

Laboratoire de Physique des 2 Infinis

Plateforme Vide & Surfaces: Présentation et applications Pôle Physique des accélérateurs

- Le contexte
- La plateforme Vide&Surfaces
- De nouveaux moyens de caractérisation de surfaces
- Exemples d'applications
- Conclusion

Gaël SATTONNAY, Bruno MERCIER

Université de Paris

23/09/2021

Journée Thématique sur les irradiations et analyses– Plateforme vide et surfaces

CONTEXTE

CONTEXTE

Formation d'une équipe de recherche et d'une plateforme autour des problématiques matériaux pour accélérateurs (vide, surfaces)

> Motivations

- Les performances fonctionnelles (gradients accélérateurs, pertes RF, qualité faisceau, Ultra Vide,...) des composants (structures accélératrices, lignes faisceaux..) sont étroitement liées aux propriétés des matériaux
 - → limites intrinsèques des matériaux utilisés actuellement sont atteintes

améliorer notre compréhension des phénomènes physiques limitatifs liés aux matériaux et de développer des nouveaux matériaux: traitements de surfaces, dépôt de couches minces,...

Plateforme Vide et surfaces

Objectifs:

- maintenir, acquérir et adapter les moyens d'analyse de surfaces pour répondre aux mieux aux problématiques des matériaux pour accélérateurs (équipe MAVERICS)
- > maintenir et développer une expertise sur des projets ultravide (UHV)

CONTEXTE

MAVERICS : Thématiques de recherche

But : Améliorer les performances des accélérateurs de particules de haute énergie

→ Analyses de surface des matériaux → Plateforme Vide et Surfaces

Contexte : l'exemple du LHC

p-p COL

a)

3

Main objectives

ightarrow Mitigation of detrimental collective effects inside the beam lines

 \rightarrow Influence of the surface chemistry on these phenomena + modification of the surface chemistry under irradiation

Plateforme Vide&Surfaces

De nouveaux moyens de caractérisation

Microscope électronique à Balayage

Sesame idf (IRFU CEA + IJCLAB) + ERM université Paris Saclay

Canon à effet de champ HT 0.1 to 30 kV Résolution latérale 1,1 nm à 20 kV Courant de sonde : 4 pA à 100 nA

Fonctionnel depuis juin 2021 ➢ Composition élémentaire (EDS)

Information structurale (EBSD)

Set up ISIS: Bâti multi-techniques

Récupération en 2022 au laboratoire ICMMO (financement propre)

Caractérisation de la chimie et de la structure de surface (~ 10 nm)

- spectroscopie de photoélectrons (XPS),
- spectroscopie de rétrodiffusion d'ions (ISS)
- diffraction des électrons lents (LEED).
- Traitements disponibles : nettoyage par bombardement ionique, traitements thermiques [1070 K]
- Etude de l'activation in situ de dépôts NEG

De nouveaux moyens de caractérisation

spectrométrie des photoélectrons (XPS)

Caractérisation de la chimie de surface (~10 nm)
XPS de routine en 2022/2023

Taille faisceau X de 30 à 400 µm Canon à ion (100eV à 4 KeV)

Détecteur

Energie de passage de 1 à 400 eV Pas minimum de 3 mev Spectre XPS

Profil de concentration

Bâti multi techniques à froid

En 2022/2023

- Porte échantillon 5 axes Température < 7K</p>
- Mesure de l'émission électronique secondaire (SEY)
- Spectrométrie des photoélectrons (XPS)
- Analyse structural par diffraction (LEED)
- Canon à ions (abrasion des surfaces)
- Analyseur de gaz résiduel

Exemples d'applications et de développement

All of these phenomena may limit the performance of the LHC : 13 TeV. 2556 b. 1.1x10¹¹ ppb

14 TeV. 2808 b. 1.2x10¹¹ ppb

Main objectives

- \rightarrow Mitigation of detrimental collective effects inside the beam lines
- \rightarrow Influence of the surface chemistry on these phenomena + modification of the surface chemistry under irradiation

LHC beam screen samples

Oxygen-Free Electronic copper colaminated onto stainless steel.

OFE copper = 99.99% pure copper with 0.0005% oxygen content to avoid undesirable chemical reactions with other materials

- high electric conductivity
- high thermal conductivity

14 14

- low outgassing rate
- non-magnetic material

dimensions: $5 \times 5 \times 2$ mm thick from the CERN's stock.

5 mm

Analysis of technical surfaces

there are always contaminants deposited on the surface + native oxide layers (Cu₂O et Cu(OH)₂)
investigated surfaces in accelerators are technical surfaces (and not pure Cu surfaces)

Rôle du carbone (via les molecules hydrocarbonées initialement presentes) ?
Dôle des envires (hydrocarbonées initialement presentes) ?

Rôle des oxydes/hydroxydes natifs de cuivre ?

Sur le SEY

SEY measurements and conditioning in lab

- base pressure: 5x10⁻¹⁰ mbar
- pulsed electron beam
- energy range 10 to 1500 eV
- During measurement I= qques nA
- During conditioning: I=5 μA
- SEY error (about 10%), since elastically backscattered electrons can escape
- beam spot 2.8 mm in diameter during conditioning

Suheyla Bilgen PhD Thesis (IJCLab 2020)

18

 $\delta(E)$ decreases with increasing electron dose

in agreement with the literature e.g [R. Cimino et al J. of Electron Spectr. Related Phenomena, 2020]

Suheyla Bilgen PhD Thesis (IJCLab 2020)

XPS analysis

X-ray Photoelectron Spectroscopy

We are mainly interested in the chemical modifications of Cu, O and C induced by e- irradiation (main elements detected on the copper surface).

XPS (ICMMO)

Adventitious carbon (C-O, O-C=O) is removed by electron irradiation

Modification of the C hybridization induced by electron irradiation Shift from C-C bonds (sp3) to C=C bonds (sp2) \rightarrow in agreement with the literature [*R. Cimino et al, 2020*]

→ For the first time, this phenomenon was investigated by TOF-SIMS (plateform ANDROMEDE/IJClab)

Carbon evolution?

MeV-TOF-SIMS

XPS (ICMMO)

TOF-SIMS : a graphitic (graphene) carbon layer is formed on the surface of the fully conditioned sample (with a large amount of H).

XPS : Modification of the C hybridization : from C-C bonds (sp3) to C=C bonds (sp2) compatible with a graphite structure.

→ Carbon from organic compounds initially present on the surface is transformed into a graphite layer (0.5 nm) by e- irradiation.

Why does the presence of a carbon layer reduces the Cu-SEY?

 \rightarrow SEY of carbon is intrinsically lower than the one of copper

→ Carbon thin film deposited on Cu beam pipe walls is a solution to mitigate the electron cloud build up in the LHC [P. Pinto Costa, IPAC2014]

Depth (nm) estimation from the etching time

- 1) A graphitic carbon layer is first detected at the extreme surface. The graphitic C layer contains O and H of \approx 0.5 nm thick .
- 2) At a larger depth, the oxide layer (Cu₂O) is observed of \approx 1.4 nm thick.
- 3) The copper oxide disappeared and the metallic Cu is detected at a depth larger than 2 nm, and finally metallic Cu is present.

 \rightarrow Does the presence of the oxide layer influence the SEY of Cu?

Nouveau banc de test sur le Nettoyage plasma

Application sur le nettoyage in situ des cavités supra RF de SPIRAL2

O. Hryhorenko Postdoc Maverics

E. Mistretta Plateforme V&S

Source RF Plasma

F=13,56 MHz P= 0 à 100W

i

Les développements actuels: Nettoyage Plasma

Des résultats préliminaires encourageants

O. Hryhorenko (Postdoc Maverics)

Dépôt Carbone 40/50 nm sur Nb

Après nettoyage plasma

Current [A]

10-11

10-12

Balance à Quartz

Optimiser les différents paramètres

- La pression d'injection du gaz
- Nature et proportions du Mélange du gaz
- Distance canon plasma/échantillons
- Physico-chimie de surface
- > Tests sur des cavités RF à IJCLAB

Bâti dépôt NEG (Ti,Zr,V) de la plateforme V&S

J. Yemane stagiaire polytech

G. Sattonnay, B. Mercier MAVERICS E. Mistretta, F. Letellier Plateforme V&S

Application envisagée sur FCC-ee

Rayonnement synchrotron important Energie critique ~1,2Mev !!! Puissance déposée 650 W/m

Caractéristique du dépôt à obtenir

- Capacité de pompage importante (0,5 l/s/cm²@H₂)
- Taux d'émission électronique faible (SEYmax <1,1)</p>
- Désorption stimulée faible
- > Faible impédance de la chambre

NEG coating – preliminary results

Haut

Milieu

80000

186 184 182

Binding Energy (eV)

SEM

XPS

Conclusion

AXES	Tasks	2021	2022	2023	2024	2025
Materials in thin films	Coating production (NEG, a-C, TiN)					
	Structural characterization					
	Measurements of electron emission properties (multipacting/electron cloud)					
Innovative surface treatments for Nb cavities	nitrogen infusion experiment					
	Superconducting multilayers (S-I-S)					
	Polishing					
	Surface cleaning (plasma, UV)					
Dynamic vacuum	Measurements of the ion and electron stimulated desorption					
	Study of changes in surface properties induced by irradiation (conditioning)					
	Development of the simulation code DYVACS					
	Measurements at CERN-LHC (run 3)					
Development of the Platform « Vacuum and Surfaces »	Restarting of the coating set-up					
	SEM installation					
	Recovery of the ISIS Set-up (ICMMO)					
	Upgrade of the SEY set-up					
	Relocation of equipment in D3-D4					
	XPS+multitechnical set-up (PACIFICS)					

Conclusion

> Ouverture de la plateforme

- CEA IRFU
- Andromède / Scalp
- Pôle physique Nucléaire (NIM)
- Pôle Energie et environnement
- Fabrication additive (FATI/FABACC)

Site de réservation opérationnel

https://maverics.ijclab.in2p3.fr/

Merci de votre attention