

# Branching fraction measurements of rare $\Xi_h^-$ and $\Omega_h^-$ decays with LHCb experiment

First Flavour Day at IJCLab 27.10.2021

Johannes Albrecht, Vitalii Lisovskyi, Janina Nicolini (TU Dortmund University)









- Two spectator quarks  $\rightarrow$  hadronic uncertainties
- Different backgrounds and challenges







- Complementary test to *B* anomalies
- Half-integer Spin  $\rightarrow$  more observables
- Test spin-dependence of possible new physics
- Rich angular analysis

## Four weakly decaying b-baryons



\*\* educated guess

J.Nicolini

Flavour Day IJCLab



# Is this a general behaviour? $\rightarrow$ focus on $b \rightarrow s\mu^+\mu^-$ first

![](_page_2_Picture_7.jpeg)

![](_page_2_Picture_8.jpeg)

# **Unique Topologies**

### Track Types within LHCb

![](_page_3_Figure_2.jpeg)

![](_page_3_Picture_4.jpeg)

![](_page_3_Figure_5.jpeg)

![](_page_3_Picture_7.jpeg)

![](_page_3_Picture_8.jpeg)

![](_page_4_Picture_0.jpeg)

#### Unique topology

![](_page_4_Figure_2.jpeg)

#### $\rightarrow$ no mesonic background with similar topology

![](_page_4_Picture_5.jpeg)

- $\Lambda_b$  and  $\Xi_b^-$  linked through SU(3) symmetry
  - $\rightarrow$  expect similar behaviour
- $\Omega_{h}^{-} \rightarrow \Omega^{-}$  spin transition  $1/2 \rightarrow 3/2$  $\rightarrow$  photon polarisation  $\Omega_h^- \rightarrow \Omega^- \gamma$
- $\Xi_b^0$  challenging due to  $\Xi^0 \to \Lambda \pi^0$  $\rightarrow$  isospin-symmetry

![](_page_4_Picture_12.jpeg)

![](_page_4_Picture_13.jpeg)

- Full LHCb dataset 9 fb<sup>-1</sup>
- Blind  $3\sigma$  window around mass peak
- BR measurement with normalisation  $\frac{\mathscr{B}(\Omega_b^- \to \Omega^- \mu^+ \mu^-)}{\mathscr{B}(\Omega_b^- \to \Omega^- J/\psi)}$  $\frac{\mathscr{B}(\Xi_b^- \to \Xi^- \mu^+ \mu^-)}{\mathscr{B}(\Xi_b^- \to \Xi^- J/\psi)}$ and
- Resonant decays, efficiencies not blinded
- Cut-based preselection and BDT to remove BKG

![](_page_5_Figure_8.jpeg)

![](_page_5_Figure_9.jpeg)

![](_page_5_Picture_10.jpeg)

![](_page_5_Picture_11.jpeg)

- Cross check and upper limit
- First measurements of the decays

$$R_{\psi} = \frac{\mathscr{B}(\Xi_b^- \to \Xi^- \psi(2S)(\to \mu^+ \mu^-))}{\mathscr{B}(\Xi_b^- \to \Xi^- J/\psi(\to \mu^+ \mu^-))}$$

 Deviation from covariant quark model? for  $\Lambda_h \to \Lambda \psi$ :

$$R_{\psi}^{Exp} = 0.51 \pm 0.03 \qquad \text{arXiv: } \frac{1510.02266}{arXiv: 1902.02092} \text{ (LHO} \\ R_{\psi}^{Theo} = 0.8 \pm 0.1$$

# Prospects of $\psi(2S)$

![](_page_6_Figure_9.jpeg)

![](_page_6_Picture_11.jpeg)

- Low statistics  $\rightarrow$  fit strategy
- Mismodeling of simulation and downstream tracks
- $q^2$  dependence of efficiencies  $\epsilon_{tot} = \epsilon_{gen} \times \epsilon_{filt} \times \epsilon_{sel}$ Efficiency ratio  $\overline{\Xi} \mu^+ \mu^- / \overline{\Xi} J / \psi$ LHCb internal 1.8 - 2017-18 1.6 -- 2015-16 -- 2011-12 1.4 1.2 0.8 0.6 0.4 10 15 0 5 20  $q^2$ ,  $GeV^2/c^4$

J.Nicolini

## Challenges

![](_page_7_Figure_7.jpeg)

![](_page_7_Figure_8.jpeg)

![](_page_7_Picture_10.jpeg)

![](_page_8_Picture_0.jpeg)

![](_page_8_Picture_1.jpeg)

![](_page_8_Picture_2.jpeg)

# Thank you for your attention. Are there any questions?