Prompt η_c hadroporoduciton, theoretical aspects

Maxim Nefedov^{1,2}, Jean-Philippe Lansberg¹, Melih Ozcelik^{1,3}

QCD Café, Orsay, October 12^{th.}, 2021

¹Université Paris-Saclay, CNRS, IJCLab, 91405 Orsay, France

²Samara National Research University, Samara, Russia

³Institute for Theoretical Particle Physics, KIT, Karlsruhe, Germany

Outline

- 1. Why η_c ?
- 2. High-energy instability of the NLO cross section
- 3. High-Energy Factorization \Rightarrow resummation of $\ln 1/z$
- 4. Reproducing NLO results at $z \to 0$ from HEF, prediction for NNLO,
- 5. Matching HEF and NLO CPM calculations

Do we understand anything about quarkonium production?

Understanding of hadronisation of the $Q\bar{Q}$ -pair (Q=b,c) into heavy quarkonium turned-out to be challenging theoretical/phenomenological problem. Do we understand which states of the $Q\bar{Q}$ -pair are important?

For some processes – yes! The importance of the color-singlet $Q\bar{Q}$ -state has been established:

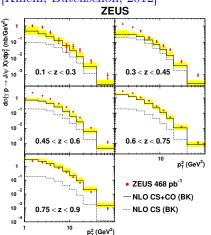
- ▶ Photoproduction of prompt J/ψ at z < 0.9 and not too small.
- \blacktriangleright Bulk of the double prompt hadroproduction of J/ψ and (somewhat unexpectedly...)
 - ▶ Prompt η_c hadroproduction

Probability (=LDME) of hadronisation of the color-singlet $Q\bar{Q}$ -pair to the physical state is $\propto |R^{(')}(r=0)|^2$, which is relatively well constrained, in comparison to CO LDMEs. No free parameters!?

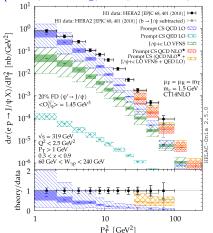
Prompt J/ψ photoproduction

Production of the $c\bar{c}$ $\left[{}^3S_1^{(1)}\right]$ -state contributes up to a half of the cross section at "moderate" values of $z=(p_{J/\psi}P)/(q_{\gamma}P)$. As it should, no surprises here!

[Kniehl, Butenschön, 2012]

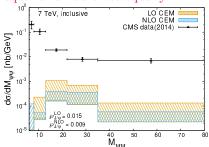


[Flore, Lansberg, Shao, Yedelkina, 2020]



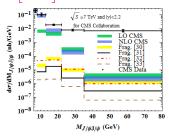
Double prompt J/ψ hadroproduction

CEM: "All color, spin and L-states of $c\bar{c}$ with $M_{c\bar{c}} < 2m_D$ are created equal and hadronise equally..."

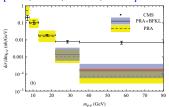


[Lansberg, Shao, Yamanaka, Zhang, Noûs, 2020]

NRQCD: "Double production of $c\bar{c} \begin{bmatrix} {}^3S_1^{(1)} \end{bmatrix}$ -states dominates."



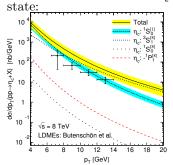
[Sun, Han, Chao, 2016]



[He, Kniehl, M.N., Saleev, 2019]

Is ${}^{1}S_{0}^{(1)}$ -dominance in η_{c} -production a bug or a feature?

The η_c hadroproduction was found to be dominated by the $c\bar{c} \begin{bmatrix} 1 S_0^{(1)} \end{bmatrix}$

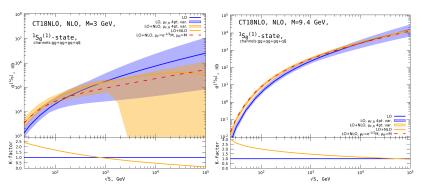


[Butenschoen, He, Kniehl, 2015] This is a problem for NRQCD factorization, because roughly the same contribution of color-octet states as for J/ψ was expected.

- Color-octet LDMEs for η_c are related (up to v^2 corrections) to LDMEs of J/ψ by heavy-quark spin symmetry (long wavelength gluons do not "see" heavy quark spin). Strong HQSS violation?
- ▶ HQSS is quite "good" symmetry, manifests itself e.g. in hadron spectrum as closeness of D and D^* (B and B^*) masses.
- ▶ My speculation: HQSS maybe inapplicable to production, because m_Q is not the largest scale in the problem. There is a lot of "soft" gluons with $m_{c,b} \ll E_g \ll p_T$.

Is NLO QCD prediction for η_c production perturbatively stable?

If we want to calculate the p_T -integrated total or y-differential cross section, then **NO**:



Why?

Collinear factorization for total CS for the state $m = {}^{2S+1}L_J^{(0)}$:

$$\sigma^{[m]}(\sqrt{S}) = \int_{z_{\min}}^{1} \frac{dz}{z} \mathcal{L}_{ij}(z, \mu_F) \hat{\sigma}_{ij}^{[m]}(z, \mu_F, \mu_R),$$

where $i, j = q, \bar{q}, g, |z = M^2/\hat{s}|$ and partonic luminosity:

$$\mathcal{L}_{ij}(z,\mu_F) = \int_{-y_{\text{max}}}^{y_{\text{max}}} dy \ \tilde{f}_i \left(\frac{M}{\sqrt{Sz}} e^y, \mu_F \right) \tilde{f}_j \left(\frac{M}{\sqrt{Sz}} e^{-y}, \mu_F \right),$$

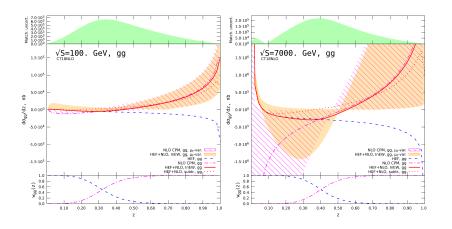
with $\tilde{f}_j(x, \mu_F)$ – momentum density PDFs.

NLO coefficient function [Kuhn, Mirkes, 93'; Petrelli *et.al.*, 98'] in the $z \to 0$ limit

$$\hat{\sigma}_{ij}^{[m]} = \sigma_{\text{LO}}^{[m]} \left[A_0^{[m]} \delta(1-z) + C_{ij} \frac{\alpha_s(\mu_R)}{\pi} \left(A_0^{[m]} \ln \frac{M^2}{\mu_F^2} + A_1^{[m]} \right) + O(z\alpha_s, \alpha_s^2) \right],$$

where $C_{gg} = 2C_A = 2N_c$, $C_{qg} = C_{gq} = C_F = (N_c^2 - 1)/(2N_c)$, $C_{q\bar{q}} = 0$ and $A_1^{[m]} < 0$.

Why?

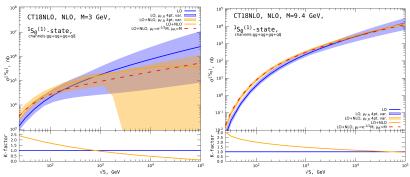


Optimal μ_F choice?

It is natural to choose μ_F such a way, that the negative $A_1^{[m]}$ is cancelled [Lansberg, Ozcelik, 2020]:

$$\hat{\mu}_F = M \exp\left[\frac{A_1^{[m]}}{2A_0^{[m]}}\right],$$

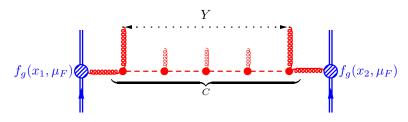
is equivalent to resummation of some of the terms $\propto \alpha_s^n \ln^{n-1} \frac{1}{z}$ (more on this later). The result (red curve):



Is the systematic resummation of $\propto \alpha_s^n \ln^{n-1} \frac{1}{z}$ possible?

High-Energy factorization in a nutshell

Reminder: Müller-Navelet dijet production (p_T of both jets is fixed):



Hard-scattering coefficient C contains higher-order corrections $\propto (\alpha_s Y)^n$ (LLA) or $\alpha_s (\alpha_s Y)^n$ (NLLA), which can be resummed at leading power w.r.t. e^{-Y} using Balitsky-Fadin-Kuraev-Lipatov (BFKL)-formalism.

High-Energy factorization in a nutshell

High-Energy Factorization [Collins, Ellis, 91'; Catani, Ciafaloni, Hautmann, 91',94']:

$$f_g(\bar{x}_1,\mu_F)$$
 $P_+\bar{x}_1$ P_+ $P_ P_-\bar{x}_2$ P_-

Using the same formalism one can resum corrections to C enhanced by

$$Y_{\pm} = \ln\left(\frac{\mu_Y}{|\mathbf{q}_{T\pm}|} \frac{1 - z_{\pm}}{z_{\pm}}\right) \simeq \ln\frac{\mu_Y}{|\mathbf{q}_{T\pm}|} + \ln\frac{1}{z_{\pm}}, \text{ in LP w.r.t. } \frac{|\mathbf{q}_{T\pm}|}{\mu_Y} \frac{z_{\pm}}{1 - z_{\pm}}$$

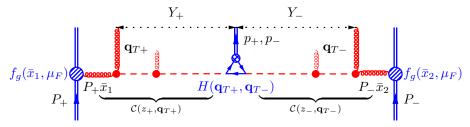
in inclusive observables (e.g. inclusive quarkonium production). Here

$$z_{+} = \frac{p_{+}}{P_{+}\bar{x}_{1}}, \ z_{-} = \frac{p_{-}}{P_{-}\bar{x}_{2}} \text{ and } \mu_{Y} = p_{+}e^{-y_{\mathcal{H}}} = p_{-}e^{y_{\mathcal{H}}},$$

e.g.
$$\mu_Y^2 = m_{\mathcal{H}}^2 + \mathbf{p}_T^2$$
. Connection with $z = \frac{M^2}{\hat{s}} = \frac{M^2}{M_T^2} z_+ z_-$.

High-Energy factorization in a nutshell

High-Energy Factorization [Collins, Ellis, 91'; Catani, Ciafaloni, Hautmann, 91',94']:



- Collinear divergences from additional emissions are subtracted inside UPDF.
- New coefficient function H depends on $x_{1,2}$ as well as $\mathbf{q}_{T\pm}$ $(k_T$ -factorization).
- ▶ Factorization with single type of factors \mathcal{C} and H is proven at LL and NLL approximation [Fadin *et.al.*, early 2000s], and known to be violated at N²LL. Factorization with several types of \mathcal{C} and H should be introduced then.

Resummed coefficient function

$$\hat{\sigma}_{ij}^{[m], \text{ HEF}}(z, \mu_F, \mu_R) = \int_{-\infty}^{\infty} d\eta \int_{0}^{\infty} d\mathbf{q}_{T1}^2 d\mathbf{q}_{T2}^2 \, \mathcal{C}_{gi} \left(\frac{M_T}{M} \sqrt{z} e^{\eta}, \mathbf{q}_{T1}^2, \mu_F, \mu_R \right) \\ \times \mathcal{C}_{gj} \left(\frac{M_T}{M} \sqrt{z} e^{-\eta}, \mathbf{q}_{T2}^2, \mu_F, \mu_R \right) \int_{0}^{2\pi} \frac{d\phi}{2} \frac{H^{[m]}(\mathbf{q}_{T1}^2, \mathbf{q}_{T2}^2, \phi)}{M_T^4},$$

The coefficient functions $H^{[m]}$ are known at LO in α_s [Hagler *et.al*, 2000; Kniehl, Vasin, Saleev 2006] for $m={}^1S_0^{(1,8)},\,{}^3P_J^{(1,8)},\,{}^3S_1^{(8)}$.

LLA evolution w.r.t. $\ln 1/z$

In the LL(ln 1/z)-approximation, the $Y = \ln 1/z$ -evolution equation for collinearly un-subtracted $\tilde{\mathcal{C}}$ -factor has the form:

$$\tilde{\mathcal{C}}(x, \mathbf{q}_T) = \delta(1-z)\delta(\mathbf{q}_T^2) + \hat{\alpha}_s \int_{-\infty}^{1} \frac{dz}{z} \int d^{2-2\epsilon} \mathbf{k}_T K(\mathbf{k}_T^2, \mathbf{q}_T^2) \tilde{\mathcal{C}}\left(\frac{x}{z}, \mathbf{q}_T - \mathbf{k}_T\right)$$

with $\hat{\alpha}_s = \alpha_s C_A / \pi$ and

$$K(\mathbf{k}_T^2, \mathbf{p}_T^2) = \delta^{(2-2\epsilon)}(\mathbf{k}_T) \frac{(\mathbf{p}_T^2)^{-\epsilon}}{\epsilon} \frac{(4\pi)^{\epsilon} \Gamma(1+\epsilon) \Gamma^2(1-\epsilon)}{\Gamma(1-2\epsilon)} + \frac{1}{\pi (2\pi)^{-2\epsilon} \mathbf{k}_T^2}.$$

It is convenient to go from (z, \mathbf{q}_T) -space to (N, \mathbf{x}_T) -space:

$$\tilde{\mathcal{C}}(N, \mathbf{x}_T) = \int d^{2-2\epsilon} \mathbf{q}_T \ e^{i\mathbf{x}_T \mathbf{q}_T} \int_{\hat{\mathbf{p}}}^{1} dx \ x^{N-1} \ \tilde{\mathcal{C}}(x, \mathbf{q}_T),$$

because:

- ▶ Mellin convolutions over z turn into products: $\int \frac{dz}{z} \to \frac{1}{N}$
- Large logs map to poles at N=0: $\alpha_s^{k+1} \ln^k \frac{1}{z} \to \frac{\alpha_s^{k+1}}{N^{k+1}}$
- \triangleright All collinear divergences are contained inside \mathcal{C} in \mathbf{x}_T -space.

Collinear divergences

Exact (up to terms $O(\epsilon)$) solution for $\tilde{\mathcal{C}}$ can be obtained [Catani, Hautmann, 94]. It contains *collinear divergences*, which can be removed (absorbed into PDFs) in the \overline{MS} -scheme to all orders in α_s :

$$Z_{\text{coll.}}^{-1} = \exp\left[-\frac{1}{\epsilon} \int_{0}^{\hat{\alpha}_{s} S_{\epsilon} \mu_{F}^{-2\epsilon}} \frac{d\alpha}{\alpha} \gamma_{gg}(\alpha, N)\right], \quad S_{\epsilon} = \exp\left[\epsilon \left(\ln 4\pi - \gamma_{E}\right)\right],$$
$$\tilde{\mathcal{C}}(N, \mathbf{x}_{T}) = Z_{\text{coll.}}^{-1} \mathcal{C}(N, \mathbf{x}_{T}, \mu_{F})$$

Exact LL solution

In (N, \mathbf{q}_T) -space, subtracted \mathcal{C} , which resums all terms $\propto (\hat{\alpha}_s/N)^n$ has the form:

$$C(N, \mathbf{q}_T, \mu_F) = R(\gamma_{gg}(N, \alpha_s)) \frac{\gamma_{gg}(N, \alpha_s)}{\mathbf{q}_T^2} \left(\frac{\mathbf{q}_T^2}{\mu_F^2}\right)^{\gamma_{gg}(N, \alpha_s)},$$

where $\gamma_{qq}(N, \alpha_s)$ is the solution of [Jaroszewicz, 82']:

$$\frac{\hat{\alpha}_s}{N}\chi(\gamma_{gg}(N,\alpha_s)) = 1, \text{ with } \chi(\gamma) = 2\psi(1) - \psi(\gamma) - \psi(1-\gamma),$$

where $\psi(\gamma) = d \ln \Gamma(\gamma)/d\gamma$ – Euler's ψ -function. The first few terms:

$$\gamma_{gg}(N, \alpha_s) = \underbrace{\frac{\hat{\alpha}_s}{N}}_{\text{DLA}} + 2\zeta(3)\frac{\hat{\alpha}_s^4}{N^4} + 2\zeta(5)\frac{\hat{\alpha}_s^6}{N^6} + \dots$$

The function $R(\gamma)$ is

$$R(\gamma_{qq}(N, \alpha_s)) = 1 + O(\alpha_s^3).$$

Doubly-logarithmic approximation

Taking the LO result for $\gamma_{gg}(N, \alpha_s) \rightarrow \left| \gamma_N = \frac{\hat{\alpha}_s}{N} \right|$ we obtain:

$$\mathcal{C}_{\mathrm{DL}}(N,\mathbf{q}_{T},\mu_{F}) = \frac{\gamma_{N}}{\mathbf{q}_{T}^{2}} \left(\frac{\mathbf{q}_{T}^{2}}{\mu_{F}^{2}}\right)^{\gamma_{N}},$$

which resums $\left(\frac{\hat{\alpha}_s}{N} \ln \frac{\mathbf{q}_T^2}{\mu_F^2}\right)^n \leftrightarrow \hat{\alpha}_s^n \ln^n \left(\frac{\mathbf{q}_T^2}{\mu_F^2}\right) \ln^{n-1} \left(\frac{1}{z}\right)$.

In (z, \mathbf{q}_T) -space it is [Blümlein, 94']:

$$\mathcal{C}_{\mathrm{DL}}(z, \mathbf{q}_T, \mu_F) = \frac{\hat{\alpha}_s}{\mathbf{q}_T^2} \begin{cases} J_0\left(2\sqrt{\hat{\alpha}_s \ln \frac{\mu_F^2}{\mathbf{q}_T^2} \ln \frac{1}{z}}\right), & |\mathbf{q}_T| < \mu_F, \\ I_0\left(2\sqrt{\hat{\alpha}_s \ln \frac{\mathbf{q}_T^2}{\mu_F^2} \ln \frac{1}{z}}\right), & |\mathbf{q}_T| > \mu_F, \end{cases}$$

where J_0/I_0 is the Bessel function of the first/second kind. This approximation should be used with standard LO, NLO,

NNLO PDFs, because DGLAP evolution is taken at fixed order (LO, NLO, NNLO).

Does this work?

The resummation has to reporduce the $A_1^{[m]}$ NLO coefficient when expanded up to NLO in α_s . And it does. We have performed expansion up to NNLO:

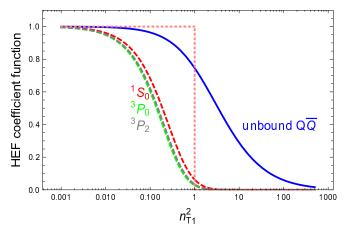
State	$A_0^{[m]}$	$A_1^{[m]}$	$A_2^{[m]}$	$B_2^{[m]}$
$^{1}S_{0}$	1	-1	$\frac{\pi^2}{6}$	$\frac{\pi^2}{6}$
${}^{3}S_{1}$	0	1	0	$\frac{\pi^2}{6}$
$^{3}P_{0}$	1	$-\frac{43}{27}$	$\frac{\pi^2}{6} + \frac{2}{3}$	$\frac{\pi^2}{6} + \frac{40}{27}$
$^{3}P_{1}$	0	$\frac{5}{54}$	$-\frac{1}{9}$	$-\frac{2}{9}$
$^{3}P_{2}$	1	$-\frac{53}{36}$	$\frac{\pi^2}{6} + \frac{1}{2}$	$\frac{\pi^2}{6} + \frac{11}{9}$

for e.g.

$$\hat{\sigma}_{gg}^{[m], \text{ HEF}}(z \to 0) = \sigma_{\text{LO}}^{[m]} \left\{ A_0^{[m]} \delta(1 - z) + \frac{\alpha_s}{\pi} 2C_A \left[A_1^{[m]} + A_0^{[m]} \ln \frac{M^2}{\mu_F^2} \right] + \left(\frac{\alpha_s}{\pi} \right)^2 C_A^2 \ln \frac{1}{z} \left[2A_2^{[m]} + B_2^{[m]} + 4A_1^{[m]} \ln \frac{M^2}{\mu_F^2} + 2A_0^{[m]} \ln^2 \frac{M^2}{\mu_F^2} \right] + O(\alpha_s^3) \right\},$$

Connection with $\hat{\mu}_F$

The HEF resummation would be equivalent to the $\hat{\mu}_F$ prescription, if the HEF CF $H^{[m]}(\mathbf{q}_{T1}^2,\mathbf{q}_{T2}^2=0)/M_T^4$ was $\propto \theta(\hat{\mu}_F^2-\mathbf{q}_{T1}^2)$. But it is not:



Matching with NLO of CF

The HEF works only at $z \ll 1$, misses power corrections O(z), while NLO CF is exact in z, but only NLO in α_s . We need to match them.

▶ Simplest prescription: just subtract the overlap at $z \ll 1$:

$$\sigma_{\text{NLO+HEF}}^{[m]} = \sigma_{\text{LO CF}}^{[m]} + \int_{z_{\text{min}}}^{1} \frac{dz}{z} \left[\check{\sigma}_{\text{HEF}}^{[m],ij}(z) + \hat{\sigma}_{\text{NLO CF}}^{[m],ij}(z) - \hat{\sigma}_{\text{NLO CF}}^{[m],ij}(0) \right] \mathcal{L}_{ij}(z),$$

► Or introduce **smooth weights**:

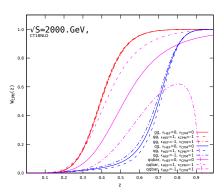
$$\sigma_{\text{NLO+HEF}}^{[m]} = \sigma_{\text{LO CF}}^{[m]} + \int_{z_{\text{min}}}^{1} dz \left\{ \left[\check{\sigma}_{\text{HEF}}^{[m],ij}(z) \frac{\mathcal{L}_{ij}(z)}{z} \right] w_{\text{HEF}}^{ij}(z) + \left[\hat{\sigma}_{\text{NLO CF}}^{[m],ij}(z) \frac{\mathcal{L}_{ij}(z)}{z} \right] (1 - w_{\text{HEF}}^{ij}(z)) \right\},$$

Inverse error weighting method

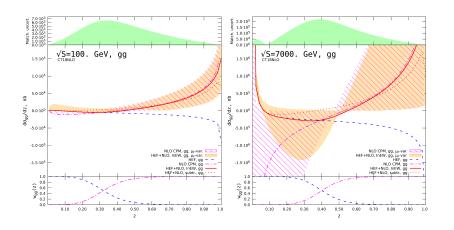
In the InEW method [Eichevarria, et.al., 2018] the weights are calculated from estimates of the error of each contribution:

$$w_{\rm HEF}^{ij}(z) = \frac{[\Delta\sigma_{\rm HEF}^{ij}(z)]^{-2}}{[\Delta\sigma_{\rm HEF}^{ij}(z)]^{-2} + [\Delta\sigma_{\rm CF}^{ij}(z)]^{-2}}, \label{eq:wheff}$$

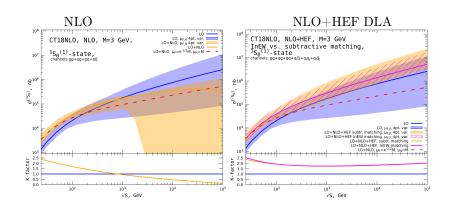
- For $\Delta \sigma_{\rm CF}$ we take the $\alpha_s^2 \ln \frac{1}{z}$ term obtained from HEF $+O(\alpha_s^2)$ -term which we vary.
- For $\Delta \sigma_{\rm HEF}$ we take the $\alpha_s O(z)$ part of the NLO CF result $+O(\alpha_s^2)$ -term which we vary.



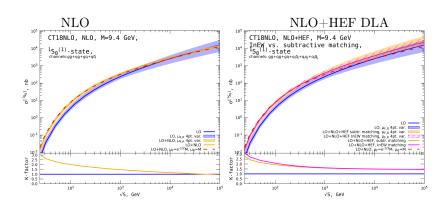
Matching plots



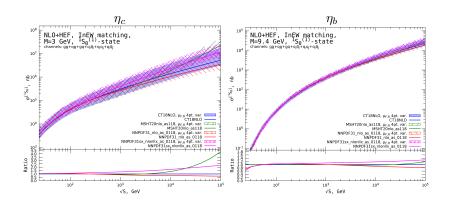
Matched results for η_c



Matched results for η_b



The PDF dependence



Intermediate conclusions

- The high-energy instability of the NLO cross section is related with lack of the $\alpha_s^n \ln^{n-1} \frac{1}{z}$ corrections in $\hat{\sigma}(z)$ at $z \ll 1$.
- ▶ The HEF at DLA is the formalism to solve this problem if the standard fixed-order PDFs are to be used.
- ▶ Matching between NLO CF (finite z) and HEF ($z \ll 1$) has to be performed, but there is no strong sensitivity to matching procedure.
- ► Scale-uncertainty is reduced, the K-factor is flat at high energy. But the uncertainty of NLO CF+DLA HEF calculation is still too large.
- ▶ NLO CF+NLL HEF calculation is in progress.
- Future plans: y-distributions, production of χ_{cJ} , photoproduction...

Higher-twist effects

-0.10 0.001

Convolution of C-factor with the Gaussian in \mathbf{k}_T :

$$\int \frac{d^2\mathbf{k}_T}{\pi\sigma_T^2} \exp\left[-\frac{\mathbf{k}_T^2}{\sigma_T^2}\right] \mathcal{C}_{gg}^{\mathrm{DLA}}(z, (\mathbf{q}_T + \mathbf{k}_T)^2, \mu_F, \mu_R)$$

$$z = 0.001, \mu_F = 3 \,\mathrm{GeV}, \alpha_s = 0.2$$

$$\sigma_T = 0.01 \,\mathrm{GeV}$$

$$\sigma_T = 0.2 \,\mathrm{GeV}$$

$$\sigma_T = 0.2 \,\mathrm{GeV}$$

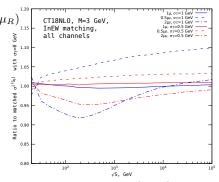
$$\sigma_T = 0.05 \,\mathrm{GeV}$$

0.005 0.010

0.050 0.100

a_⊤. GeV

0.500



The correction is $O(\sigma_T^2/M^2)$, so it is **higher twist effect.**

Photoproduction case

$$\sigma_{\gamma p} = \int dx f_i(x, \mu_F) \hat{\sigma}_{i\gamma}(\eta),$$

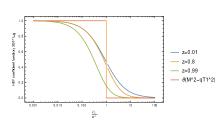
where $\eta = \frac{\hat{s}}{M^2} - 1$ with $\hat{s} = S_{\gamma p} x$. Resummed partonic cross section:

$$\hat{\sigma}_{i\gamma}^{\rm HEF}(\eta) = \frac{1}{2zM^2} \int_{1/z}^{1+\eta} \frac{dy}{y} \int_{0}^{\infty} d\mathbf{q}_T^2 \,\, \mathcal{C}_{gi}\left(\frac{y}{\eta+1}, \mathbf{q}_T^2, \mu_F, \mu_R\right) \mathcal{H}(y, \mathbf{q}_T^2),$$

where \mathcal{H} is the integral of the HEF coefficient function for the process:

$$R(\mathbf{q}_T) + \gamma(q) \rightarrow c\bar{c} \left[{}^3S_1^{(1)} \right] + g(k),$$

over the PS of the gluon.



Asymptotics $\hat{\sigma}(\eta \to \infty)$ [Kraemer, 1995]:

$$\hat{\sigma}_{i\gamma} \propto c_{i\gamma}^{(0)}(\eta) + \frac{4\pi\alpha_s}{c_{i\gamma}^{(1)}(\eta)} + \bar{c}_{i\gamma}^{(1)}(\eta) \ln \frac{\mu_F^2}{m_c^2} + \frac{\beta_0}{8\pi^2} c_{i\gamma}^{(0)}(\eta) \right]$$

