QED corrections to $\bar{B} \rightarrow \bar{K} \ell^{+} \ell^{-}$

Flavour Physics Day

Saad Nabeebaccus
 IJCLab

THE UNIVERSITY of EDINBURGH

October 27, 2021

Motivation

Lepton Flavour Universality (LFU) predicted by SM.
One can thus define lepton flavour universality ratios, such as R_{K} :

$$
R_{K}\left[q_{\min }^{2}, q_{\max }^{2}\right]=\frac{\int_{q_{\min }^{2}}^{q_{\max }^{2}} d q^{2} \frac{d \Gamma\left(B \rightarrow K \mu^{+} \mu^{-}\right)}{d q^{2}}}{\int_{q_{\min }^{2}}^{q_{\max }^{2}} d q^{2} \frac{d \Gamma\left(B \rightarrow K e^{+} e^{-}\right)}{d q^{2}}},
$$

where $q^{2}=\left(\ell^{+}+\ell^{-}\right)^{2}$.
SM predicts $R_{K}=1$, whereas LHCb reports

$$
R_{K}\left[1.1 \mathrm{GeV}^{2}, 6 \mathrm{GeV}^{2}\right]=0.846_{-0.039-0.012}^{+0.042+0.013}
$$

This represents a 3.1σ deviation from the SM.
\Longrightarrow Hints to Physics beyond the SM.

Why are QED corrections to $\bar{B} \rightarrow \bar{K} \ell^{+} \ell^{-}$important?

Expected to be small, since $\frac{\alpha}{\pi} \approx 2 \cdot 10^{-3}$.
Due to kinematic effects, QED corrections are of $\mathcal{O}\left(\frac{\alpha}{\pi}\right) \ln \hat{m}_{\ell}$ [Note: $\left.\hat{m}_{\ell} \equiv \frac{m_{\ell}}{m_{B}}\right]$.
Moreover, R_{K} is a theoretically clean observable, since hadronic uncertainties cancel in the ratio.

Therefore, need to make sure QED corrections properly accounted for in experiments (PHOTOS).

Also, precise determination of CKM matrix elements.

Based on 2009:00929, with G. Isidori and R. Zwicky.

Introduction/Motivation

Bordone et al. (1605.07633) already performed a calculation to estimate QED corrections to R_{K}.

However, our work represents a more complete treatment since

- We work with the full matrix elements (real and virtual), starting from an EFT Lagrangian description. Hence, we can capture effects beyond collinear $\ln \hat{m}_{\ell}$ terms, such as $\ln \hat{m}_{K}$ which are not necessarily small.
- Results at the double differential level are given, and hence they can be used for angular analysis (moments).
- We present a detailed discussion on IR divergences, and demonstrate explicitly the conditions under which they cancel.

Differential Variables

$\left\{q_{a}^{2}, c_{a}\right\}= \begin{cases}q_{\ell}^{2}=\left(\ell_{1}+\ell_{2}\right)^{2}, & c_{\ell}=-\left(\frac{\overrightarrow{\ell_{1}} \cdot \overrightarrow{p_{K}}}{\overrightarrow{\ell_{1}}\left|\overrightarrow{p_{K}}\right|}\right)_{q-R F} \\ q_{0}^{2}=\left(p_{B}-p_{K}\right)^{2}, & c_{0}=-\left(\frac{\overrightarrow{\ell_{1}} \cdot \overrightarrow{p_{K}}}{\left|\overrightarrow{\ell_{1}}\right|\left|\overrightarrow{p_{K}}\right|}\right)_{q_{0}-\mathrm{RF}}\end{cases}$
["Hadron collider"], ["B-factory"] ,
where $q-\mathrm{RF}$ and $q_{0}-\mathrm{RF}$ denotes the rest frames of $q \equiv \ell_{1}+\ell_{2}$ and $q_{0} \equiv p_{B}-p_{K}=q+k$ respectively.

Differential variables and cut-off

Implement a physical cut-off on the photon energy (based on the visible kinematics),

$$
\bar{p}_{B}^{2} \geq m_{B}^{2}\left(1-\delta_{\mathrm{ex}}\right)
$$

where

$$
\bar{p}_{B}^{2} \equiv m_{B_{\text {rec }}}^{2}=\left(p_{B}-k\right)^{2}=\left(\ell_{1}+\ell_{2}+p_{K}\right)^{2} .
$$

Since there is no photon-emission in the non-radiative rate, there is no difference between the $\left\{q^{2}, c_{\ell}\right\}$ - and $\left\{q_{0}^{2}, c_{0}\right\}$-variables.

IR Divergences

Split the differential rate as follows

$$
\frac{d^{2} \Gamma_{\bar{B} \rightarrow \bar{K} \ell_{1} \overline{\bar{L}}_{2}}\left(\delta_{\mathrm{ex}}\right)}{d q_{d}^{2} d c_{a}}=\frac{d^{2} \Gamma^{\mathrm{LO}}}{d q^{2} d c_{\ell}}+\frac{\alpha}{\pi} \sum_{i, j} \hat{Q}_{i} \hat{Q}_{j}\left(\mathcal{H}_{i j}+\mathcal{F}_{i j}^{(a)}\left(\delta_{\mathrm{ex}}\right)\right)+\mathcal{O}\left(e^{4}\right),
$$

where $d^{2} \Gamma^{\text {LO }}$ corresponds to the zeroth order differential rate and \mathcal{H} and \mathcal{F} stand for the virtual and real contributions respectively.

$$
\begin{aligned}
\frac{\alpha}{\pi} \sum_{i, j} \hat{Q}_{i} \hat{Q}_{j} \mathcal{H}_{i j} & =\left.\frac{1}{m_{B}} \rho_{\ell}\right|_{\bar{p}_{B}^{2} \rightarrow m_{B}^{2}} 2 \operatorname{Re}\left[\mathcal{A}^{(2) *} \mathcal{A}^{(0)}\right] \\
\frac{\alpha}{\pi} \sum_{i, j} \hat{Q}_{i} \hat{Q}_{j} \mathcal{F}_{i j}^{(a)} & =\frac{1}{m_{B}} \int d \Phi_{\gamma} \rho_{a}\left|\mathcal{A}^{(1)}\right|^{2}
\end{aligned}
$$

IR Divergences

The integrals are split into $I R$ sensitive parts which can be done analytically and a necessarily regular part which is dealt with numerically.

$$
\begin{aligned}
& \mathcal{H}_{i j}=\frac{d^{2} \Gamma^{\mathrm{LO}}}{d q^{2} d c_{\ell}}\left(\tilde{\mathcal{H}}_{i j}^{(s)}+\tilde{\mathcal{H}}_{i j}^{(h c)}\right)+\Delta \mathcal{H}_{i j}, \\
& \mathcal{F}_{i j}^{(a)}\left(\delta_{\mathrm{ex}}\right)=\frac{d^{2} \Gamma^{\mathrm{LO}}}{d q^{2} d c_{\ell}} \tilde{\mathcal{F}}_{i j}^{(s)}\left(\omega_{s}\right)+\tilde{\mathcal{F}}_{i j}^{(h c)(a)}(\underline{\delta})+\Delta \mathcal{F}_{i j}^{(a)}(\underline{\delta}),
\end{aligned}
$$

with $\tilde{\mathcal{H}}_{i j}^{(s)}\left(\tilde{\mathcal{H}}_{i j}^{(h c)}\right)$ and $\tilde{\mathcal{F}}_{i j}^{(s)}\left(\tilde{\mathcal{F}}_{i j}^{(h c)(a)}\right)$, containing all soft (hard-collinear) singularities, whereas $\Delta \mathcal{H}$ and $\Delta \mathcal{F}$ are regular.

We adopt the phase space slicing method, which requires the introduction of two auxiliary (unphysical) cut-offs $\omega_{s, c}$,

$$
\underline{\delta} \equiv\left\{\delta_{\mathrm{ex}}, \omega_{s}, \omega_{c}\right\}, \quad \omega_{s} \ll 1, \quad \frac{\omega_{c}}{\omega_{s}} \ll 1
$$

IR Divergences and Cancellation

Phase Space slicing conditions

$$
\begin{aligned}
& \bar{p}_{B}^{2} \geq m_{B}^{2}\left(1-\omega_{s}\right) \Longleftrightarrow E_{\gamma}^{p_{B}-\mathrm{RF}} \leq \frac{\omega_{s} m_{B}}{2} \\
& k \cdot \ell_{1,2} \leq \omega_{c} m_{B}^{2}
\end{aligned}
$$

All soft divergences cancel between real and virtual, independent of the choice of differential variables.

In the phase space slicing method, they are replaced by $\ln \left(\omega_{s}\right)$, which then cancel in the sum of the \mathcal{F} terms.

IR Divergences: Hard Collinear Real

In the collinear limit $\left(k \| \ell_{1}\right)$, the matrix element squared factorises:

$$
\left|\mathcal{A}_{\ell_{1} \| \gamma}^{(1)}\right|^{2}=\frac{e^{2}}{\left(k \cdot \ell_{1}\right)} \hat{Q}_{\ell_{1}}^{2} \tilde{P}_{f \rightarrow f \gamma}(z)\left|\mathcal{A}^{(0)}\left(q_{0}^{2}, c_{0}\right)\right|^{2}+\mathcal{O}\left(m_{\ell_{1}}^{2}\right),
$$

where $\left|\mathcal{A}^{(0)}\left(q_{0}^{2}, c_{0}\right)\right|^{2}=\left|\mathcal{A}_{\bar{B} \rightarrow \bar{K} \ell_{1 \gamma} \bar{\ell}_{2}}^{(0)}\right|^{2}$ and $\tilde{P}_{f \rightarrow f \gamma}(z)$ is the collinear part of the splitting function for a fermion to a photon

$$
\tilde{P}_{f \rightarrow f \gamma}(z) \equiv\left(\frac{1+z^{2}}{1-z}\right)
$$

z gives the momentum fraction of the photon and lepton.

$$
\begin{aligned}
\ell_{1} & =z \ell_{1 \gamma} \\
k & =(1-z) \ell_{1 \gamma}
\end{aligned}
$$

which then implies

$$
q^{2}=z q_{0}^{2}
$$

IR Divergences: Cancellation of hc logs

In $\left\{q_{0}^{2}, c_{0}\right\}$ variables,

$$
\left.\frac{d^{2} \Gamma}{d q_{0}^{2} d c_{0}}\right|_{\ln \hat{m}_{\ell_{1}}}=\frac{d^{2} \Gamma^{\mathrm{LO}}}{d q_{0}^{2} d c_{0}}\left(\frac{\alpha}{\pi}\right) \hat{Q}_{\ell_{1}}^{2} \ln \hat{m}_{\ell_{1}} \times C_{\ell_{1}}^{(0)}
$$

where
$C_{\ell_{1}}^{(0)}=\left[\frac{3}{2}+2 \ln \bar{z}\left(\omega_{s}\right)\right]_{\tilde{\mathcal{F}}(h c)}+\left[-1-2 \ln \bar{z}\left(\omega_{s}\right)\right]_{\tilde{\mathcal{F}}(s)}+\left[\frac{3}{2}-2\right]_{\tilde{\mathcal{H}}}=0$
On the other hand, in $\left\{q^{2}, c_{\ell}\right\}$ variables,

$$
\left.\frac{d^{2} \Gamma}{d q^{2} d c_{\ell}}\right|_{\mathrm{hc}}=\frac{\alpha}{\pi}\left(\hat{Q}_{\ell_{1}}^{2} K_{\mathrm{hc}}\left(q^{2}, c_{\ell}\right) \ln \hat{m}_{\ell_{1}}+\hat{Q}_{\ell_{2}}^{2} K_{\mathrm{hc}}\left(q^{2},-c_{\ell}\right) \ln \hat{m}_{\ell_{2}}\right)
$$

where $K_{\mathrm{hc}}\left(q^{2}, c_{\ell}\right)$ is a non-vanishing function.
After integration over q^{2} and c_{ℓ}, the above vanishes.
However, with a cut-off $\delta_{\text {ex }}$, collinear logs survive in both differential variables!

IR Divergences: Structure-dependent terms

Q : Do we miss any $\ln \hat{m}_{\ell}$ contributions due to structure dependence, by doing an EFT calculation?

A: No, gauge invariance ensures that there are no such additional contributions.

However, using the EFT analysis, we do not capture $\ln \hat{m}_{K}$ effects, which can be quite significant (LCSR approach: ongoing work).

Results

We consider relative corrections. For a single differential in $\frac{d}{d q_{\mathrm{a}}^{2}}$,

$$
\Delta^{(a)}\left(q_{a}^{2} ; \delta_{\mathrm{ex}}\right)=\left.\left(\frac{d \Gamma^{\mathrm{LO}}}{d q_{a}^{2}}\right)^{-1} \frac{d \Gamma\left(\delta_{\mathrm{ex}}\right)}{d q_{a}^{2}}\right|_{\alpha}
$$

where the numerator and denominator are integrated separately over $\int_{-1}^{1} d c_{a}$ respectively.
It is important to integrate the QED correction and the LO separately as this corresponds to the experimental situation.

Results: $\bar{B}^{0} \rightarrow \bar{K}^{0} \ell^{+} \ell^{-}$in q_{a}^{2}

- In photon-inclusive case ($\delta_{\mathrm{ex}}=\delta_{\mathrm{ex}}^{\mathrm{inc}}$, dashed lines), all IR sensitive terms cancel in the q_{0}^{2} variable locally.
- (Approximate) lepton universality on the plots on the left.
- Effects due to the photon energy cuts are sizeable since hard-collinear logs do not cancel in that case. More pronounced for electrons.

Results: $B^{-} \rightarrow K^{-} \ell^{+} \ell^{-}$in q_{a}^{2}

In the charged case, however, we see finite effects of the $\mathcal{O}(2 \%)$ due to $\ln \hat{m}_{K}$ "collinear logs" which do not cancel.

Results: Distortion of the $\bar{B} \rightarrow \bar{K} \ell^{+} \ell^{-}$spectrum

Distortion of the $\bar{B} \rightarrow \bar{K} \ell^{+} \ell^{-}$spectrum due to γ-radiation

Effects are more prominent in the photon-inclusive case $\left(\delta_{\mathrm{ex}}=\delta_{\mathrm{ex}}^{\mathrm{inc}}\right)$ since there is more phase space for the q^{2} - and q_{0}^{2}-variables to differ.
\Longrightarrow Can be problematic for probing R_{K} in $q^{2} \in[1.1,6] \mathrm{GeV}^{2}$ range, due to charmonium resonances!

Results: LFU and R_{K}

The net QED correction that should be applied to R_{K} according to our analysis amounts to
$\left.\Delta_{\mathrm{QED}} R_{K} \approx \frac{\Delta \Gamma_{K \mu \mu}}{\Gamma_{K \mu \mu}}\right|_{q_{0}^{2} \in[1.1,6] \mathrm{GeV}^{2}} ^{m_{B}^{\text {rec }}=5.175 \mathrm{GeV}}-\left.\frac{\Delta \Gamma_{K e e}}{\Gamma_{K e e}}\right|_{q_{0}^{2} \in[1.1,6] \mathrm{GeV}^{2}} ^{m_{B}^{\text {rec }}=4.88 \mathrm{GeV}} \approx+1.7 \%$
Well below the current experimental error reported by LHCb.
However, effect of cuts can be significant. In Bordone et al. (1605.07633), in addition to the above energy cuts, a tight angle cut was also used, and a correction to R_{K} of

$$
\Delta_{\mathrm{QED}} R_{K} \approx+3.0 \%
$$

was reported.
\Longrightarrow Highlights the importance of building a MC to cross-check the experimental analysis (ongoing work)

Future Work

- $\bar{B} \rightarrow \bar{K} \ell^{+} \ell^{-}$differential distribution through Monte Carlo [ongoing].
- Fixing ambiguities in the UV counterterms, and structure-dependent corrections (including $\ln \hat{m}_{K}$ contributions) [ongoing].
- Analysis of moments of the angular distribution. Higher moments sensitive to QED corrections [ongoing].
- Calculation can be extended to other spin final states, such as K^{*}.
- Charged-current semileptonic decays ($\bar{B} \rightarrow D \ell \nu$). Unidentified neutrino in final state makes it hard to reconstruct B meson and to apply a cut-off on photon energy.

Backup slides

BACKUP SLIDES

EFT

We use an $E F T$, for $\bar{B}\left(p_{B}\right) \rightarrow \bar{K}\left(p_{K}\right) \ell^{+}\left(\ell_{2}\right) \ell^{-}\left(\ell_{1}\right)$.

$$
\begin{aligned}
\mathcal{L}_{\mathrm{int}}^{\mathrm{EFT}} & =g_{\text {eff }} L^{\mu} V_{\mu}^{\mathrm{EFT}}+\text { h.c. }, \\
V_{\mu}^{\mathrm{EFT}} & =\sum_{n \geq 0} \frac{f_{ \pm}^{(n)}(0)}{n!}\left(-D^{2}\right)^{n}\left[\left(D_{\mu} B^{\dagger}\right) K \mp B^{\dagger}\left(D_{\mu} K\right)\right]
\end{aligned}
$$

where D_{μ} is the covariant derivative and $f_{ \pm}^{(n)}(0)$ denotes the $n^{\text {th }}$ derivative of the $B \rightarrow K$ form factor $f_{ \pm}\left(q^{2}\right)$.

$$
\begin{gathered}
H_{0}^{\mu}\left(q_{0}^{2}\right) \equiv\langle\bar{K}| V_{\mu}|\bar{B}\rangle=f_{+}\left(q_{0}^{2}\right)\left(p_{B}+p_{K}\right)^{\mu}+f_{-}\left(q_{0}^{2}\right)\left(p_{B}-p_{K}\right)^{\mu} \\
=\langle\bar{K}| V_{\mu}^{\mathrm{EFT}}|\bar{B}\rangle+\mathcal{O}(e) \\
L_{\mu} \equiv \bar{\ell}_{1} \Gamma^{\mu} \ell_{2}, \quad V_{\mu} \equiv \bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) b
\end{gathered}
$$

$g_{\mathrm{eff}} \equiv-\frac{G_{F}}{\sqrt{2}} \lambda_{\mathrm{CKM}}, \quad \Gamma^{\mu} \equiv \gamma^{\mu}\left(C_{V}+C_{A} \gamma_{5}\right) \quad C_{V(A)}=\alpha \frac{C_{9(10)}}{4 \pi}$

IR Divergences: Structure-dependent terms

The real amplitude can be decomposed,

$$
\mathcal{A}^{(1)}=\hat{Q}_{\ell_{1}} a_{\ell_{1}}^{(1)}+\delta \mathcal{A}^{(1)}
$$

into a term $\hat{Q}_{\ell_{1}} a_{\ell_{1}}^{(1)}$ with all terms proportional to $\hat{Q}_{\ell_{1}}$, and the remainder $\delta \mathcal{A}^{(1)}$.

$$
a_{\ell_{1}}^{(1)}=-e g_{\mathrm{eff}} \bar{u}\left(\ell_{1}\right)\left[\frac{2 \epsilon^{*} \cdot \ell_{1}+\not^{*} k}{2 k \cdot \ell_{1}} \Gamma \cdot H_{0}\left(q_{0}^{2}\right)\right] v\left(\ell_{2}\right),
$$

which contains all $1 /\left(k \cdot \ell_{1}\right)$-terms.
The structure-dependence of this term is encoded in the form factor H_{0}.

IR Divergences: Structure-dependent terms

The amplitude square is given by
$\sum_{\text {pol }}\left|\mathcal{A}^{(1)}\right|^{2}=\sum_{\text {pol }}\left|\delta \mathcal{A}^{(1)}\right|^{2}-\hat{Q}_{\ell_{1}}^{2} \sum_{\text {pol }}\left|a_{\ell_{1}}^{(1)}\right|^{2}+2 \hat{Q}_{\ell_{1}} \operatorname{Re}\left[\sum_{\text {pol }} \mathcal{A}^{(1)} a_{\ell_{1}}^{(1) *}\right]$,
where it will be important that $\mathcal{A}^{(1)}$ is gauge invariant.
The first term is manifestly free from hard-collinear logs In $m_{\ell_{1}}$.

We use gauge invariance and set $\xi=1$ under which the polarisation sum

$$
\sum_{\mathrm{pol}} \epsilon_{\mu}^{*} \epsilon_{\nu}=\left(-g_{\mu \nu}+(1-\xi) k_{\mu} k_{\nu} / k^{2}\right) \rightarrow-g_{\mu \nu}
$$

collapses to the metric term only.

IR Divergences: Structure-dependent terms

The second term evaluates to
$\int d \Phi_{\gamma} \hat{Q}_{\ell_{1}}^{2} \sum_{\text {pol }}\left|a_{\ell_{1}}^{(1)}\right|^{2}=\int d \Phi_{\gamma} \hat{Q}_{\ell_{1}}^{2} \frac{\mathcal{O}\left(m_{\ell_{1}}^{2}\right)+\mathcal{O}\left(k \cdot \ell_{1}\right)}{\left(k \cdot \ell_{1}\right)^{2}}=\mathcal{O}(1) \hat{Q}_{\ell_{1}}^{2} \ln m_{\ell_{1}}$
where we used $k-\ell_{1}=\mathcal{O}\left(m_{\ell_{1}}^{2}\right)$, valid in the collinear region.

IR Divergences: Structure-dependent terms

We now turn to the third term.
Using anticommutation relations, $k-\ell_{1}=\mathcal{O}\left(m_{\ell_{1}}^{2}\right)$ in the collinear limit, and the EoMs, we rewrite $a_{\ell_{1}}^{(1)}$ as

$$
a_{\ell_{1}}^{(1)}=-e g_{\text {eff }} \bar{u}\left(\ell_{1}\right)\left[\frac{4 \epsilon^{*} \cdot \ell_{1}+m_{\ell_{1}} \not \AA^{*}}{2 k \cdot \ell_{1}} \Gamma \cdot H_{0}\left(q_{0}^{2}\right)\right] v\left(\ell_{2}\right),
$$

Gauge invariance $k \cdot \mathcal{A}^{(1)}=0$ implies $\ell_{1} \cdot \mathcal{A}^{(1)}=\mathcal{O}\left(m_{\ell_{1}}^{2}\right)$ in the collinear region

IR Divergences: Structure-dependent terms

Therefore, the first part of $a_{\ell_{1}}^{(1)}$ contributes to

$$
\hat{Q}_{\ell_{1}} \operatorname{Re}\left[\sum_{\mathrm{pol}} \mathcal{A}^{(1)} a_{\ell_{1}}^{(1) *}\right] \rightarrow c_{1} \hat{Q}_{\ell_{1}}^{2} \frac{\mathcal{O}\left(m_{\ell_{1}}^{2}\right)}{\left(k \cdot \ell_{1}\right)^{2}}+c_{2} \hat{Q}_{\ell_{1}} \hat{Q} x \frac{\mathcal{O}\left(m_{\ell_{1}}^{2}\right)}{\left(k \cdot \ell_{1}\right)}
$$

where $X \in\left\{\bar{B}, \bar{K}, \bar{\ell}_{2}\right\}$.
The second part of $a_{\ell_{1}}^{(1)}$ contributes to

$$
\hat{Q}_{\ell_{1}} \operatorname{Re}\left[\sum_{\mathrm{pol}} \mathcal{A}^{(1)} a_{\ell_{1}}^{(1) *}\right] \rightarrow c_{1}^{\prime} \hat{Q}_{\ell_{1}}^{2} \frac{\mathcal{O}\left(m_{\ell_{1}}^{2}\right)}{\left(k \cdot \ell_{1}\right)^{2}}+c_{2}^{\prime} \hat{Q}_{\ell_{1}} \hat{Q} x \frac{\mathcal{O}\left(m_{\ell_{1}}\right)}{\left(k \cdot \ell_{1}\right)}
$$

Thus, using gauge invariance, one concludes that $\delta \mathcal{A}^{(1)}$ (indicated by terms $\propto \hat{Q}_{X}$ in the above) does not lead to collinear logs.

Results: $\bar{B}^{0} \rightarrow \bar{K}^{0} \ell^{+} \ell^{-}$in c_{a}

We consider relative QED corrections. For a single differential in $\frac{d}{d q_{a}^{2}}$,

$$
\Delta^{(a)}\left(q_{a}^{2} ; \delta_{\mathrm{ex}}\right)=\left.\left(\frac{d \Gamma^{\mathrm{LO}}}{d q_{a}^{2}}\right)^{-1} \frac{d \Gamma\left(\delta_{\mathrm{ex}}\right)}{d q_{a}^{2}}\right|_{\alpha}
$$

where the numerator and denominator are integrated separately over $\int_{-1}^{1} d c_{a}$ respectively. In addition, we define the single differential in $\frac{d}{d c_{a}}$
$\Delta^{(a)}\left(c_{a},\left[q_{1}^{2}, q_{2}^{2}\right] ; \delta_{\mathrm{ex}}\right)=\left.\left(\int_{q_{1}^{2}}^{q_{2}^{2}} \frac{d^{2} \Gamma^{\mathrm{LO}}}{d q_{a}^{2} d c_{a}} d q_{a}^{2}\right)^{-1} \int_{q_{1}^{2}}^{q_{2}^{2}} \frac{d^{2} \Gamma\left(\delta_{\mathrm{ex}}\right)}{d q_{a}^{2} d c_{a}} d q_{a}^{2}\right|_{\alpha}$,
where the non-angular variable is binned.
It is important to integrate the QED correction and the LO
separately as this corresponds to the experimental situation.

Results: $\bar{B}^{0} \rightarrow \bar{K}^{0} \ell^{+} \ell^{-}$in c_{a}

Enhanced effect towards the endpoints $\{-1,1\}$ is partly due to the special behaviour of the LO differential rate which behaves like $\propto\left(1-c_{\ell}^{2}\right)+\mathcal{O}\left(m_{\ell}^{2}\right)$ and explains why the effect is less pronounced for muons.

Even in c_{ℓ}. Almost even in c_{0} (up to non-collinear effects).

Results: $\bar{B}^{0} \rightarrow \bar{K}^{0} \ell^{+} \ell^{-}$in c_{a}

Results: $B^{-} \rightarrow K^{-} \ell^{+} \ell^{-}$in c_{a}

Rel. size of $\mathcal{O}(\alpha)$ corrections, $B^{-} \rightarrow K^{-} \ell^{+} \ell^{-}$

- Same comments as before apply.
- More enhanced than the neutral meson case.
- 'Collinear' $\ln m_{K}$ odd in c_{0} / c_{ℓ}.

Results: Distortion of the $\bar{B} \rightarrow \bar{K} \ell^{+} \ell^{-}$spectrum

To understand the distortion better, consider the following analysis in the collinear region:
$\left|\mathcal{A}^{(0)}\left(q_{0}^{2}, c_{0}\right)\right|^{2} \propto f_{+}\left(q_{0}^{2}\right)^{2}=f_{+}\left(q^{2} / z\right)^{2}$.
Since $z<1$ in general, it is clear that momentum transfers of a higher range are probed.

Results: Distortion of the $\bar{B} \rightarrow \bar{K} \ell^{+} \ell^{-}$spectrum

For example, when $c_{\ell}=-1$, maximising the effect, one gets

$$
\left.z_{\delta_{\mathrm{ex}}}\left(q^{2}\right)\right|_{c_{\ell}=-1}=\frac{q^{2}}{q^{2}+\delta_{\mathrm{ex}} m_{B}^{2}}, \quad\left(q_{0}^{2}\right)_{\max }=q^{2}+\delta_{\mathrm{ex}} m_{B}^{2}
$$

For $\delta_{\text {ex }}=0.15, q^{2}=6 \mathrm{GeV}^{2}$ one has $\left(q_{0}^{2}\right)_{\max }=10.18 \mathrm{GeV}^{2}$
\Longrightarrow Problematic for probing R_{K} in $q^{2} \in[1.1,6] \mathrm{GeV}^{2}$ range, due to charmonium resonances!

Furthermore, in photon-inclusive case, the lower boundary for z becomes $\left.z_{\text {inc }}\left(c_{\ell}\right)\right|_{m_{K} \rightarrow 0}=\hat{q}^{2}$ such that $\left(q_{0}^{2}\right)_{\max }=m_{B}^{2}$.
\Longrightarrow Entire spectrum is probed for any fixed value of q^{2}

