

Physics of High-Energy Showers Lecture 1

Ralph Engel

Karlsruhe Institute of Technology (KIT)

(F. Schmidt & J. Knapp)

Proton 10 ¹⁴ eV 21311 m

Simulation of shower development (i)

Realistic simulation with CORSIKA

Proton shower of low energy (knee region)

Simulation of shower development (ii)

З

Simulation of air shower tracks (i)

hadrons muons electrs neutrs

Proton 10¹⁴ eV

16264 m

4

Particles of an iron shower

muons

electrs

© J.Oehlschlaeger, R.Engel, FZKarlsruhe

hadrons neutrs

Iron 10¹³ eV

24929 m

Particles of an proton shower

muons

electrs

© J.Oehlschlaeger, R.Engel, FZKarlsruhe

hadrons neutrs

Proton 10¹³ eV

21336 m

Particles of a gamma-ray shower

electrs

muons

© J.Oehlschlaeger, R.Engel, FZKarlsruhe

hadrons neutrs

Gamma 10¹³ eV

24713 m

Time structure of shower disk

J.Oehlschlaeger, R.Engel, FZKarlsruhe

Iron 10¹⁴ eV

43574

Time structure of shower disk

sensitive to early muons

Cross section, interaction rate, interaction length

Molecular atmosphere of Earth

(B. Keilhauer)

2. Electromagnetic Showers

Bethe-Heitler pair production (i)

$$\frac{\mathrm{d}\sigma_{\mathrm{pair}}}{\mathrm{d}u} = 4\alpha_{\mathrm{em}}r_e^2 Z(Z+1) \left\{ \left[u^2 + (1-u)^2 + \frac{2}{3}u(1-u) \right] \ln(183Z^{-1/3}) - \frac{1}{9}u(1-u) \right\}$$

$$\sigma_{\text{pair,tot}} = \int \frac{d\sigma_{\text{pair}}}{du} \, du = 4\alpha_{\text{em}} r_e^2 Z(Z+1) \left[\frac{7}{9} \ln(183Z^{-1/3}) - \frac{1}{54} \right]$$

$$u = E_e/E_{\gamma}$$

High-energy limit

14

Electron bremsstrahlung

QED

$$\frac{\mathrm{d}\sigma_{\mathrm{brem}}}{\mathrm{d}v} = 4\alpha_{\mathrm{em}}r_e^2 Z(Z+1)\frac{1}{v}\left\{\left[1+(1-v^2)-\frac{2}{3}(1-v)\right]\ln(183Z^{-1/3})+\frac{1}{9}(1-v)\right\}$$

$$\sigma_{\rm brem,tot} = \int \frac{d\sigma_{\rm brem}}{dv} \, dv \to \infty$$

Cross section divergent (infrared catastrophe)

15

Ionization energy loss of charged particles

Ionization energy loss: Bethe-Bloch formula

$$-\frac{dE}{dx} = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{\text{max}}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$$

Symbol	Definition	Units or Value
α	Fine structure constant	1/137.03599911(46)
	$(e^2/4\pi\epsilon_0\hbar c)$	
M	Incident particle mass	MeV/c^2
E	Incident part. energy γMc^2	MeV
T	Kinetic energy	${ m MeV}$
$m_e c^2$	Electron mass $\times c^2$	$0.510998918(44){ m MeV}$
r_e	Classical electron radius	2.817940325(28) fm
	$e^2/4\pi\epsilon_0 m_e c^2$	
N_A	Avogadro's number	$6.0221415(10) \times 10^{23} \text{ mol}^{-1}$
ze	Charge of incident particle	
Z	Atomic number of absorber	
A	Atomic mass of absorber	$g \text{ mol}^{-1}$
K/A	$4\pi N_A r_e^2 m_e c^2 / A$	$0.307075 \text{ MeV g}^{-1} \text{ cm}^2$
·		for $A = 1 \text{ g mol}^{-1}$
Ι	Mean excitation energy	eV (Nota bene!)
$\delta(eta\gamma)$	Density effect correction to i	onization energy loss

Total energy loss of charged particles

Bethe-Heitler pair production (ii)

QED

Qualitative approach: Heitler model

Shower maximum: $E = E_c$

 $N_{\rm max} = E_0/E_c$ $X_{\rm max} \sim \lambda_{\rm em} \ln(E_0/E_c)$

Cascade equations

Energy loss $\frac{\mathrm{d}E}{\mathrm{d}X} = -\alpha - \frac{E}{X_0}$

Cascade equations

 $X_{\rm max} \approx X_0 \ln$

(Rossi & Greisen, Rev. Mod. Phys. 13 (1940) 240)

Critical energy: $E_c = \alpha X_0 \sim 85 \,\mathrm{MeV}$ Radiation length: $X_0 \sim 36 \,\mathrm{g/cm^2}$

$$(+\int_{E}^{\infty} \frac{\sigma_{e}}{\langle m_{\mathrm{air}} \rangle} \Phi_{e}(\tilde{E}) P_{e \to e}(\tilde{E}, E) \mathrm{d}\tilde{E}$$

$$P_{\gamma}(\tilde{E})P_{\gamma \to e}(\tilde{E},E)\mathrm{d}\tilde{E} + \alpha \frac{\partial \Phi_e(E)}{\partial E}$$

$$n\left(\frac{E_0}{E_c}\right) \qquad \qquad N_{\max} \approx \frac{0.31}{\sqrt{\ln(E_0/E_c) - 0.33}} \frac{E_0}{E_c}$$

Shower age and Greisen formula

Longitudinal profile

$$N_e(X) \approx \frac{0.31}{\left[\ln E_0/E_c\right]^{1/2}} \exp\left\{\frac{X}{X_0} \left(1 - \frac{3}{2}\ln s\right)\right\}$$

Shower age

$$s = \frac{3X}{X + 2X_{\max}}$$

Energy spectrum particles

$$\frac{\mathrm{d}N_e}{\mathrm{d}E} \sim \frac{1}{E^{1+s}}$$

(Greisen 1956, see also Lipari PRD 2009)

Electrons in photon-initiated shower

Mean longitudinal shower profile

Calculation with cascade Eqs.

Photons

- Pair production
- Compton scattering

Electrons

- Bremsstrahlung
- Moller scattering

Positrons

- Bremsstrahlung
- Bhabha scattering

(Bergmann et al., Astropart.Phys. 26 (2007) 420)

Energy spectra of secondary particles

Number of photons divergent, energy threshold applied in calculation

- Typical energy of electrons and positrons E_c ~ 80 MeV
- Electron excess of 20 30%
- Pair production symmetric
- Excess of electrons in target

(Bergmann et al., Astropart.Phys. 26 (2007) 420)

Lateral distribution of shower particles

$$\frac{\mathrm{d}N_e}{\mathrm{d}E} \sim \frac{E_c}{E^{1+s}}$$

 $\frac{\mathrm{d}N_e}{r\,\mathrm{d}r} \sim \left(\frac{r}{r_1}\right)^{s-2} \left(1+\frac{r}{r_1}\right)^{s-4.5}$

$$\left(\frac{E_s}{E}\right)^2 \frac{1}{\sin^4 \theta/2}$$

$$E_s \approx 21 \,\mathrm{MeV}$$

$$\langle \theta^2 \rangle \sim \left(\frac{E_s}{E} \right)^2$$

$$r_1 = r_M = \left(\frac{E_s}{E_c}\right) \frac{X_0}{\rho_{\rm air}}$$

Moliere unit (78 m at sea level)

Nishimura-Kamata-Greisen (NKG) **lateral distribution function**

Hadronic showers

Expectation from simulations

(bulk of particles measured)

See talk by Piera Ghia

Cosmic ray flux and interaction energies

Interaction cross sections: mesons and nuclei

Expectations from uncertainty relation

Assumptions:

- hadrons built up of partons
- partons deflected/liberated in collision process, small momentum
- partons fragment into hadrons (pions, kaons,...) after interaction
- interaction viewed in c.m. system (other systems equally possible)

Longitudinal momenta of secondaries

$$\langle p_{\parallel} \rangle \sim \Delta p_{\parallel} \approx \frac{1}{R'} \approx \frac{1}{5} E_p$$

Heisenberg uncertainty relation

 $R \approx 1 \mathrm{fm} \approx 5 \mathrm{GeV}^{-1}$

$$\Delta x \, \Delta p_x \simeq 1$$

$$r = R \; \frac{m_p}{E_p}$$

 $\Gamma = E_n / m_n$ P'

Transverse momenta of secondaries

$$\langle p_{\perp} \rangle \sim \Delta p_{\perp} \sim \frac{1}{R} \approx 200 \,\mathrm{MeV}$$

Typical hadronic final states

(Riehn et al. ICRC 2017)

Transverse momentum

Secondary particle multiplicities

Power-law increase of number of secondary particles

$$n_{\rm ch} \sim s^{0.1}$$

proton - proton, $E_{lab} = 200 \text{GeV}$

		Exp.	DPMJET-II
· · · · · · · · · · · · · · · · · · ·			
	charged	7.69 ± 0.06	7.64
	neg.	2.85 ± 0.03	2.82
	p	1.34 ± 0.15	1.26
	n	0.61 ± 0.30	0.66
-	π +	3.22 ± 0.12	3.20
	π -	2.62 <u>+</u> 0.06	2.55
π^+ \vdash \cdot $ \bullet$ \cdot	K+	0.28 <u>+</u> 0.06	0.30
K ⁺ +•	K-	0.18 <u>+</u> 0.05	0.20
pbar	Λ	0.096 <u>+</u> 0.01	0.10
· · · · · · · · · · · · · · · · · · ·	$\overline{\Lambda}$	0.0136 ± 0.004	0.0105
1000			

Leading particles (multiplicity const.)

Higgs - The Experimental Challenged decay

Hadron-induced showers

Charged pions interact E > 30 GeV

Neutral pions always decay

Qualitative approach: Heitler-Matthews model

Assumptions:

- cascade stops at $E_{\text{part}} = E_{\text{dec}}$
- each hadron produces one muon

(Matthews, Astropart. Phys. 22, 2005)

Primary particle proton

 π^0 decay immediately

 Π^{\pm} initiate new cascades

$$N_{\mu} = \left(\frac{E_0}{E_{\text{dec}}}\right)^{\alpha}$$
$$\alpha = \frac{\ln n_{\text{ch}}}{\ln n_{\text{tot}}} \approx 0.82\dots0.95$$

Superposition model

Proton-induced shower

Nucleus

$$N_{\rm max} \sim E_0/E_c$$

$$X_{\text{max}} \sim \lambda_{\text{eff}} \ln(E_0)$$
$$\alpha \approx 0.9$$
$$N_{\mu} = \left(\frac{E_0}{E_{\text{dec}}}\right)^{\alpha}$$

Assumption: nucleus of mass A and energy E₀ corresponds to A nucleons (protons) of energy $E_n = E_0/A$

$$X_{\text{max}}^{A} \sim \lambda_{\text{eff}} \ln(E_0/A)$$
$$N_{\mu}^{A} = A \left(\frac{E_0}{AE_{\text{dec}}}\right)^{\alpha} = A^{1-\alpha} N_{\mu}$$

Superposition model: correct prediction of mean Xmax

iron nucleus

Glauber approximation (unitarity)

$$n_{\text{part}} = rac{\sigma_{\text{Fe}-\text{air}}}{\sigma_{\text{p}-\text{air}}}$$

Superposition and semi-superposition models applicable to inclusive (averaged) observables

Electromagnetic energy and energy transfer

 E_0

Hadronic energy

After n generations ...

 $n = 5, E_{had} \sim 12\%$ $n = 6, E_{had} \sim 8\%$ Electromagnetic energy

 $\frac{1}{3}E_0 + \frac{1}{3}\left(\frac{2}{3}E_0\right)$

- 0
- 0 0
- 0

$$E_{\rm em} = \left[1 - \left(\frac{2}{3}\right)^n\right] E_0$$

Energy transferred to electromagnetic component

 $E_{\rm inv} = E_{\rm tot} - E_{\rm em}$

At high energy: model dependence of correction to obtain total energy small

(RE, Pierog, Heck, ARNPS 2011)

Ratio of em. to total shower energy

Detailed Monte Carlo simulation with CONEX

Muons as tracers of the hadronic core

Effect of air density (number of generations)

Pion decay energy depends on air density, low density corresponds to large E_{dec}

Electromagnetic showers are independent of air density, hadronic showers not

Longitudinal shower profiles: simulations and data

$$N_{\rm max} = E_0/E_c$$
$$X_{\rm max} \sim D_{\rm e} \ln(E_0/E_c)$$

Superposition model:

$$X_{\max}^A \sim D_e \ln(E_0/AE_c)$$

41

Mean depth of shower maximum

Note: old data and model predictions (just for clarity)

(RE, Pierog, Heck, ARNPS 2011)

Different slopes for em. and hadronic showers

$$D_{10} = \frac{\Delta \langle X_{\text{max}} \rangle}{\Delta \log_{10} E}$$

$$D_e = \frac{\Delta \langle X_{\text{max}} \rangle}{\Delta \ln E}$$

$$D_{10} = \log(10) D_e$$

(RE, Pierog, Heck, ARNPS 2011)

Derivation of elongation rate theorem

$$\langle X_{\max}(E) \rangle = \langle X_{\max}^{em}(E/n_{tot}) \rangle + \lambda_{int}$$

 $\langle X_{\rm max}^{\rm em} \rangle \sim X_0 \ln(E/n_{\rm tot})$

em. cascade theory

$$\langle X_{\max}(E) \rangle = X_0 \ln(E/n_{tot}) + c + \lambda_{in}$$

taking derivative $\log E$

$$D_e = \frac{d\langle X_{\max}(E)\rangle}{d\ln E} \le X_0 - X_0 \frac{d\ln n_{\text{tot}}}{d\ln E} + \frac{d\lambda_{\text{int}}}{d\ln E}$$

Elongation rate theorem

X₀ = 36 g/cm²

$$D_e^{\text{had}} = X_0(1 - B_n - B_\lambda)$$

$$B_n = \frac{d\ln n_{\rm tot}}{d\ln E}$$
 La ris

$$B_{\lambda} = -rac{1}{X_0} rac{d\lambda_{
m int}}{d\ln E}$$
 La

Note:

(Linsley, Watson PRL46, 1981)

arge if multiplicity of high energy particles ses very fast, **zero in case of scaling**

arge if cross section rises rapidly with energy

 $D_{10} = \log(10)D_e$

Mean depth of shower maximum

(RE, Pierog, Heck, ARNPS 2011)

QGSJET predicts very strong scaling violations

Elongation rates and model features

Elongation rate theorem

Universality features of high-energy shower profiles

Simulated shower profiles

Depth of first interaction X_1 and X_{max} strongly correlated, use X_{max} for analysis

Profiles shifted in depth

Applications: mass composition and cross section

Information provided by Xmax fluctuations

(Unger, Solvay 2018)

Mass composition results – Auger Observatory

Mass composition results – world data

Cross section measurement with air showers

(R. Ulrich et al. NJP 11, 2009)

Difficulties

- mass composition (protons?)
- X₁ cannot be measured directly

Example of distribution of X_{max} for mixed composition

Only deep showers are used in analysis to enhance proton fraction in data sample

Cross section measurement: self-consistency

measured slope of X_{max} distribution

 $\sigma_{p-\text{air}} = (505 \pm 22_{\text{stat}} \ (^{+26}_{-34})_{\text{sys}}) \text{ mb}$

Simulation of data sample with different cross sections, interpolation to measured low-energy values

High-energy frontier: proton-air cross section

(Pierre Auger Collab. 1107.4804, Phys. Rev. Lett. 2012)

Measurement of composition and cross section?

*blue dashed line shows the simulated He fraction and scaling factor, and colorbar shows the χ^2 deviation in units of sigma.

Olena Tkachenko (ICRC 2021)

(Lipari, PRD 2021)

Consistent analysis, results stable only for large proton fraction

5.04.54.0 3.5 0 3.0 4 number 2.52.01.51.0 0.50.0

Alternative way of writing GH parametrization

S. Andringa et al, Astropart.Phys. 34 (2011) 360

R is sensitive to the injection of high energy π^0 in the start up of the shower.

Auger JCAP 1903 (2019) 03 018

End of Lecture 1

