate) lepton universality on the plots on the left.

I Effects due to the photon energy cuts are sizeable since
hard-collinear logs do not cancel in that case. More
pronounced for electrons.
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Results: B− → K−`+`− in q2
a
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In the charged case, however, we see finite effects of the O(2%)
due to ln m̂K “collinear logs” which do not cancel.
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Results: Distortion of the B̄ → K̄`+`− spectrum

Distortion of the B̄ → K̄`+`− spectrum due to γ-radiation

2 4 6 8 10

-0.10

-0.05

0.00

0.05

2 4 6 8 10

-0.10

-0.05

0.00

0.05

0.10

Effects are more prominent in the photon-inclusive case
(δex = δinc

ex ) since there is more phase space for the q2- and
q2

0-variables to differ.

=⇒ Can be problematic for probing RK in q2 ∈ [1.1, 6] GeV2

range, due to charmonium resonances!
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Results: LFU and RK

The net QED correction that should be applied to RK according to
our analysis amounts to

∆QEDRK ≈
∆ΓKµµ

ΓKµµ

∣∣∣∣mrec
B =5.175 GeV

q2
0∈[1.1,6] GeV2

−∆ΓKee

ΓKee

∣∣∣∣mrec
B =4.88 GeV

q2
0∈[1.1,6] GeV2

≈ +1.7%

Well below the current experimental error reported by LHCb.

However, effect of cuts can be significant. In Bordone et al.
(1605.07633), in addition to the above energy cuts, a tight angle
cut was also used, and a correction to RK of

∆QEDRK ≈ +3.0% ,

was reported.

=⇒ Highlights the importance of building a MC to cross-check
the experimental analysis (ongoing work)
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Future Work

I B̄ → K̄`+`− differential distribution through Monte Carlo
[ongoing].

I Fixing ambiguities in the UV counterterms, and
structure-dependent corrections (including ln m̂K

contributions) [ongoing].

I Analysis of moments of the angular distribution. Higher
moments sensitive to QED corrections [ongoing].

I Calculation can be extended to other spin final states, such as
K ∗.

I Charged-current semileptonic decays (B̄ → D`ν).
Unidentified neutrino in final state makes it hard to
reconstruct B meson and to apply a cut-off on photon energy.

The END
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Backup slides

BACKUP SLIDES
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EFT

We use an EFT, for B̄(pB)→ K̄ (pK ) `+(`2) `−(`1).

LEFT
int = geff L

µV EFT
µ + h.c. ,

V EFT
µ =

∑
n≥0

f
(n)
± (0)

n!
(−D2)n[(DµB

†)K ∓ B†(DµK )] ,

where Dµ is the covariant derivative and f
(n)
± (0) denotes the nth

derivative of the B → K form factor f±(q2).

Hµ
0 (q2

0) ≡ 〈K̄ |Vµ|B̄〉 = f+(q2
0)(pB +pK )µ + f−(q2

0)(pB−pK )µ

= 〈K̄ |V EFT
µ |B̄〉+O(e),

Lµ ≡ ¯̀
1Γµ`2 , Vµ ≡ s̄γµ(1− γ5)b ,

geff ≡ −
GF√

2
λCKM, Γµ ≡ γµ(CV + CAγ5) CV (A) = α

C9(10)

4π
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IR Divergences: Structure-dependent terms

The real amplitude can be decomposed,

A(1) = Q̂`1a
(1)
`1

+ δA(1) ,

into a term Q̂`1a
(1)
`1

with all terms proportional to Q̂`1 , and the

remainder δA(1).

a
(1)
`1

= −egeffū(`1)

[
2ε∗ ·`1+/ε∗/k

2k ·`1
Γ·H0(q2

0)

]
v(`2) ,

which contains all 1/(k ·`1)-terms.

The structure-dependence of this term is encoded in the form
factor H0.
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IR Divergences: Structure-dependent terms

The amplitude square is given by∑
pol

|A(1)|2 =
∑
pol

|δA(1)|2− Q̂2
`1

∑
pol

|a(1)
`1
|2 +2Q̂`1Re[

∑
pol

A(1)a
(1)∗
`1

] ,

where it will be important that A(1) is gauge invariant.

The first term is manifestly free from hard-collinear logs
lnm`1 .

We use gauge invariance and set ξ = 1 under which the
polarisation sum∑

pol

ε∗µεν = (−gµν + (1− ξ)kµkν/k
2)→ −gµν

collapses to the metric term only.
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IR Divergences: Structure-dependent terms

The second term evaluates to∫
dΦγ Q̂

2
`1

∑
pol

|a(1)
`1
|2 =

∫
dΦγ Q̂

2
`1

O(m2
`1

) +O(k ·`1)

(k · `1)2
= O(1) Q̂2

`1
lnm`1 ,

where we used k − `1 = O(m2
`1

), valid in the collinear region.
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IR Divergences: Structure-dependent terms

We now turn to the third term.

Using anticommutation relations, k − `1 = O(m2
`1

) in the collinear

limit, and the EoMs, we rewrite a
(1)
`1

as

a
(1)
`1

= −egeffū(`1)

[
4ε∗ ·`1+m`1/ε

∗

2k ·`1
Γ·H0(q2

0)

]
v(`2) ,

Gauge invariance k ·A(1) = 0 implies `1 ·A(1) = O(m2
`1

) in the
collinear region
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IR Divergences: Structure-dependent terms

Therefore, the first part of a
(1)
`1

contributes to

Q̂`1Re[
∑
pol

A(1)a
(1)∗
`1

]→ c1Q̂
2
`1

O(m2
`1

)

(k · `1)2
+ c2Q̂`1Q̂X

O(m2
`1

)

(k · `1)

where X ∈ {B̄, K̄ , ¯̀
2}.

The second part of a
(1)
`1

contributes to

Q̂`1Re[
∑
pol

A(1)a
(1)∗
`1

]→ c ′1Q̂
2
`1

O(m2
`1

)

(k · `1)2
+ c ′2Q̂`1Q̂X

O(m`1)

(k · `1)

Thus, using gauge invariance, one concludes that δA(1) (indicated
by terms ∝ Q̂X in the above ) does not lead to collinear logs.
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Results: B̄0 → K̄ 0`+`− in ca

We consider relative QED corrections. For a single differential in
d
dq2

a
,

∆(a)(q2
a ; δex) =

(
dΓ LO

dq2
a

)−1
dΓ(δex)

dq2
a

∣∣∣
α
,

where the numerator and denominator are integrated separately
over

∫ 1
−1 dca respectively. In addition, we define the single

differential in d
dca

∆(a)(ca, [q
2
1 , q

2
2 ]; δex) =

(∫ q2
2

q2
1

d2Γ LO

dq2
adca

dq2
a

)−1 ∫ q2
2

q2
1

d2Γ(δex)

dq2
adca

dq2
a

∣∣∣
α
,

where the non-angular variable is binned.

It is important to integrate the QED correction and the LO
separately as this corresponds to the experimental situation.
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Results: B̄0 → K̄ 0`+`− in ca
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Enhanced effect towards the endpoints {−1, 1} is partly due to the
special behaviour of the LO differential rate which behaves like
∝ (1− c2

` ) +O(m2
` ) and explains why the effect is less pronounced

for muons.

Even in c`. Almost even in c0 (up to non-collinear effects).
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Results: B̄0 → K̄ 0`+`− in ca
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Results: B− → K−`+`− in ca
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I Same comments as before apply.

I More enhanced than the neutral meson case.

I ‘Collinear’ lnmK odd in c0/c`.
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Results: Distortion of the B̄ → K̄`+`− spectrum

To understand the distortion better, consider the following analysis
in the collinear region:

|A(0)(q2
0 , c0)|2 ∝ f+(q2

0)2 = f+(q2/z)2.

Since z < 1 in general, it is clear that momentum transfers of a
higher range are probed.
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Results: Distortion of the B̄ → K̄`+`− spectrum

For example, when c` = −1, maximising the effect, one gets

zδex(q2)
∣∣∣
c`=−1

=
q2

q2 + δexm2
B

, (q2
0)max = q2 + δexm

2
B ,

For δex = 0.15, q2 = 6 GeV2 one has (q2
0)max = 10.18 GeV2

=⇒ Problematic for probing RK in q2 ∈ [1.1, 6] GeV2 range, due
to charmonium resonances!

Furthermore, in photon-inclusive case, the lower boundary for z
becomes zinc(c`)|mK→0 = q̂2 such that (q2

0)max = m2
B .

=⇒ Entire spectrum is probed for any fixed value of q2
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