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Introduction/Motivation

Lepton Flavour Universality (LFU) predicted by SM.

We consider the process B̄ → K̄`+`− (Corresponds to
FCNCs)

Define the ratio RK

RK

[
q2

min, q
2
max

]
=

∫ q2
max

q2
min

dq2 dΓ(B→Kµ+µ−)
dq2∫ q2

max

q2
min

dq2 dΓ(B→Ke+e−)
dq2

,

where q2 = (`+ + `−)
2
.

RK is a theoretically clean observable.

SM predicts RK = 1 (up to QED corrections, due to kinematic
effects).
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Introduction/Motivation

However, LHCb reports

RK

[
1.1GeV2, 6GeV2

]
= 0.846+0.042+0.013

−0.039−0.012

This represents a 3.1 σ deviation from the SM.

=⇒ Hints to Physics beyond the SM.

However, need to make sure QED corrections properly accounted
for in experiments (PHOTOS).

Despite smallness of α
π ≈ 2·10−3, QED corrections are important

as they can be enhanced by collinear logs of the lepton mass,
ln (m`/mB).

Also, precise determination of CKM matrix elements.
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Introduction/Motivation

Bordone et al. (arXiv:1605.07633) already performed a calculation
to estimate QED corrections to RK .

However, our work represents a more complete treatment
since

I We work with the full amplitudes (real and virtual). Hence,
we can capture effects beyond collinear lnm` terms, such as
lnmK which are not necessarily small.

I Results at the double differential level are given, and hence
they can be used for angular analysis (moments).

I We present a detailed discussion on IR divergences, and
demonstrate explicitly the conditions under which they cancel.
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Introduction/Motivation

We use an EFT, for B̄(pB)→ K̄ (pK ) `+(`2) `−(`1).

LEFT
int = geff L

µV EFT
µ + h.c. ,

V EFT
µ =

∑
n≥0

f
(n)
± (0)

n!
(−D2)n[(DµB

†)K ∓ B†(DµK )] ,

where Dµ is the covariant derivative and f
(n)
± (0) denotes the nth

derivative of the B → K form factor f±(q2).

Hµ
0 (q2

0) ≡ 〈K̄ |Vµ|B̄〉 = f+(q2
0)(pB +pK )µ + f−(q2

0)(pB−pK )µ

= 〈K̄ |V EFT
µ |B̄〉+O(e),

Lµ ≡ ¯̀
1Γµ`2 , Vµ ≡ s̄γµ(1− γ5)b ,

geff ≡ −
GF√

2
λCKM, Γµ ≡ γµ(CV + CAγ5) CV (A) = α

C9(10)

4π
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Introduction/Motivation

The radiative amplitude is computed using the ordinary QED
Lagrangian for fermions and mesons,

LQED ≡ Lξ(A)+
∑

ψ=`1,`2

ψ̄(iD/−m`)ψ+
∑

M=B,K

(DµM)†DµM−m2
MM†M
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Amplitudes and Phase Space: Real diagrams

We evaluate the real diagrams, given by

L1

K̄

ℓ̄2

γ
ℓ1

B̄

L2 P Kγ Bγ

The real amplitude is gauge invariant, as expected, thanks to the
P diagrams, which are generated by covariant derivatives in
Lint.

Keeping the leading terms in the k → 0 limit, i.e. at O(1/Eγ),
A(1) assumes the Low or eikonal form,

A(1)
Low = eA(0)

∑
i

Q̂i
ε∗ ·pi
k ·pi

.

This will be useful when discussing soft divergences.
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Amplitudes and Phase Space: Virtual diagrams

The virtual diagrams are given by

L1L1 PL1 L2L2 PL2

L1L2KγKγPKγKγL2KγL1

PBγBγBγBγKγBγL2BγL1

ℓ1 ℓ̄2

K̄B̄
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Amplitudes and Phase Space

The self-energy diagrams are calculated in the on-shell
scheme.

Like the real amplitude, the virtual amplitude is also gauge
invariant, as expected.

We use dimensional regularisation to regulate soft divergences, as
well as the UV divergences.

The UV divergences are treated using a “minimal subtraction”
type scheme, and therefore the final result contains ambiguous
finite terms.

=⇒ motivates further work to compute counterterms (and
structure-dependent corrections) [ongoing].
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Amplitudes and Phase Space: Differential Variables

pK

θ(2)γ

pB

q

k

p̄B -RF q -RF

θℓ

ℓ1

ℓ̄2

q0

k

pB -RF

pK

θ(1)γ

q0 -RF

θ0

ℓ1

ℓ̄2

pBpK

k

θ(4)γ

{q2
a , ca} =

 q2
` = (`1 + `2)

2, c` = −
(

~̀
1·~pK
| ~̀1||~pK |

)
q−RF

[“Hadron collider”] ,

q2
0 = (pB − pK )

2 , c0 = −
(

~̀
1·~pK
| ~̀1||~pK |

)
q0−RF

[“B-factory”] ,

where q − RF and q0 − RF denotes the rest frames of q ≡ `1 + `2

and q0 ≡ pB − pK = q + k respectively.
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Amplitudes and Phase Space: Radiative Rate

The radiative rate B̄ → K̄`1
¯̀
2γ is given by

d2ΓB̄→K̄`1
¯̀
2γ

=
1

mB

(∫
ρa

[
|A(1)|2 +O(e4)

]
dΦγ

)
dq2

adca ,

where a = {`, 0}.

Implement a cut-off on the photon energy,

p̄2
B > m2

B(1− δex)

where
p̄2
B = (pB − k)2 = (`1 + `2 + pK )2.

The larger δex is, the more photon inclusive we are.
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Amplitudes and Phase Space: Non-Radiative Rate

The non-radiative B̄ → K̄`1
¯̀
2 rate is given by

d2ΓB̄→K̄`1
¯̀
2

=
ρ`|p̄2

B→m2
B

mB

{
|A(0)|2 + 2Re[A(0)(A(2))∗]

}
dq2dc`

Since there is no photon-emission, in this case there is no
difference between the {q2, c`}- and {q2

0 , c0}-variables.
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IR Divergences

Split the differential rate as follows

d2ΓB̄→K̄`1
¯̀
2
(δex) = d2Γ LO +

α

π

∑
i ,j

Q̂i Q̂j

(
Hij + F (a)

ij (δex)
)
dq2

adca,

where d2Γ LO corresponds to the zeroth order differential rate and
H and F stand for the virtual and real contributions
respectively.

α

π

∑
i ,j

Q̂i Q̂jHij =
1

mB
ρ`|p̄2

B→m2
B

2Re[A(2)∗A(0)] ,

α

π

∑
i ,j

Q̂i Q̂jF
(a)
ij =

1

mB

∫
dΦγ ρa |A(1)|2 ,
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IR Divergences

The integrals are split into divergent parts which can be done
analytically and a necessarily regular part which is dealt with
numerically.

Hij =
d2Γ LO

dq2dc`

(
H̃(s)

ij + H̃(hc)
ij

)
+ ∆Hij ,

F (a)
ij (δex) =

d2Γ LO

dq2dc`
F̃ (s)
ij (ωs) + F̃ (hc)(a)

ij (δ) + ∆F (a)
ij (δ) ,

with H̃(s)
ij (H̃(hc)

ij ) and F̃ (s)
ij (F̃ (hc)(a)

ij ), containing all soft
(hard-collinear) singularities, whereas ∆H and ∆F are
regular.

We adopt the phase space slicing method, which requires the
introduction of two auxiliary (unphysical) cut-offs ωs,c ,

δ ≡ {δex, ωs , ωc} , ωs � 1 ,
ωc

ωs
� 1 .
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IR Divergences

Phase Space slicing conditions

p̄2
B ≥ m2

B(1− ωs) ⇐⇒ EpB−RF
γ ≤ ωsmB

2

k ·`1,2 ≤ ωcm
2
B

In these regions of the phase space, the integrals become simple
enough so that they can be done analytically.

In what follows, hard-collinear divergences should be understood as
logs of the lepton mass, lnm`
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IR Divergences: Soft

The soft part of the real amplitude (EpB−RF
γ ≤ ωsmB

2 ), namely the
Low part of the amplitude, is given by

F̃ (s)
ij (ωs) = (2π)2

∫
ωs

−pi ·pj
(k ·pi )(k ·pj)

dΦγ

The sum H̃(s)
ij + F̃ (s)

ij (ωs) is free from soft divergences ( 1
εIR

), as

well as soft collinear divergences ( 1
εIR

lnm`, ln
2 m`).

=⇒ Ensures their cancellation at the differential level.

This result is independent of the choice of differential variables,
and on the value of the cut on the photon energy.

Of course, terms proportional to lnωs survive, and only cancel in
the end when all contributions to the rate are added.
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IR Divergences: Hard Collinear from Virtual

We now turn to hard collinear divergences, lnm`1 .

We follow largely the method in the review paper Harris and
Owens ’02 performed in dim reg, which we then adapted to mass
reg.

For the sake of illustration, we focus on the contribution to lnm`1

(lnm`2 can be obtained in a completely analogous fashion).

FIRST, the contribution to lnm`1 from the virtual diagrams can be
easily collected, and reads

H̃(hc) =

(
3

2
− 2

)
Q̂2
`1

ln

(
m`1

µ

)
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IR Divergences: Hard Collinear from Soft

SECOND, we consider the contribution coming from the soft
region of the real integral (EpB−RF

γ ≤ ωsmB
2 ).

F (s)
ij (ωs) =

(πµ2)ε

2π

Γ(1−ε)
Γ(1−2ε)

∫ (E
(n)
γ )max

0

dE
(n)
γ(

E
(n)
γ

)1+2ε

×
∫ π

0

dθγ

sin2ε−1 θγ

∫ π

0

dφγ

sin2ε φγ

[
−(E

(n)
γ )2 pi ·pj

(k ·pi )(k ·pj)

]
.

In particular, the angular integrals are needed up to O(ε), and for
some specific values of i and j , the results are not known in the
literature!
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IR Divergences: Hard Collinear from Soft

However, through private communication with Gabor Somogyi
(unpublished work), we were able to obtain the necessary results,
in terms of generalised polylogs of weight 2.

When expanded in small m`1 , the collinear lnm`1 can be
collected.

After a very long and painful calculation, assembling all bits and
pieces and using charge conservation, we have

F (s)(ωs)|lnm`1
= Q̂2

`1
lnm`1 [−1− 2 ln (z̄(ωs))]

where

z̄(ωs) =
ωsm

2
B

m2
B − (pK + `2)2

.
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IR Divergences: Hard Collinear

FINALLY, we compute the lnm`1 contribution from the collinear
region (k ·`1,2 ≤ ωcm

2
B) of the phase space of the real

radiation.

α

π
F̃ (hc,a)(δ) =

α

π

∑
i ,j

Q̂i Q̂j F̃
(hc,a)
ij (δ)

=
1

mB

∫ δex

ωs

ρ
`1||γ
a (ωc) |A(1)

`1||γ |
2dΦγ

where |A(1)
`1||γ |

2 is the part of |A(1)|2 proportional to 1/(k · `1) when
m`1 → 0 which includes contributions beyond the Low term.
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IR Divergences: Hard Collinear

In the collinear region, one decomposes the phase space as
follows

dΦB̄→K̄`1
¯̀
2γ

= dΦB̄→K̄`1γ
¯̀
2

1

16π2
dz d`2

1γ .

where the parametrisation

`1 = z`1γ

k = (1− z)`1γ ≡ z̄`1γ

=⇒ `1γ ≡ `1 + k

has been used.

dΦB̄→K̄`1γ
¯̀
2

represents the non-radiative phase space factor, with
`1γ considered to be one final state particle.
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IR Divergences: Hard Collinear

Furthermore, the real amplitude squared simplifies to

|A(1)
`1||γ |

2 =
e2

(k ·`1)
Q̂2
`1

(
P̃f→f γ(z)−

m2
`1

k · `1

)
|A(0)

B̄→K̄`1γ
¯̀
2
|2,

where P̃f→f γ(z) is the collinear emission part of the splitting
function for a fermion to a photon

P̃f→f γ(z) ≡
(

1 + z2

1− z

)
,

Note that while the m2
`1
/(k ·`1) term is immaterial for the lnm`1

contribution per se, it is essential for the numerics as it contributes
to lnωs terms, which have to cancel in the sum of all contributions
to the decay rate.
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IR Divergences: Hard Collinear

The d`2
1γ ≡ 2d(k ·`1) integral gives the lnm`1 term:∫ ωcm2

B

1−z
2z

m2
`1

d(k ·`1)

k ·`1
= ln

2ωcz

m̂2
`1

(1−z)

Note that in dim reg, this integral would instead produce a pole in
ε.

The integration boundaries on d`2
1γ correspond to the phase space

slicing condition.

Hatted quantities are normalised w.r.t. the mB mass, i.e.
m̂K = mK/mB .
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IR Divergences: Hard Collinear in {q2
0, c0}-vars

In the case of the {q2
0 , c0}-variables, the z−integration (from

z(δex) to z(ωs)) factorises completely, and can be easily performed
analytically.

z(δ) = 1−
δm2

B

m2
B − (pK + `2)2

,

F̃ (hc,0)(δ) =
λ1/2(m2

B , q
2
0 ,m

2
K )

29π3m3
B

|A(0)(q2
0 , c0)|2 A(δex, ωs)Q̂2

`1
lnm`1 ,

where

A(δex, ωs) =
1

2
z̄(δex)(3 + z(δex)) + 2 ln

z̄(ωs)

z̄(δex)

z(δex)→0→ 3

2
+ 2 ln z̄(ωs) ,

The second line is the result in the fully photon inclusive
case.
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IR Divergences: Cancellation of hc logs in {q2
0, c0}

Putting the above results together, one has

d2Γ(0)
∣∣∣(hc)

`1||γ, lnm`1

= d2Γ LO
B̄→K̄`1γ

¯̀
2

(α
π

)
Q̂2
`1

[
3

2
+ 2 ln z̄(ωs)

]
lnm`1 ,

Summing all lnm`1 contributions, one has

d2Γ

dq2
0dc0

∣∣∣∣
lnm`1

=
d2Γ LO

dq2
0dc0

(α
π

)
Q̂2
`1

lnm`1 × C
(0)
`1

,

where

C
(0)
`1

=

[
3

2
+ 2 ln z̄(ωs)

]
F̃ (hc)

+

[
−1− 2 ln z̄(ωs)

]
F̃ (s)

+

[
3

2
− 2

]
H̃

= 0

=⇒ Vanishes in fully photon inclusive limit!
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IR Divergences: Hard Collinear Real in {q2, c`}-vars

We now consider the same calculation in the
{q2, c`}-variables.

The virtual contribution and the contribution from the soft region
of the phase space both remain unchanged.

=⇒ Only the contribution from the collinear region needs to be
computed, ie. F̃ (hc,`)

Setting mK → 0, for simplicity in the illustration, we have

q2
0 =

q2

z
, c0 =

c`(1 + z) + 1− z

c`(1− z) + 1 + z
,

and
dq2

0dc0 = 4(c`(1− z) + 1 + z)−2dq2dc`
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IR Divergences: Hard Collinear Real in {q2, c`}-vars

The z−integral does not factorise in this case, and we have

F̃ (hc,`)(δ) = −
Q̂2
`1

27π3m3
B

∫ max(zinc(c`),zωs (c`))

max(zinc(c`),zδex (c`))
dz

×

[
|A(0)(q2

0 , c0)|2λ1/2(q2
0 ,m

2
B , 0)

(c`(1− z) + 1 + z)2
P̃f→f γ(z) lnm`1

]
,

where c0 = c0(c`), and zδ(c`) implements the photon energy cut.
The boundaries for the z-integral are given by

zinc(c`)|mK→0 = q̂2 , zδ(c`)|mK→0 =
1 + q̂2 − δ + c`(1− q̂2 − δ)

1 + q̂2 + δ + c`(1− q̂2 − δ)
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IR Divergences: Cancellation of hc logs in {q2, c`}

This time, adding all the contributions, one finds

d2Γ

dq2dc`

∣∣∣
lnm`1

=
α

π
Q̂2
`1
Khc(q2, c`) lnm`1 ,

where Khc(q2, c`) is a non-vanishing function, even in the fully
photon inclusive limit.

However, upon integration over q2 and c`, it vanishes, ie.∫ m2
B

0
dq2

∫ 1

−1
dc` Khc(q2, c`) = 0,

as expected.
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IR Divergences: Structure-dependent terms (Real)

We also showed that all collinear logs lnm` are captured by the
EFT used.

The argument relies on the gauge invariance of the real amplitude
A(1) (k ·A(1) = 0), and on the fact that in the collinear region,
k − `1 = O(m2

`1
).

The above two conditions then implies `1 ·A(1) = O(m2
`1

) in the
collinear region.
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Results

We consider relative QED corrections. For a single differential in
d
dq2

a
,

∆(a)(q2
a ; δex) =

(
dΓ LO

dq2
a

)−1
dΓ(δex)

dq2
a

∣∣∣
α
,

where the numerator and denominator are integrated separately
over

∫ 1
−1 dca respectively. In addition, we define the single

differential in d
dca

∆(a)(ca, [q
2
1 , q

2
2 ]; δex) =

(∫ q2
2

q2
1

d2Γ LO

dq2
adca

dq2
a

)−1 ∫ q2
2

q2
1

d2Γ(δex)

dq2
adca

dq2
a

∣∣∣
α
,

where the non-angular variable is binned.

It is important to integrate the QED correction and the LO
separately as this corresponds to the experimental situation.
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Results: B̄0 → K̄ 0`+`− in q2
a

2 4 6 8 10

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

2 4 6 8 10

-0.10

-0.05

0.00

0.05

0.10

I In photon-inclusive case (δex = δinc
ex , dashed lines), all IR

sensitive terms cancel in the q2
0 variable locally.

I (Approximate) lepton universality on the plots on the left.

I Effects due to the photon energy cuts are sizeable since
hard-collinear logs do not cancel in that case. More
pronounced for electrons.
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Results: B− → K−`+`− in q2
a

2 4 6 8 10

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

2 4 6 8 10

-0.10

-0.05

0.00

0.05

0.10

I Same comments as above apply.

I In the charged case, however, we see finite effects of the
O(2%) due to ln m̂K “collinear logs” which do not cancel.
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Results: B̄0 → K̄ 0`+`− in ca

-1.0 -0.5 0.0 0.5 1.0

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

-1.0 -0.5 0.0 0.5 1.0

-0.05

0.00

0.05

0.10

0.15

Enhanced effect towards the endpoints {−1, 1} is partly due to the
special behaviour of the LO differential rate which behaves like
∝ (1− c2

` ) +O(m2
` ) and explains why the effect is less pronounced

for muons.

Even in c`. Almost even in c0 (up to non-collinear effects).
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Results: B̄0 → K̄ 0`+`− in ca

-1.0 -0.5 0.0 0.5 1.0

-1.×10-8

-8.×10-9

-6.×10-9

-4.×10-9

-2.×10-9

0

2.×10-9

4.×10-9

-1.0 -0.5 0.0 0.5 1.0
-1.×10-8

-5.×10-9

0

5.×10-9

1.×10-8

-1.0 -0.5 0.0 0.5 1.0
0

5.×10-8

1.×10-7

1.5×10-7
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Results: B− → K−`+`− in ca

-1.0 -0.5 0.0 0.5 1.0

-0.10

-0.05

0.00

0.05

0.10

-1.0 -0.5 0.0 0.5 1.0

-0.05

0.00

0.05

0.10

0.15

I Same comments as before apply.

I More enhanced than the neutral meson case.

I ‘Collinear’ lnmK odd in c0/c`.
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Results: Distortion of the B̄ → K̄`+`− spectrum

Distortion of the B̄ → K̄`+`− spectrum due to γ-radiation

2 4 6 8 10

-0.10

-0.05

0.00

0.05

2 4 6 8 10

-0.10

-0.05

0.00

0.05

0.10

Effects are more prominent in the photon-inclusive case
(δex = δinc

ex , in brown) since there is more phase space for the q2-
and q2

0-variables to differ.

=⇒ Best to report results in q2
0
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Results: Distortion of the B̄ → K̄`+`− spectrum

To understand the distortion better, consider the following analysis
in the collinear region:

|A(0)(q2
0 , c0)|2 ∝ f+(q2

0)2 = f+(q2/z)2.

Since z < 1 in general, it is clear that momentum transfers of a
higher range are probed.
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Results: Distortion of the B̄ → K̄`+`− spectrum

For example, when c` = −1, maximising the effect, one gets

zδex(q2)
∣∣∣
c`=−1

=
q2

q2 + δexm2
B

, (q2
0)max = q2 + δexm

2
B ,

For δex = 0.15, q2 = 6 GeV2 one has (q2
0)max = 10.18 GeV2

=⇒ Problematic for probing RK in q2 ∈ [1, 6] GeV2 range, due to
charmonium resonances!

Furthermore, in photon-inclusive case, the lower boundary for z
becomes zinc(c`)|mK→0 = q̂2 such that (q2

0)max = m2
B .

=⇒ Entire spectrum is probed for any fixed value of q2
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Results: LFU and RK

Recall

RK |q2
0∈[q2

1 ,q
2
2 ] GeV2 =

Γ[B̄ → K̄µ+µ−]

Γ[B̄ → K̄ e+e−]

∣∣
q2

0∈[q2
1 ,q

2
2 ] GeV2 ≈ 1+∆QEDRK .

The net QED correction that should be applied to RK according to
our analysis amounts to

∆QEDRK ≈
∆ΓKµµ

ΓKµµ

∣∣∣∣mrec
B =5.175 GeV

q2
0∈[1,6] GeV2

−∆ΓKee

ΓKee

∣∣∣∣mrec
B =4.88 GeV

q2
0∈[1,6] GeV2

≈ +1.7%
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Results: LFU and RK

Well below experimental errors:

RK

[
1.1GeV2, 6GeV2

]
= 0.846+0.042+0.013

−0.039−0.012

However, effect of cuts can be significant. In Bordone et al.
(arXiv:1605.07633), in addition to the above energy cuts, a tight
angle cut was also used, and a correction to RK of

∆QEDRK ≈ +3.0% ,

was reported.

=⇒ Highlights the importance of building a MC to cross-check
the experimental analysis (ongoing work)
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Summary and Conclusion

I Soft and soft collinear divergences always cancel at the
differential level, independent of differential variables, and
experimental cut-off on the photon energy.

I Without a cut-off on the photon energy, hard collinear logs
cancel at the differential level if {q2

0 , c0}-variables used. Get
approximate LFU.

I If {q2, c`}-variables are used, hard collinear logs survive at the
differential level, and only cancel in the total rate.

I By gauge invariance, structure-dependent terms do not give
rise to further collinear logs.
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Summary and Conclusion

I With a cut-off, hard-collinear logs always survive. To prevent
distortion of the spectrum, it is best to report results in the
{q2

0 , c0}-variables.

I LFU ratios such as RK are under control w.r.t. ln m`
mB

from the
theory side.
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Future Work

I B̄ → K̄`+`− differential distribution through Monte Carlo
(ongoing).

I Structure-dependent corrections (ongoing).

I Fixing ambiguities in the UV counterterms (ongoing).

I Analysis of moments of the angular distribution. Higher
moments sensitive to QED corrections (ongoing).

I Calculation can be extended to other spin final states, such as
K ∗.

I Charged-current semileptonic decays (B̄ → D`ν).
Unidentified neutrino in final state makes it hard to
reconstruct B meson and to apply a cut-off on photon energy.

The END
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Backup slides

BACKUP SLIDES
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IR Divergences: Structure-dependent terms

The real amplitude can be decomposed,

A(1) = Q̂`1a
(1)
`1

+ δA(1) ,

into a term Q̂`1a
(1)
`1

with all terms proportional to Q̂`1 , and the

remainder δA(1).

a
(1)
`1

= −egeffū(`1)

[
2ε∗ ·`1+/ε∗/k

2k ·`1
Γ·H0(q2

0)

]
v(`2) ,

which contains all 1/(k ·`1)-terms.

The structure-dependence of this term is encoded in the form
factor H0.
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IR Divergences: Structure-dependent terms

The amplitude square is given by∑
pol

|A(1)|2 =
∑
pol

|δA(1)|2− Q̂2
`1

∑
pol

|a(1)
`1
|2 +2Q̂`1Re[

∑
pol

A(1)a
(1)∗
`1

] ,

where it will be important that A(1) is gauge invariant.

The first term is manifestly free from hard-collinear logs
lnm`1 .

We use gauge invariance and set ξ = 1 under which the
polarisation sum∑

pol

ε∗µεν = (−gµν + (1− ξ)kµkν/k
2)→ −gµν

collapses to the metric term only.
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IR Divergences: Structure-dependent terms

The second term evaluates to∫
dΦγ Q̂

2
`1

∑
pol

|a(1)
`1
|2 =

∫
dΦγ Q̂

2
`1

O(m2
`1

) +O(k ·`1)

(k · `1)2
= O(1) Q̂2

`1
lnm`1 ,

where we used k − `1 = O(m2
`1

), valid in the collinear region.
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IR Divergences: Structure-dependent terms

We now turn to the third term.

Using anticommutation relations, k − `1 = O(m2
`1

) in the collinear

limit, and the EoMs, we rewrite a
(1)
`1

as

a
(1)
`1

= −egeffū(`1)

[
4ε∗ ·`1+m`1/ε

∗

2k ·`1
Γ·H0(q2

0)

]
v(`2) ,

Gauge invariance k ·A(1) = 0 implies `1 ·A(1) = O(m2
`1

) in the
collinear region
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IR Divergences: Structure-dependent terms

Therefore, the first part of a
(1)
`1

contributes to

Q̂`1Re[
∑
pol

A(1)a
(1)∗
`1

]→ c1Q̂
2
`1

O(m2
`1

)

(k · `1)2
+ c2Q̂`1Q̂X

O(m2
`1

)

(k · `1)

where X ∈ {B̄, K̄ , ¯̀
2}.

The second part of a
(1)
`1

contributes to

Q̂`1Re[
∑
pol

A(1)a
(1)∗
`1

]→ c ′1Q̂
2
`1

O(m2
`1

)

(k · `1)2
+ c ′2Q̂`1Q̂X

O(m`1)

(k · `1)

Thus, using gauge invariance, one concludes that δA(1) (indicated
by terms ∝ Q̂X in the above ) does not lead to collinear logs.
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