The Cherenkov Telescope Array and its Science

Paris-Saclay ISAPP school April 1, 2022

Werner Hofmann MPI for Nuclear Physics Heidelberg

for the CTA Consortium

The Cherenkov Telescope Array and its Science

Paris-Saclay ISAPP school April 1, 2022

Werner Hofmann MPI for Nuclear Physics Heidelberg

for the CTA Consortium

- Gamma-ray astronomy
- Motivation for CTA
- CTA concept & array design

- CTA technology, status
- CTA performance
- CTA Key Science Projects

Interrupt any time with questions

Radio waves

Infrared Vis UV

X-Rays

Gamma Rays TeV (10^{12 ± 2} eV) domain

Gamma rays

- are produced by non-thermal mechanisms
- trace high-energy particles
- Iocate cosmic particle accelerators

Gamma ray image of supernova RX J1713.7-3946

Gamma ray image of supernova RX J1713.7-3946

 TeV particle acceleration everywhere in the cosmos

Over 200 detected sources

- 3 orders of magnitude in gamma-ray flux
- Sky maps with 5' resolution
- Energy spectra over 3 decades in energy
- Light curves on all scales from minutes to years

Credit: US Department of Energy/SPL

6

CHERENKOV

Multiple telescopes provide stereoscopic views of the cascade

Telescopes must point at the source need clear & dark nights (1000-1500 h/y)

CHERENKOV TELESCOPES

A bit like a meteor track, but very faint (few photons per m²) very short-lived (some 10⁻⁹ seconds)

300 m Ø "light pool", 10⁵ m²

 $4^{0}-5^{0}$

Key issue: Cosmic ray veto via image shape

Exposure time 1 ms

Key issue: Reduction of night sky background O(100 MHz)/pixel

Exposure time 1 µs

Key issue: Reduction of night sky background O(100 MHz)/pixel

Exposure time 10 ns

Key issue: Reduction of night sky background O(100 MHz)/pixel

A BIT OF HISTORY -HOW IT ALL STARTED

1989:

A BIT OF HISTORY: GROUND-BASED GAMMA RAY ASTRONOMY 1989

Trevor Weekes

Whipple Telescope 1968

A BIT OF HISTORY: GROUND-BASED GAMMA RAY ASTRONOMY 1989

Whipple Telescope 1968

T. Weekes et al., ApJ 342 (1989) 379

"Observation of TeV Gamma Rays from the Crab Nebula using the Atmospheric Cerenkov Imaging Technique"

A BIT OF HISTORY: GROUND-BASED GAMMA RAY ASTRONOMY 1989

Whipple Telescope 1968

T. Weekes et al., ApJ 342 (1989) 379

"Observation of TeV Gamma Rays from the Crab Nebula using the Atmospheric Cerenkov Imaging Technique"

GROUND-BASED GAMMA RAY ASTRONOMY TODAY

H.E.S.S. Coll., Nature Astronomy 4 (2000) 167

Gamma-ray size of Crab Nebula: 52"±3"±8"

83.800 83.700 83.500 83,400

Sweet energy range for Cherenkov telescopes:

TeV domain (~100 GeV to few TeV)

- Well-defined showers allowing efficient gamma-hadron separation
- Decent gamma-ray rates

What came together:

- Right dish size for decent photon statistics of images: 100+ m²
- Right pixel size to resolve shower features: ~0.2° or less
- Large field of view, to contain images and extended sources
- Multi-telescope stereoscopic imaging
- Advanced analysis algorithms
- Highly detailed simulations to tune algorithms

1989 VS TODAY

1989 VS TODAY

Whipple 1989 shower image

Modern camera

1989 VS TODAY

Whipple 1989 shower image

Modern array

(H.E.S.S.) in Namibia

4 x 108 m² (since 2003) 1 x 614 m² (since 2012)

combining telescopes of different size to increase the energy range

HESS Point Source

Gamma-ray luminosity 10³⁴ erg/s

HESS Point Source

Gamma-ray Iuminosity 10³⁴ erg/s

HESS Extended Source (0.4°)

HESS Point Source

HAWC

Gamma-ray Iuminosity 10³⁴ erg/s

HESS Extended Source (0.4°)

Design drivers

- Sensitivity (x10)
- Full-sky coverage
- Wide energy range –
 20 GeV to 300 TeV
- Larger field of view (x2)
- Few arc-min angular resolution
- Rapid slewing for transient follow-up

LHAASO

Sichuan, China 4410 m asl

LHAASO

HAWC

400

350

THE PeV (10¹⁵ eV) SKY

LHAASO Coll., Z. Cao et al., Nature, 17 May 2021

Theme 1: Cosmic Particle Acceleration

- How and where are particles accelerated?
- How do they propagate?
- What is their impact on the environment?

Theme 2: Probing Extreme Environments

- Processes close to neutron stars and black holes?
- Characteristics of relativistic jets, winds and explosions?
- Cosmic voids: their radiation fields and magnetic fields

Theme 3: Physics Frontiers

- What is the nature of Dark Matter?
- Is the speed of light a constant?
- Do axion-like particles exist?

COSMIC RAYS & GALAXY FORMATION

vvaves

T. Buck, C. Pfrommer, R. Pakmor, R.J. J. Grand, V. Springel, arXiv:1911.00019

Theme 1: Cosmic Particle Acceleration

- How and where are particles accelerated?
- How do they propagate?
- What is their impact on the environment?

Theme 2: Probing Extreme Environments

- Processes close to neutron stars and black holes?
- Characteristics of relativistic jets, winds and explosions?
- Cosmic voids: their radiation fields and magnetic fields

Theme 3: Physics Frontiers

- What is the nature of Dark Matter?
- Is the speed of light a constant?
- Do axion-like particles exist?

CHALLENGE: COMPACT OBJECTS AS ACCELERATORS

AGN: What is the jet made of? How is it launched? How are particles accelerated? What causes the variability?

Illustration: Scientific American

TEV DETECTION OF GAMMA RAY BURSTS

GRB 190114C MAGIC Coll. + Nature 575 (2019) 455 Nature 575 (2019) 459 GRB 180720B H.E.S.S. Coll., Nature 575 (2019) 464 GRB 190829A H.E.S.S. Coll., Science 372 (2021) 1081

+ 2 more at ICRC 2021

NASA/Swift/Mary Pat Hrybyk-Keith, John Jones

S. Ascenzi et al. arXiv:2011.04001

m

Multi-Messenger Observations of a Binary Neutron Star Merger

LIGO, Virgo, Fermi GBM, INTEGRAL, ... ApJL 848 (2017) L12

H.E.S.S. Coll., Astrophys. J. Lett. 850 (2017) L22

Neutron star merger NSF/LIGO/Sonoma State University/A. Simonnet IceCube detection of a neutrino from the direction of AGN TXS0506+056, coincident with a gamma ray flare

MAGIC detection

22. Sept. 2017 Science 361 (2018) eaat1378

·

Neutrino IC170922A

A tidal disruption event coincident with a high-energy neutrino R. Stein et al., Nature Astronomy 5, 510–518 (2021)

Coincident with IceCube Neutrino IC191001A

Source: DESY, Science Communication Lab

Recurrent nova RS Ophiuchi as TeV source

Red giant star

White dwarf

HARDY

Recurrent nova RS Ophiuchi as TeV source

H.E.S.S. ATEL #14844, Aug. 10 H.E.S.S. Science Mar. 2022 MAGIC arXiv:2202.07681

ARDY

Theme 1: Cosmic Particle Acceleration

- How and where are particles accelerated?
- How do they propagate?
- What is their impact on the environment?

Theme 2: Probing Extreme Environments

- Processes close to neutron stars and black holes?
- Characteristics of relativistic jets, winds and explosions?
- Cosmic voids: their radiation fields and magnetic fields

Theme 3: Physics Frontiers

- What is the nature of Dark Matter?
- Is the speed of light a constant?
- Do axion-like particles exist?

CHALLENGE: DARK MATTER @ GC

A. Montanari et al, PoS (ICRC2021)511

A BIT MORE HISTORY

organized by Patrick Fleury and Guiseppe Vacanti

THE 1992 PALAISEAU WORKSHOP

organized by Patrick Fleury and Guiseppe Vacanti

Towards a Major Atmospheric Cerenkov Detector for Tev Astro/particle Physics

edited by

Patrick Fleury Giuseppe Vacanti Following the observation of TeV gamma ray emission from the Crab Nebula, it seems desirable that a major program be set forth by the international community to develop TeV γ-Astronomy.

1989 Discovery of Crab by Whipple 1992 Discovery of Mrk 421 by Whipple

EDITIONS FRONTIERES

LARGE ARRAYS OF TELESCOPES

Towards a Major Atmospheric Cerenkov Detector for Tev Astro/particle Physics

> EDITIONS FRONTIERES

edited by

Patrick Fleury Giuseppe Vacanti

AFTER PALAISEAU & FOLLOW-UP WORKSHOPS

... BUT WE FINALLY GOT IT RIGHT!

THE CHERENKOV TELESCOPE ARRAY/

THE CTA CONSORTIUM

25 Countries over 150 Institutes about 1500 Members

Effort started in 2006

MARCH 8, 2006, ESFRI BRUSSELS

10 GeV	100 GeV	1 TeV	10 TeV	100 TeV
1000 γ / h km²		10 γ / h km²	in a second	0.1 γ / h km²
				a standardard
		L	5	
and a start				- Wet - Start
			All and the second	14 A.
		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	and the second	
		·	of Che	Southern array
	and the second			about 3 km across
		a the state of the		

10 GeV	100 GeV	1 TeV	10 TeV	100 TeV					
Contraction of the second				. Sand States					
4 x 23 m Ø Large Size Telescopes (LST)									
		1. *							
	1 1								
	Halin Lan								
			5-1 ³⁴						
t	in the second second								

10 GeV		100 GeV	1 TeV	10 TeV	100 TeV
	25 x 12	m & Modium Sizo	Toloscopos (MST)	(North: 15)	
	23 × 12		Telescopes (MOT)		
					-
•		-			
					KIRI
			•		
			3. 3. M. E	and the	

Compared to current instruments up to 400 x increased survey speed

OPTIMIZING THE CTA ARRAYS

K. Bernlöhr et al., Astropart. Phys. 43 (2013) 171

T. Hassan et al., Astropart. Phys. 93 (2017) 76

A. Acharyya et al., arXiv 1904.01426 (2019)

Approach

Experience, analytical models & cost models

Square grids of telescopes

Plausible array layouts

Freeze telescope numbers and parameters

> Optimize and fine-tune layout (at % level)

OPTIMIZING THE CTA ARRAYS

K. Bernlöhr et al., Astropart. Phys. 43 (2013) 171

T. Hassan et al., Astropart. Phys. 93 (2017) 76

A. Acharyya et al., arXiv 1904.01426 (2019)

DESIGN DRIVER: FULL-SKY COVERAGE

CTA CANDIDATE SITES

(cta

5 southern sites, 4 northern sites Characterized: Observation time, sensitivity

+30

-30

PPUT = Spectral-averaged performance

orthern sites e, sensitivity

T. Hassan et al., Astroparticle Physics 93 (2017) 76-85

T. Hassan et al., Astroparticle Physics 93 (2017) 76-85

r T

CTA ARRAY SITES

CTA South ESO, Chile

N

CTA-South Site ESO Paranal

Vulcano Llullaillaco 6739 m, 190 km east

Cerro Armazones E-ELT

Cherenkov Telescope Array Site

4) alter and the second second

Cerro Paranal Very Large Telescope

CTA TELESCOPES & CTA CONSTRUCTION

North

	Large-Sized Telescope	Medium-Sized Telescop		pe (MST)	Small-Sized Telescope (SST)
	(LST)	FlashCam	NectarCam	SCT	
Energy range (in which subsystem provides full system sensitivity)	20 GeV – 150 GeV	150 GeV – 5 Te		ēV	5 TeV – 300 TeV
Number of telescopes (<u>alpha</u> configuration)	0 (South) 4 (North)	14 (South)	9 (North)		37 (South) 0 (North)
Optical design	Parabolic	Modified Da	avies-Cotton	Schwarzsch ild- Couder	Schwarzschild - Couder
Primary reflector diameter	23.0 m	11.5 m		9.7 m	4.3 m
Secondary reflector diameter				5.4 m	1.8 m
Effective mirror area (including shadowing)	370 m ²	88 m²		41 m²	>5 m²
Total weight	114 t	83	2 t	80 t	17.5 t
Field of view	4.3 deg	7.7 deg	7.9 deg	7.6 deg	8.8 deg
Number of pixels in Cherenkov camera	1855	1758	1855	11328	2048
Pixel size (imaging)	0.1 deg	0.18 deg	0.18 deg	0.067 deg	0.16 deg
Photodetector type	High-QE PMT	HIGH-QE PMT	High-QE PMT	SiPM	SiPM
Telescope readout event rate (before array trigger for MSTs and SSTs)	>7.0 kHz	>6 kHz	>7.0 kHz	>3.5 kHz	>0.6 kHz
Availability	>95%	>97%			>97%
Positioning time to any point in the sky (>30° elevation)	20 s	90 s		90 s	

LST1 COMMISSIONING

Data taken January 2020 – September 2021: >500h

LARGE-SIZED TELESCOPE

PoS(ICRC2021)806

LST 1 inauguration in Oct. 2018 Commissioning & science verification

Nov. 2019: Detection of Crab Nebula

AGN Detections: Mrk 501, Mrk 421, 1ES 1959+650, 1ES 0647+250 and PG 1553+113

June 2020: Detection of Crab Pulsar

Lots of ashes, fortunately no permanent damage

LST2-4 IN PRODUCTION

MEDIUM-SIZED TELESCOPE

Prototype operated in Berlin-Adlershof for several years

Two cameras: **NectarCAM** (North) and **FlashCam** (South) NectarCAM: NECTAr GHz analog memory ring sampler ASIC FlashCam: commercial 250 MHz Flash-ADCs; digital trigger

NectarCAM

All electronics in camera body Connection: power & ethernet

CHERENKOV CAMERA

High-QE PMTs 50 7 dynode PMTs 8 dynode PMTs 40 **CTA PMTs** Mean QE [%] 00 01 10 XP2020 0∟ 200 300 400 500 600 700 800 Wavelength [nm]

CHERENKOV CAMERA

CHERENKOV CAMERA

SMALL-SIZED TELESCOPE

Dual-mirror design with SiPMT camera

SCT TELESCOPE

V. Vassiliev et al. Astroparticle Physics 28 (2007) 10

Proposed for future expansion of CTA

SCT TELESCOPE

Cta pSCT pSCT Inauguration January 17, 2019 Whipple Observatory

... EARLY CHERENKOV DETECTORS

Galbraith and Jelley 1953

... Garbage cans and WWII search lights

Weekes and Rieke 1967, at the site of the present Whipple Observatory

the observatory or ground-based gamma-ray astronomy

CTA OBSERVATORY

cta

First meeting of the Board of Government Representatives

for founding the CTA Observatory ERIC

(May 2018)

TOWARDS THE CTA OBSERVATORY

Funding limitations require temporary specialization of sites ("Alpha Configuration"):

- North: Low energy / extragalactic science
 - all 4 LSTs but slightly reduced number of MSTs (15 \rightarrow 9)
- South: High energy / galactic science
 - initially no LSTs, reduced numbers of MSTs (25 \rightarrow 14), SSTs (70 \rightarrow 37)
 - highest priority for next step: adding LSTs

North:

- LST1 under commissioning
- Contracts for LST2-4 and 1st MST underway; for MST2-5 tender open South:
- Construction of access road started
- Release of funding for large-scale construction after CTA Observatory ERIC is established (2022)
- 5 year construction phase (but early operation during construction)

$CTA \ NORTH \ ARRAY \ \ {\rm only \ large \ and \ medium-sized \ telescopes}$

Fine-tuning of placement of alpha configuration telescopes ongoing

	Omega	\rightarrow	Alpha config.
LST	4	\rightarrow	4 foundations
MST	25	\rightarrow	14
SST	70	\rightarrow	37

CTA Performance

Array TAO Southern Array (5 h) CTAO Southern Array (30 m)

2 x Flux Sensitivity (erg cm² s'

°0

0.25

containment)

EIE (68% (

4

0.05

+ Telju

Angular Resolution (°)

Gamma-ray Energy E (TeV)

 10^{2}

SENSITIVITY OF THE CTA ARRAYS

Alpha Configuration, 50 h

SENSITIVITY: NORTHERN ARRAY

Alpha Configuration, 50 h

cta

SENSITIVITY (FLARING SOURCES)

On time scales < 1 h CTA is 10³ times (at 25 GeV) to 10⁶ times (at 250 GeV) more sensitive than Fermi

SENSITIVITY: SOUTHERN ARRAY

Alpha Configuration, 50 h

Science with the Cherenkov Telescope Array

www.worldscientific.com/ worldscibooks/10.1142/ 10986

Theme 1: Cosmic Particle Acceleration

- How and where are particles accelerated?
- How do they propagate?
- What is their impact on the environment?

Theme 2: Probing Extreme Environments

- Processes close to neutron stars and black holes?
- Characteristics of relativistic jets, winds and explosions?
- Cosmic voids: their radiation fields and magnetic fields

Theme 3: Physics Frontiers

- What is the nature of Dark Matter?
- Is the speed of light a constant?
- Do axion-like particles exist?

Addressing these questions requires large and coherent data sets, including

- Sky surveys for a census of cosmic accelerators
- Deep observations of key objects
- Long-term observations of variable sources
- Rapid follow-up of transient phenomena

→ Key Science Projects

KEY SCIENCE PROJECTS

- 1. Dark Matter Programme
- 2. Galactic Centre
- 3. Galactic Plane Survey
- 4. Large Magellanic Cloud Survey
- 5. Extragalactic Survey
- 6. Transients
- 7. Cosmic-ray PeVatrons
- 8. Star-forming Systems
- 9. Active Galactic Nuclei
- 10. Cluster of Galaxies
- 11. Beyond Gamma Rays

Surveys

Key object

cherenkov telescope array

Science with the Cherenkov Telescope Array

www.worldscientific.com/worldscibooks/10.1142/10986

GALACTIC CENTER & DARK MATTER KSPs

X-Ray:NASA/CXC/UMass/D. Wang et al.; Radio:NRF/SARAO/MeerKAT

GALACTIC CENTER & DARK MATTER KSPs

Weakly Interacting Dark Matter Particles

Annihilation cross section "known" from Dark Matter abundance

Characteristic spectral signature known from particle physics

GALACTIC CENTER & DARK MATTER KSPs

A. Montanari et al, PoS (ICRC2021)511

SURVEY KSPs

LARGE MAGELLANIC CLOUD

A CENSUS OF COSMIC PARTICLE ACCELERATORS

J.Fritz, W. Pietsch, R. Gendler

ACROSS ALL COSMIC SCALES

Hubble Heritage Team

R. Carroll, R. Gendler B. Franke

Univ. of Oklahoma & NASA

AGN KEY SCIENCE PROJECT

What is the jet made of? How is it launched? What causes the variability?

- Long-term monitoring of selected AGN over 10 years
- Follow-up of flaring AGN
- High-quality measurement of selected AGN spectra

Total observation time: about 3000 hours

AGN KEY SCIENCE PROJECT

What is the jet made of? How is it launched? What causes the variability?

from: Science with CTA www.worldscientific.com/worldscibooks/10.1142/10986

AGN KEY SCIENCE PROJECT

What is the jet made of? How is it launched? What causes the variability?

from: Science with CTA www.worldscientific.com/worldscibooks/10.1142/10986

PHOTON PROPAGATION: EXTRAGALACTIC BACKGROUND LIGHT

arXiv:2010.01349

PHOTON PROPAGATION: PHOTON-AXION OSCILLATIONS

arXiv:2010.01349

PHOTON PROPAGATION: VIOLATION OF LORENTZ INVARIANCE

(cta

Current instruments: H. Martinez-Huerta et al. arXiv:1901.03205

KSPs LIVE IN A MULTIWAVELENGTH & MULTIMESSENGER WORLD

KSPs LIVE IN A MULTIWAVELENGTH & MULTIMESSENGER WORLD

CTA: ENABLING A "PHASE TRANSITION" IN VERY HIGH ENERGY GAMMA RAY ASTRONOMY

In-depth understanding of known objects and their mechanisms

Expected discoveries of new object classes

The fun part: Things we haven't thought of

