Kumiko Kotera - Institut d'Astrophysique de Paris

EIW

ISAPP School Institut Pascal - 25/03/2020

Multi-messenger astroparticle physics Introductory course

Outline of this lecture

1. A multi-messenger picture is the natural way

- 2. Tools for multi-messenger astrophysics
 - Secondary production channels
 - Maximum energies & simple flux estimates
 - Cosmogenic neutrinos
 - Specificities of gamma rays
 - Panorama of simulation tools
- 3. Can we really do multi-messenger astrophysics?
 - GW-neutrino sources
 - Focus on neutrinos from transient sources
 - Opening the UHE neutrino window

1. A multi-messenger picture is the natural way

Introduction

Exciting times!

And we still don't know the origin of UHECRs

The complicated cosmic-ray journey

Observables

UHECR

- neutrinos - flavors
- spectrum
- anisotropy
- spectrum - anisotropy
- time variabilities

multi-wavelength photons

- spectral features
- time variabilities
- angular spread
- source distribution
- GW
- spectrum
- arrival
 - directions
- time

- mass

Cosmic rays and friends

A multi-messenger picture also *looks* like a natural way

A common multi-messenger source? e.g., Fang & Murase 2017

2. Tools for multi-messenger astrophysics

Secondary production channels

Photo-hadronic interactions

$$p + \gamma_{\text{target}} \rightarrow n + \pi^{+} \\ \pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \rightarrow e^{+} + \nu_{e} + \bar{\nu}_{\mu} + \nu_{\mu}$$
$$p + \gamma_{\text{target}} \rightarrow p + \pi^{0} \\ \pi^{0} \rightarrow \gamma + \gamma$$

Table 9.1Multiplicities ζ and Mean Fractional Energies χ of Secondaries Formed
in Photomeson Production

Species	Single π		Multi- <i>π</i>		
Neutrinos	$\zeta_{\nu}^{s} = 3/2$	$\chi_{\nu}^{s} = 0.05$	$\zeta_{\nu}^{m}=6$	$\chi_{v}^{m} = 0.05$	
Leptons	$\zeta_{e}^{s} = 1/2$	$\chi_{e}^{s} = 0.05$	$\zeta_e^m = 2$	$\chi_{e}^{m} = 0.05$	
γ-rays	$\zeta_{\gamma}^{s} = 1$	$\chi_{\gamma}^{s} = 0.1$	$\zeta_{\gamma}^{m}=2$	$\chi^m_{\gamma} = 0.1$	
Neutrons	$\dot{\zeta_n^{s}} = 1/2$	$\chi_{n}^{s} = 0.8$	$\zeta_n^m = 0.5$	$\chi_{n}^{m} = 0.4$	
Protons	$\zeta_{p}^{s} = 1/2$	$\chi_{p}^{s} = 0.8$	$\zeta_p^m = 0.5$	$\chi_p^m = 0.4$	
β -electrons	$\zeta_{\beta,e}^{s} = 1/2$	$\chi^{s}_{\beta,e} = 10^{-3}$	$\zeta^{\bar{m}}_{\beta,e} = 1/2$	$\chi^{\dot{m}}_{\beta,e} = 10^{-3}$	
β -neutrinos	$\zeta^{s}_{\beta,\nu} = 1/2$	$\chi^s_{\beta,\nu} = 10^{-3}$	$\zeta^m_{\beta,\nu} = 1$	$\chi^m_{\beta,\nu} = 10^{-3}$	

$$\begin{split} \text{cross-section} \\ \sigma_{p\gamma}(\bar{\epsilon}) &= \begin{cases} 340 \ \mu\text{b}, & \bar{\epsilon}_{\text{th}} < \bar{\epsilon} < 500 \text{MeV} \,, \\ 120 \ \mu\text{b}, & \bar{\epsilon} > 500 \text{MeV} \,, \end{cases} \\ \end{split}$$
inelasticity $\kappa_{p\gamma}(\bar{\epsilon}) &= \begin{cases} 0.2, & \bar{\epsilon}_{\text{th}} < \bar{\epsilon} < 500 \text{MeV} \,, \\ 0.6, & \bar{\epsilon} > 500 \text{MeV} \,, \end{cases}$

Atoyan & Dermer, 2003

interaction timescale $t_{p\gamma}$

$$t_{p\gamma}^{-1}(\varepsilon_p) = \frac{c}{2\gamma_p^2} \int_{\bar{\varepsilon}_{\rm th}}^{\infty} d\bar{\varepsilon} \, \sigma_{p\gamma}(\bar{\varepsilon}) \kappa_p(\bar{\varepsilon}) \bar{\varepsilon} \int_{\bar{\varepsilon}/2\gamma_p}^{\infty} d\varepsilon \, \varepsilon^{-2} n_{\varepsilon}$$

Photo-hadronic interaction timescale

barred quantities in proton rest frame

invariant energy of interaction = photon energy in proton rest frame

 $\sqrt{s_{\text{int}}} = \bar{\epsilon} = \gamma_p \epsilon (1 + \beta_p \bar{\mu})$

photon energy $\epsilon = h\nu/m_ec^2$ proton Lorentz factor $\gamma_p = E_p/m_pc^2 = (1-\beta_p^2)^{-1/2}$ angle between proton and photon: $\theta \quad \mu = \cos \theta$

Photo-disintegration $A + \gamma_{target}$

nucleus energy $E_A = \gamma_A A m_p c^2$

"Delta" approximation: $\begin{aligned} \sigma_{\rm GDR} &\sim 1.45 \times 10^{-27} \, {\rm cm}^2 \, A \\ \bar{\varepsilon}_{\rm GDR} &\sim 42.65 A^{-0.21} \, \, {\rm MeV} \\ \Delta \bar{\varepsilon} &\sim 8 \, \, {\rm MeV} \end{aligned}$ Murase et al. PRD (2008)

For interaction channel *i*:

$$t_{A\gamma,i}^{-1} = \frac{c}{2\gamma_A^2} \int_0^\infty \frac{n_{\rm ph}(\epsilon)}{\epsilon^2} \int_0^{2\gamma_A \bar{\epsilon}} \sigma_{A\gamma,i}(\bar{\epsilon}) d\bar{\epsilon}$$

Hadronic interactions $A + A_{\text{target}} \rightarrow N(\pi^0 + \pi^+ + \pi^-) + X$

$$\begin{array}{c} 10.0 \\ P \\ He \\ 1.0 \\ C \\ Si \\ Fe \\ 0.1 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ \log E \\ [eV] \end{array}$$

spallation cross-section $A + p_{\text{target}}$: $\sigma_{\text{sp}}(E') \simeq \left[50.44 - 7.93 \log(E') + 0.61 \log^2(E')\right] A^{\beta_{\text{sp}}} \text{ mb}$ $t_{\text{sp}}^{-1} = n_A \sigma_{\text{sp}} c$

Energy distribution of secondary particles produced by a *pp* interaction Calculated with EPOS

2. Tools for multi-messenger astrophysics

Maximum energies & simple flux estimates

Maximum cosmic ray energy at the source

e.g., Guépin & KK (2017), Guépin et al. (2018) and many refs. therein

Maximum cosmic ray energy at the source

e.g., Guépin & KK (2017), Guépin et al. (2018) and many refs. therein

Secondary neutrino & gamma-ray energies

$$E_{\nu_{\mu}} \sim \frac{1}{4} E_{\pi}$$
$$E_{\gamma} \sim \frac{1}{2} E_{\pi}$$

$$E_{\nu} \sim \frac{1}{5} \frac{1}{4} E_p \sim 0.05 \frac{E_A}{A}$$
$$E_{\gamma} \sim \frac{1}{5} \frac{1}{2} E_p \sim 0.1 \frac{E_A}{A}$$

Neutrino energies at the source pion & muon cooling

pion & muon cooling in dense environments

Maximum neutrino energy for transient sources

Guépin & KK (2017) Guépin, KK, Oikonomou, Nat. subm.

 $E_{\nu} \sim 0.05 E_p$ + taking into account possible pion and muon cooling Bolometric luminosity L_{bol} related to magnetic field strength *B* (hence to $t_{syn}, t_{acc}, t_{dyn}$)

Simple estimates of secondary particle fluxes

photo-hadronic interactions

$$p + \gamma_{\text{target}} \rightarrow n + \pi^{+}$$

$$p + \gamma_{\text{target}} \rightarrow p + \pi^{0}$$
hadronic interactions

$$p + p_{\text{target}} \rightarrow N(\pi^{0} + \pi^{+} + \pi^{-}) + X$$

$$K_{\pi} = \frac{N_{\pi\pm}}{N_{\pi0}} \sim 2$$

$$\pi^{0} \rightarrow \gamma + \gamma$$

$$E_{\gamma} \sim \frac{1}{2} E_{\pi}$$

$$f_{\text{mes}} ?$$

$$f_{\text{mes}} ?$$

$$f_{\mu} = \frac{N_{\pi\pm}}{N_{\pi0}} \sim 2$$

$$f_{\mu} = \frac{N_{\pi\pm}}{N_{\pi}} \sim 2$$

$$f_$$

Meson production rates

tip: write all these timescales in the comoving frame (primed quantities)

modeling according to theory+observations

Secondary spectra at the source

Photon spectrum: Broken power-lawobserved
break energy $L_{\gamma}(\epsilon) = \epsilon^2 \frac{d\dot{N}_{\gamma}}{d\epsilon} = \begin{cases} L_b (\epsilon/\epsilon_b)^{2} \stackrel{\bullet}{\longrightarrow} \epsilon_{\min} \leq \epsilon \leq \epsilon_b \\ L_b (\epsilon/\epsilon_b)^{2} \stackrel{\bullet}{\longrightarrow} \epsilon_b < \epsilon < \epsilon_{\max} \\ \epsilon_b < \epsilon < \epsilon_{\max} \\ \epsilon_b < \epsilon < \epsilon_{\max} \\ \epsilon_b < \epsilon' > \epsilon'_b \end{cases}$ $\epsilon'^2 \frac{dn'_{\gamma}}{d\epsilon'}$ ex: Prompt GRB gamma-ray spectrum (Band function)In the comoving frame (primed quantities): $\epsilon' < \epsilon'_b \\ (\epsilon'/\epsilon'_b)^{-a} \\ (\epsilon'/\epsilon'_b)^{-b} \\ \epsilon' > \epsilon'_b \\ \epsilon' > \epsilon'_b \end{cases}$ $\epsilon' < \epsilon'_b \\ \epsilon'_b$

Secondary spectra at the source

Computing secondary fluxes at the source: key points

Integrating over source population

$$\begin{split} \Phi_{\nu}(E_{\nu}) = f_{\rm s} \ \frac{c}{4\pi} \int_{0}^{z_{\rm max}} \dot{\Re}(z) \frac{\mathrm{d}N_{\nu}[E_{\nu}(1+z)]}{\mathrm{d}E'} (1+z) \frac{\mathrm{d}t}{\mathrm{d}z} \mathrm{d}z \\ E' = E_{\nu}(1+z) \qquad \qquad dt/dz = 1/\left(H_{0}(1+z)\sqrt{\Omega_{M}(1+z)^{3} + \Omega_{\Lambda}}\right) \end{split}$$

Waxman-Bahcall "limit"

25

2. Tools for multi-messenger astrophysics

Cosmogenic neutrinos

The guaranteed cosmogenic neutrinos

Cosmogenic neutrinos: production channels

 $p + \gamma_{\text{target}} \rightarrow n + \pi^+$

Figure 2.1. The spectrum of cosmic background radiations. The CMB is modelled as a blackbody spectrum at 2.725 K. The IR and UV backgrounds are from the work of Kneiske & Dole (2008). The extragalactic gamma-ray background datapoints (EGB) are from EGRET measurements (Sreekumar et al. 1998) and *Fermi*-LAT measurements (Abdo et al. 2010). For the X-ray and radio backgrounds the models presented in the works of Fabian & Barcons (1992), Clark et al. (1970) are shown respectively.

F. Oikonomou, PhD, 2014

Cosmogenic neutrinos: principal ingredients

"not-so-free" parameters

- A flux normalisation
- χ injection spectral index
- (R_{max}) (max. rigidity ~ max. p energy)
- composition

source evolution history

depend strongly on observations of UHECRs

less dependent but affects injection spectrum

Learning from secondary neutrinos?

Alves Batista, de Almeida, Lago, KK, 2018 GRAND Science & Design, 2018 KK, Allard, Olinto 2010 Van Vliet et al. arXiv:1707.04511

Diffuse astrophysical & cosmogenic fluxes

2. Tools for multi-messenger astrophysics

Specificities of gamma rays

Gamma-ray cascades

$$p + \gamma_{\text{target}} \rightarrow \gamma, e^{\pm}, \dots \qquad \gamma \rightarrow e \rightarrow \gamma \rightarrow e \dots$$

Gamma-ray attenuation at the source $\tau_{\gamma\gamma}$ b-1 $t_{\gamma\gamma} = 1$ E_{γ}^{b}

these gamma rays cannot escape the source

pair production cross-section

$$\sigma_{\gamma\gamma}(s) = \frac{\pi r_e^2}{2} \left(1 - \beta_{\rm cm}^2 \right) \left[\left(3 - \beta_{\rm cm}^4 \right) \ln \left(\frac{1 + \beta_{\rm cm}}{1 - \beta_{\rm cm}} \right) - 2\beta_{\rm cm} \left(2 - \beta_{\rm cm}^2 \right) \right]$$

gamma-ray absorption probability per unit length

$$\frac{\mathrm{d}\tau_{\gamma\gamma}}{\mathrm{d}x}(\epsilon_{\gamma}) = \frac{2}{\epsilon_{\gamma}^2} \int_{1/\epsilon_{\gamma}}^{\infty} \frac{\mathrm{d}\epsilon}{\epsilon^2} \frac{\mathrm{d}n_{\gamma}}{\mathrm{d}\epsilon}(\epsilon) \int_{1}^{\epsilon\epsilon_{\gamma}} \mathrm{d}s \, s \, \sigma_{\gamma\gamma}(s)$$

 $\frac{\mathrm{d}N}{\mathrm{d}E}_{\mathrm{observed}} = \frac{\mathrm{d}N}{\mathrm{d}E}_{\mathrm{intrinsic}} \cdot e^{-\tau(E,z)}$

Gamma-ray opacity $\tau_{\gamma\gamma}$ related to $f_{\rm mes}$ $\tau_{\gamma\gamma} \approx \frac{\eta_{\gamma\gamma}\sigma_{\gamma\gamma}}{\eta_{p\gamma}\hat{\sigma}_{p\gamma}}f_{\rm mes}$ $\eta_{\rm factor depending on photon spectral slope}$ $\eta_{p\gamma}\kappa_{p\gamma}$ Murase et al., 2016

Gamma-ray propagation in the intergalactic medium

homogeneous B: flux completely diluted if B_{IGM} > 3x10⁻¹¹G *Protheroe 86, Protheroe & Staney 93, Aharonian et al. 94*

inhomogeneous B: flux dilution according to fraction of Universe where $B_{IGM} > 3x10^{-11}G$

 $E_{\gamma}^{2} \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}E_{\gamma}} \approx f_{1\mathrm{d}}(\langle B_{\theta}) \gamma_{e} \frac{L_{\mathrm{cr}}}{8\pi d^{2}} \left(\frac{E_{\gamma}}{E_{\gamma,\mathrm{max}}}\right)^{1/2}$

K.K., Allard & Lemoine 2010

Gamma-ray propagation in the intergalactic medium

Learning from gamma rays: UHECR pair echoes/haloes disentangling gamma-rays from leptons and cosmic rays

spectra observation with CTA: disantangle UHECR cascade/leptonic but not UHECR synchrotron/leptonic

Synchrotron haloes around sources with strongly magnetized environ. for cosmic-ray scenarios

Pair echoes: time variabilities

2. Tools for multi-messenger astrophysics

Very quick panorama of simulation tools

Some public propagation and interaction codes

Cosmic-ray interstellar & intergalactic propagation tools

 GALPROP

 DRAGON

 PICARD

PICARD

CRPropa SimProp

at UHE: numerical integration of the equation of motion of single particles CRPropa: unify HE+UHE

•••

...

Interaction codes/tables	Interact	ion code	es/tabl	es
--------------------------	----------	----------	---------	----

SOPHIA $p\gamma$ TALYS $N\gamma$ EPOS/SIBYLLhad

pγ Nγ hadronic

Challenges

- treatment of different scales (including microscopic & MHD processes)
- time-dependencies
- self-consistency (radiation production & impact)

Gamma-ray cascades

CRPropa ELMAG

•••

...

Radiation from accelerated leptons & hadrons

AM3, ATHEvA, B13, LeHaParis...

3. Can we really do multi-messenger astrophysics?

GW-neutrino sources

Multi-messengers?

cosmic rays + others —> temporal coincidence impossible (deflections) but studies of diffuse fluxes

Multi-messengers?

Possible gravitational wave sources

e.g., Kimura et al. 2017, 2018 Biehl et al. 2018 Decoene, Guépin, Fang, KK, Metzger, 2020 Ahlers & Halser 2020

Fang & Metzger 2018

Neutron star mergers Magnetars (AXP/SGR) Murase & Bartos 2019 Guépin & KK 2017

AGN/Blazars flares, time-variabilities

Long Gamma Ray Bursts

Young pulsars

KK & Silk 2016 De Wasseige et al. 2019 Shi & Yuan 2020

BH-BH and BH-NS mergers

Tidal disruption events

Superluminous Supernovae

Black hole mergers as sources of UHECRs

KK & Silk 2016

- accretion to source BZ long enough,
- disk to anchor fields and do αω-dynamo to generate strong magnetic field

 $E_{\rm UHECR} \gtrsim 3.2 \times 10^{53} \, {\rm erg} \, \left(\frac{\rho_0}{1 \, {\rm Gpc}^{-3} \, {\rm yr}^{-1}} \right)^{-1}$

spin

learnt from GW150914

comfortable energetics:

- E_{GW} = 3.0+0.5 M_{sun} c² ~ **5.4** × **10**⁵⁴ erg per source
- ▶ population rate $\rho_{BH} \sim 2 400 \text{ Gpc}^{-3} \text{ yr}^{-1}$
- efficiency < 3% required in UHECRs per event per unit of GW energy release

heavy composition possible: iron-enriched residual debris around merging BHs

Iuminosity extracted via Blandford-Znajek mechanism

$$L_{\rm BZ} = \frac{(GM)^3 B^2}{c^5 R} \sim 3.2 \times 10^{46} \,{\rm erg \, s^{-1}} \, M_{160}^3 B_{11}^2 \frac{R_{\rm S}}{R}$$

 $R_{\rm S} = 2GM/c^2 \sim 3.0 \times 10^7 M_{100} \,{\rm cm}$

 \triangleright magnetic field strength via $\alpha\omega$ -dynamo

 $B \sim 10^{12} \,\mathrm{G} \,(P/300 \,\mathrm{ms})^{-1}$

Iuminosity has to last for 7 hours to 2 months to reach E_{UHECR}

BZ timescale (as long as BH accretes after merger - sourced by debris)

$$t_{\rm BZ} = Mc^2/L_{\rm BZ} \sim \tilde{2} \hat{2} M_{100} B_{11}^{-2} (R_{\rm S}/R)^2 \dot{\rm yr}_{\rm All}$$

High-energy neutrinos from binary neutron-star mergers

BNS: coincident detection with gravitational waves

47

POEMMA

GRAND

 10^{8}

10¹⁰

Population constraints from GW+neutrino non-detection

Upper limits on rate density of GW+neutrino sources

Population constraints from GW+neutrino non-detection

No significant neutrino coincidence is seen by either search during the first two observing runs of the LIGO-Virgo detectors. Upper limits on the time-integrated neutrino emission within the 1000 second window for each of the 11 GW events.

3. Can we really do multi-messenger astrophysics?

Focus on neutrinos from transients sources

Why focus on transient sources?

Meszaros et al. 2019

IceCube

Pierre Auger Observatory

The new high-energy transient zoo

Young pulsars

Long Gamma Ray Bursts

Black hole mergers

Tidal disruption events

AGN/Blazars flares, time-variabilities

Superluminous Supernovae

The new high-e

ACN/Blazare

Source	Rate density	EM Luminosity	Duration	Typical Counterpart
	$[{\rm Gpc}^{-3} {\rm yr}^{-1}]$	$[\mathrm{erg} \ \mathrm{s}^{-1}]$	[s]	
Blazar flare ^a	10 - 100	$10^{46} - 10^{48}$	$10^6 - 10^7$	broadband
Tidal disruption event	0.01 - 0.1	$10^{47} - 10^{48}$	$10^6 - 10^7$	jetted (X)
	100 - 1000	$10^{43.5} - 10^{44.5}$	$> 10^6 - 10^7$	tidal disruption event (optical,UV)
Long GRB	0.1 - 1	$10^{51} - 10^{52}$	10 - 100	prompt (X, gamma)
Short GRB	10 - 100	$10^{51} - 10^{52}$	0.1 - 1	prompt (X, gamma)
Low-luminosity GRB	100 - 1000	$10^{46} - 10^{47}$	1000 - 10000	prompt (X, gamma)
GRB afterglow		$< 10^{46} - 10^{51},$	> 1 - 10000	afterglow (broadband)
Supernova (II)	10^{5}	$10^{41} - 10^{42}$	$> 10^5$	supernova (optical)
Supernova (Ibc)	3×10^4	$10^{41} - 10^{42}$	$> 10^5$	supernova (optical)
Hypernova	3000	$10^{42} - 10^{43}$	$> 10^{6}$	supernova (optical)
NS merger	300 - 3000	$10^{41} - 10^{42}$	$> 10^5$	kilonova (optical/IR)
		10^{43}	$> 10^7 - 10^8$	radio flare (broadband)
BH merger	10 - 100	?	?	?
WD merger	$10^4 - 10^5$	$10^{41} - 10^{42}$	$> 10^5$	merger nova (optical)

short gamma-ray burst neutron star merger

^aBlazar flares such as the 2017 flare of TXS 0506+056 are assumed for the demonstration.

Abbreviations: BH, black hole; EM, electromagnetic; GRB, gamma-ray burst; NS, neutron star; WD, white dwarf.

Black hole mergers

Tidal disruption events

Superluminous Supernovae

A "Hillas diagram" for high-energy neutrino transients

Guépin & KK 2017

Inteolo butting: subto be probed transients

3. Can we really do multi-messenger astrophysics?

Opening the UHE neutrino window

Multi-messengers!

cosmic rays + others —> temporal coincidence impossible (deflections) but studies of diffuse fluxes

Current multi-messenger data: useful to understand UHECRs?

Cosmic backgrounds interactions on CMB, UV/opt/ IR photons

cosmogenic neutrino and gamma-ray production

 $E_{v} \sim 10\% E_{CR}$

Secondaries take up 5-10% of parent cosmic-ray energy

- radiative? baryonic?
- evolution, density?
- magnetic field: deflections?

YV

associated neutrino and gamma-ray production

 $E_v \sim 5\% E_{CR}$

 $E_{\nu} > 10^{16} \text{ eV}$

IceCube neutrinos do not directly probe UHECRs

Actually, none of the current multi-messenger data (except UHECR data) can directly probe UHECRs ... but they help :-)

UHE neutrinos: a challenging no-man's land

Alves Batista, de Almeida, Lago, KK, 2018 GRAND Science & Design, 2018 KK, Allard, Olinto 2010

UHE neutrino production for transients

many transient sources could make it Guépin & KK 2016

Can we hope to detect very high-energy neutrino sources?

Neutrinos don't have a horizon: won't we be polluted by background neutrinos?

Fang, KK, Miller, Murase, Oikonomou JCAP 2016

boxes for experiments assuming neutrino flux: 10⁻⁸ GeV cm⁻² s⁻¹

YES if ▶ good angular resolution (< fraction of degree) ▶ number of detected events > 100s

Towards UHE multi-messenger astronomy

What will we need?

✓ Excellent sensitivity

✓ Sub-degree angular resolution

 \checkmark Wide instantaneous field of view

adapted from Guépin, KK, Oikonomou, Nature Phys. Rev. subm.

Some references (a personal selection)

General perspectives and ideas

Alves Batista et al., Front. Astron. Space Sci. (2019) Halzen & Kheirandish, Front. Astron. Space Sci. (2019) Bartos & Murase, ARAA (2020) Guépin, KK, Oikonomou, Nature Phys. Rev. (subm.)

Specific calculations

Dermer & Menon, Princeton University Press (2009) KK, Allard, Olinto, JCAP (2010) Guépin & KK, Phys. Rev. D (2017)

absolutely NOT exhaustive!