Ground-Based Gamma Ray Detection

How we detect the highest energy gamma-rays and do science with them

Karl Kosack CEA Paris-Saclay Astrophysics Department

keV X-ray

≈1 *MeV*

photo-electric effect 400 cm² @ 5keV

Compton Effect 50 cm² @ 5 MeV

Chandra, XMM

grazing-incidence mirror

INTEGRAL

coded-mask

VVVVVVVVVWWWPhoton detection in context **100** GeV -

0.2 MeV -**10** MeV

10 MeV -**100** GeV

Comptel (no longer flying) **Pair Conversion** 1*m*² @ 1 GeV

Extensive Air Shower > 10⁵ - 10⁶ m² @ 1 TeV

100TeV

Whipple 10m

Karl Kosack - ISAPP 2022

OVERVIEW

VHE Gamma Rays

Gamma-ray Interactions in the Atmosphere

Imaging Atmospheric Cherenkov Telescopes

Water Cherenkov Telescopes

Science with VHE Gamma rays

Karl Kosack - ISAPP 2022

Gamma Rays: definitions

Gamma Rays: definitions

High Energy Astrophysics

Gamma rays allow us to:

- study the sources of acceleration of cosmic rays
- understand the physics of jets
- understand the physics of accretion
- provide direct view: cosmic rays bend in B-fields and do not trace back to their origin spatially or temporally)

Particle Physics Nuclear Physics

High-Energy Astrophysics

Astronomy

Gamma-rays come from **Non-Thermal Emission**

Particle Acceleration

Human-made Particle Accelerators

series of radiofrequency cavities

flux

dN

 $\frac{dE}{dE} \propto E$

diffusive shock acceleration

K. Kosack, ISAPP 2022 7

E

Gamma-rays show the sites of cosmic-ray acceleration

Non-Thermal Emission

What radiation do you get from a power-law of particles?

Spectral Energy Distribution for various processes:

Electron population

dN/dE Energy Flux ЩZ log

- **Hadron Population**

radio

- **Hadron Population**

Non-Thermal Emission

Non-Thermal Emission

Some real examples RX J1713.7-3946 (Supernova Remnant)

Crab Nebula (Pulsar Wind Nebula)

Mayer+ (http://dx.doi.org/10.1051/0004-6361/201014108) Tanaka+ (<u>http://dx.doi.org/10.1086/591020</u>)

Gamma-ray Instrument Sensitivities

• Effective collection area of Fermi-Lat is $\approx 1 \text{ m}^2$

 beyond a few hundred GeV: want at least 100,000x bigger than **Fermi-LAT!**

• Effective collection area of Fermi-Lat is $\approx 1 \text{ m}^2$

 beyond a few hundred GeV: want at least 100,000x bigger than **Fermi-LAT!**

K. Kosack, ISAPP 2022

• Effective collection area of Fermi-Lat is $\approx 1 \text{ m}^2$

 beyond a few hundred GeV: want at least 100,000x bigger than **Fermi-LAT!**

K. Kosack, ISAPP 2022

• Effective collection area of Fermi-Lat is $\approx 1 \text{ m}^2$

 beyond a few hundred GeV: want at least 100,000x bigger than **Fermi-LAT!**

K. Kosack, ISAPP 2022

OVERVIEW

VHE Gamma Rays

Gamma-ray Interactions in the Atmosphere

Imaging Atmospheric Cherenkov Telescopes

Water Cherenkov Telescopes

Science with VHE Gamma rays

Karl Kosack - ISAPP 2022

4

5

5

- With enough distance into a medium (1 interaction length), the secondaries will emit Bremsstrahlung radiation when they encounter a nucleus
- If high enough energy, the Bremsstrahlung photon can pairproduce
- and so on...

This becomes an electromagnetic shower

- number of particles doubles, energy divided by 2 at each step
- eventually shower stops when energy too low

n=...

Simplistic Model:

Heitler, W. (1936). The quantum theory of radiation, volume 5 of Inter- national Series of Monographs on Physics. Oxford University Press, Oxford

Assumptions:

- Atmosphere is purely exponential $\rho(h) = \rho_0 e^{-h/h_0}$
- Energy loss only via pair-production and bremsstrahlung
 - each interaction is a single splitting
 - Energy shared equally
- The radiation length and interaction length are equal: λ_r
- The critical energy E_{crit} equal for pair production and bremsstrahlung
- Below this energy, shower stops abruptly

Quantities you can estimate from this model

E₀ n=1 $-E_0/2$ D n=2 $E_0/4$ D n=3 $E_0/8$ e+ n=4 E₀/16

n=...

Quantities:

- Column density: $x(h) \equiv \int_{-\infty}^{\infty} \rho(x) dx$
- Splitting dep
- Total particles $N = 2^n$
- Particle energy $E = E_0/(2^n)$
- **Depth of shower** at step n: $x = nD = n\lambda\sqrt{2}$
- At **shower max**, $E_n = E_{crit}$, so $x_{max} = \lambda_r \ln(E_0/E_{crit})$

$$(h')dh' = \rho_0 h_0 e^{-h/h_0}$$

oth:
$$D = \lambda_r ln(2)$$

Quantities you can estimate from this model

E₀ n=1 $E_0/2$ e D n=2 $E_0/4$ D n=3 $-E_0/8$ e⁺ n=4 $E_0/16$

n=...

Quantities:

- Column density: $x(h) \equiv \int_{-\infty}^{n} \rho(h) dh$
- Splitting dep
- Total particles $N = 2^n$
- Particle energy $E = E_0/(2^n)$
- **Depth of shower** at step n: $x = nD = n\lambda\sqrt{2}$
- At shower m $x_{max} = \lambda_r \ln(x)$

$$(h')dh' = \rho_0 h_0 e^{-h/h_0}$$

oth:
$$D = \lambda_r ln(2)$$

ax,
$$E_n = E_{crit}$$
, so (E_0/E_{crit})

For Earth's Atmosphere:

$$\lambda_r = 40 \text{ g cm}^{-2}$$
$$E_{crit} = 85 \text{ MeV}$$
$$h_0 = 8 \text{ km}$$
$$x_{tot} = 1000 \text{ g cm}^{-2}$$

Can derive therefore

$$\rho_0 = 1.25 \times 10^{-3} \,\mathrm{g \, cm^3}$$
$$h_1 \simeq 29 \,\mathrm{km}$$
$$h_{max}(1 \,\mathrm{TeV}) \simeq 8 \,\mathrm{km}$$
$$N_{max}(1 \,\mathrm{TeV}) \simeq 1 \times 10^4$$

Shower Maximum Height (in g/cm2)

Shower Maximum Height (in km)

Extensive Air Showers in our Atmosphere

- Earth's atmosphere is ideal for making a "big" detector!
- Radiation and interaction length $\approx 37 \text{ g/cm}^2$
- showers form and complete before hitting ground

Extensive Air Showers in our Atmosphere

- Earth's atmosphere is ideal for making a "big" detector!
- Radiation and interaction length $\approx 37 \text{ g/cm}^2$
- showers form and complete before hitting ground

Not to scale

р

Cosmic Ray Background

The number of cosmic ray showers in a given region of the sky is typically orders of magnitude more than for gamma rays

Rejecting them is critical.

Osiris reactor, CEA Saclay

Cherenkov Light From a Shower

Cherenkov cone angle $\theta_c = \cos^{-1} \frac{1}{n\beta}$

"Footprint" On the ground from a single shower

1 TeV Gamma R: e⁺/e⁻ G: μ⁺/μ⁻ B: other 0.0 ns

[M. Nöthe]

10 TeV Iron R: e⁺/e⁻ G: μ⁺/μ⁻ B: p 1 TeV Proton R: e⁺/e⁻ G: µ⁺/µ⁻ B: other 0.1 ns

1<u>00</u>m

[M. Nöthe]

0.0 ns

1 TeV Gamma R: e⁺/e⁻ G: μ⁺/μ⁻ B: other 0.0 ns

[M. Nöthe]

10 TeV Iron R: e⁺/e⁻ G: μ⁺/μ⁻ B: p 1 TeV Proton R: e⁺/e⁻ G: µ⁺/µ⁻ B: other 0.1 ns

1<u>00</u>m

[M. Nöthe]

0.0 ns

OVERVIEW

VHE Gamma Rays

Gamma-ray Interactions in the Atmosphere

Imaging Atmospheric Cherenkov Telescopes

Water Cherenkov Telescopes

Science with VHE Gamma rays

How would one detect the Cherenkov light from extensive air shower?

Early Gamma Ray Telescopes: a look back

Galbraith & Jelley 1953

day, July 6, 2012

Line purpose of this of results of some preliminary experiments we have made using a photomultiplier, which revealed the

thank Mr. W. J. Whitehouse and Dr. E. Bretscher for their encouragement, and Dr. T. E. Cranshaw for the use of the extensive shower array.

Early Gamma Ray Telescopes: a look back

day, July 6, 2012

Eriday July 6 2012

results of some preliminary experiments we have made using a photomultiplier, which revealed the

thank Mr. W. J. Whitehouse and Dr. E. Bretscher for their encouragement, and Dr. T. E. Cranshaw for the use of the extensive shower array.

Early Gamma Ray Telescopes: a look back

day, July 6, 2012

Friday July 6 2012

results of some preliminary experiments we have made using a photomultiplier, which revealed the

thank Mr. W. J. Whitehouse and Dr. E. Bretscher for their encouragement, and Dr. T. E. Cranshaw for the use of the extensive shower array.

Some VHE Gamma-Ray History

Copyright Digital Image Smithsonian Institution, 1998

Whipple 10m teleescope

- **1968:** Built, Single-pixel camera
- **1972**: 3σ evidence for Crab detection in 150 hours (3+ years of data)
- Breakthrough! *Hillas et al 1985*
- **1989:** First detection of Crab Nebula (5 σ) Weeks *et al, 1989*

Many came in between:

- CAT (Pyrenees),
- Durham (Australia)
- HEGRA (Canaries)
- Grace (India)
- CANGAROO (Australia)

Some VHE Gamma-Ray History

Copyright Digital Image Smithsonian Institution, 1998

Whipple 10m teleescope

- **1968:** Built, Single-pixel camera
- **1972**: 3σ evidence for Crab detection in 150 hours (3+ years of data)
- Breakthrough! *Hillas et al 1985*
- **1989:** First detection of Crab Nebula (5 σ) Weeks *et al, 1989*

Many came in between:

- CAT (Pyrenees),
- Durham (Australia)
- HEGRA (Canaries)
- Grace (India)
- CANGAROO (Australia)

The problem

Background to shower detection: Night-Sky-Backgound (NSB) Light

• Time helps here, but is not fully efficient \rightarrow many NSB fluctuations still remain

Background to gamma-ray detection: Cosmic Ray showers

- ray-induced showers than gamma-ray showers!
- Need to discriminate!

• Even if you reject all NSB, you still have vastly more cosmic

Build cameras out of *multiple photomultiplier pixels***!**

Build cameras out of *multiple photomultiplier pixels***!**

Build cameras out of *multiple photomultiplier pixels***!**

NSB Light Rejection :

fluctuations from NSB

• Require multiple neighbor pixels to have a signal in them \rightarrow removes most

Build cameras out of *multiple photomultiplier pixels***!**

NSB Light Rejection :

fluctuations from NSB

Cosmic Ray Background Rejection:

- multiple sub-showers)

• Require multiple neighbor pixels to have a signal in them \rightarrow removes most

• Shape of shower, in particular its **width** tells you about the lateral shower size:

• wider = more likely a cosmic ray (transverse momentum from pion production +

Build cameras out of *multiple photomultiplier pixels***!**

NSB Light Rejection :

fluctuations from NSB

Cosmic Ray Background Rejection:

- multiple sub-showers)

Energy measurement:

• Require multiple neighbor pixels to have a signal in them \rightarrow removes most

• Shape of shower, in particular its **width** tells you about the lateral shower size:

• wider = more likely a cosmic ray (transverse momentum from pion production +

nanosecond samples

Sample 000 CT001 (LSTCam), event 007108

Single Telescope View time-integrated

CT001 (LSTCam), event 007108

nanosecond samples

Sample 000 CT001 (LSTCam), event 007108

Single Telescope View time-integrated

CT001 (LSTCam), event 007108

Determine shower energy and origin on sky

- Shower origin must be along the image axis.
- Related to ratio of width/length and energy/intensit

Breakthrough #2: Stereo Imaging

For a single telescope:

- Collection area \approx Light pool size (100m radius)
- Only rough direction reconstruction \rightarrow large PSF
- No easy reconstruction of impact distance from telescope
- Energy resolution poor

Adding multiple telescopes:

- Effective area increases by size of array
- More accurate direction reconstruction
- More accurate energy reconstruction
- Better Cosmic-Ray discrimination

HEGRA, La Palma, Canary Islands Pioneer of the Stereo technique

Friday, July 6, 2012

photon or e-

Stereo Imaging

Stereo Imaging

Stereo Reconstruction

1.0. Lot.

Telescopes "at infinity" distance between telescopes $\rightarrow 0$

Intersection = point-oforigin on sky

Telescopes "on ground"

Intersection = shower impact position on ground

NeX 3.3

Stereo Reconstruction

Telescopes "at infinity" distance between telescopes $\rightarrow 0$ Intersection = point-oforigin on sky **Telescopes** "on ground" Intersection = shower impact position on ground West Sta 1.0. Lot. NeX 3.3

Karl Kosack - ISAPP 2022

3

2

- 1

0

EM sub-showers

EM sub-showers

EM sub-showers

EM sub-showers

Stereo View Large-Telescope Subarray Medium Telescope Subarray

LSTCam

Stereo View Large-Telescope Subarray Medium Telescope Subarray

LSTCam

Currently Operating IACTs

VERITAS: Arizona, USA 4x 12m. (Northern Hemisphere)

MAGIC: Canary Islands 2x 17 m (Northern Hemisphere)

HESS: Namibia 4x 12m, 1x 28m (Southern Hemisphere)

sack, ISAPP 2022 47

Karl Kosack - ISAPP 2022

Cherenkov Telescope Mirrors

Karl Kosack - ISAPP 2022

cherenkov telescope array the observatory for ground-based gamma-ray astronomy

See talk by W. Hofmann last Friday

≈10 PB of gamma-ray data/year processed down to small, standard products

largest gamma ray telescope array ever

open observatory: you can be a PI!

Discrimination

Example: CTA-North Full array

Particle Discrimination: Machine Learning

- 1750

- 1500

1250

1000

0.5

1.0

Energy

Reconstruction

Particle

Classification

Optimization

& Discrimination

Science-Ready data Products further processed with Science Tools (GammaPy)

- 1750

- 1500

1250

1000

0.5

1.0

Energy

Reconstruction

Particle

Classification

Optimization

& Discrimination

Science-Ready data Products further processed with Science Tools (GammaPy)

Optimization

& Discrimination

- 1750

- 1500

1250

1000

0.5

1.0

Energy

Reconstruction

Particle

Classification

Science-Ready data Products further processed with Science Tools (GammaPy)

The Very-high-energy sky

in the plane, mostly extended sources (pulsar wind nebulae, supernova remnants)

HESS Galactic Plane Survey

Exposure (very non-uniform!)

sack, Cosmic Explosions 2019 56

Atmospheric Cherenkov Telescopes

Advantages:

- high angular (<0.1°) and energy (<15%) resolution
- very good sensitivity
 - many orders of magnitude better than Fermi-Lat in overlapping energy range!
 - great for short-term variability
- Cheap! (ground-based)
- Upgradable!
 - e.g. add more telescopes to get larger effective area

Disadvantages

- Small(ish) Field-Of-View (3°-10°)
 - non uniform exposure, must know where to look
- Small duty cycle
 - can't observe in day or with bright moon!
 - $> \approx 1000-1400$ hours/year
- No full-sky coverage for single instrument
 - Imitation of being on Earth
- Limited by atmosphere quality and ambient light conditions

OVERVIEW

VHE Gamma Rays

Gamma-ray Interactions in the Atmosphere

Imaging Atmospheric Cherenkov Telescopes

Water Cherenkov Telescopes

Science with VHE Gamma rays

Karl Kosack - ISAPP 2022

K. Kosack, ISAPP 2022 59

≈6 *km*

The HAWC Observatory (J. Goodman, Nov. 2016).

HAWC

WCT Reconstruction

- Time gradient and center of gravity used for direction
- Uniformity for gamma/hadron separation
- Energy \approx total signal (careful of partially contained showers however)

Large ground coverage critical!

r. r. osack, ISAPP 2022 63

Comparison With IACTs:

Advantages:

- High Duty Cycle : Operate during the day! Always looking! • Wide Field-of-View: XXX deg (but no control over pointing)
- Relatively Cheap! No moving parts.

Disadvantages:

- Poorer PSF and Energy Resolution
- High energy threshold (no overlap with e.g. Fermi-LAT)
- Lower short-term sensitivity (need long integration times)

WCTs + IACTS are Quite Complimentary!

Milagro

Let's first take a step back to the original...

Milagro

Let's first take a step back to the original...

6.4 years of data

LHASSO Large High Altitude Air Shower Observatory

- Combines a less-dense water tank

SWGO: The Future *Southern Wide-field Gamma-ray Observatory*

A. Albert et al, 2019, Science Case for a Wide Field-of-View Very-High-Energy Gamma-Ray Observatory in the Southern Hemisphere

Solves a big problem with WCTs:

- There are none in the Southern hemisphere!
- Most of the highest-energy sources are in the Galactic Plane!

 $A(100 \text{ GaV}) \text{ [m}^2 \text{ c-}1 \text{ TaV}^{-1}$

Science Cases: Observation Time

Transient and Periodic Sources

- Flares of Active Galactic Nuclei
- Black-Hole / Neutron-Star merger events (gravitational waves)
- Microquasars (Star Compact Object) binaries)
- Gamma Ray Bursts

Steady or Periodic Sources:

- Pulsar Wind Nebulae
- Supernova Remnants
- AGN Quiescent states, Radio Galaxies
- Gamma-ray Binary Systems
- Dark Matter
- Illuminated Molecular Clouds

• ...

IACTS with high short-term sensitivity and lower E threshold usually win

... if you know where to look! (need multiwavelength alerts!)

After a few years, WCTs become competitive

Advantage for IACTs is still angular and energy resolution in overlapping energy range

Comparison

	Fermi-LAT	IACTs (e.g. HESS)	WCTs (HAWC)
Energy Range	High-Energy Gamma	Very-High-Energy Gamma (30 GeV - >100 TeV)	Very-High-Energy Gamı (1 TeV - >100 TeV)
-100	Effectively All-Sky Small (2-8°)		Large (90°)
PSF (E-dependant)	good 0.1-1.0°	good 0.01-0.1°	fair 0.1-0.3°
Energy Resolution	good ≈10%	good ≈10%	poor 20%-60%
Duty Cycle	very good	poor	very good
Sky Coverage	full	half	half
Short-Term Sensitivity	good (GeV) poor (>100GeV)	good (>100GeV)	poor

HAWC Survey

OVERVIEW

VHE Gamma Rays

Gamma-ray Interactions in the Atmosphere

Imaging Atmospheric Cherenkov Telescopes

Water Cherenkov Telescopes

Science with VHE Gamma rays

Karl Kosack - ISAPP 2022

How to go from events to science?

What do we have?

 Gamma-like Events: points in space, time, and estimated energy that may be gamma rays or may be mis-reconstructed cosmic rays.

event id	time	ra	dec	E _{reco}
1	12	87.6	-23.7	5.6
2	150	87.2	-22.1	0.32
3	190	86.5	-23.4	0.45
4	2000	82.0	-23.2	0.57
5	7029	88.6	-24.1	2.4

What do we want? Fluxes!

Images: Flux of gamma rays as a function of spatial coordinates

Spectra: Flux of gamma rays from a region as a function of energy

- Light Curves: Flux of gamma rays from a region as a function of *time*
- Or combinations thereof (data cubes)

What we really want:

region of the sky and to test that hypothesis.

Physical Quantities

 $F(E_{\text{true}}, \overrightarrow{p}_{\text{true}}, t_{\text{true}})$ Flux

To make a hypothesis about the gamma-ray emission in a

Reconstructed Quantities

 $N_{\text{events}}(E_{\text{reco}}, \overrightarrow{p}_{\text{reco}}, t_{\text{reco}})$ **Counts**

We are missing one piece of information: how to go between true and measured (reconstructed) quantities?

Generated from detailed air-shower simulations where you know both true and reconstructed quantities!

Generated from detailed air-shower simulations where you know both true and reconstructed quantities!

Point-Spread Function (PSF)

- System Response to perfect point in **space** $P(\overrightarrow{p}_{\text{reco}} | \overrightarrow{p}_{\text{true}})$
- Usually assume no translation, only dispersion

Generated from detailed air-shower simulations where you know both true and reconstructed quantities!

Point-Spread Function (PSF)

- System Response to perfect point in **space** $P(\overrightarrow{p}_{\text{reco}} | \overrightarrow{p}_{\text{true}})$
- Usually assume no translation, only dispersion

Energy-Migration Matrix:

- System Response to a **mono-energetic** source $P(E_{reco} | E_{true})$
- Takes into account both energy resolution and energy **bias**

Generated from detailed air-shower simulations where you know both true and reconstructed quantities!

Point-Spread Function (PSF)

- System Response to perfect point in **space** $P(\overrightarrow{p}_{\text{reco}} | \overrightarrow{p}_{\text{true}})$
- Usually assume no translation, only dispersion

Energy-Migration Matrix:

- System Response to a **mono-energetic** source $P(E_{\text{reco}} | E_{\text{true}})$
- Takes into account both energy resolution and energy **bias**

Effective Collection Area (A_{eff}):

- How likely it is to detect a gamma ray shower with respect to the number of true showers times the true area simulated on the ground
- $P(N_{\text{reco}} | N_{\text{true}}) \cdot A_{\text{true}}$

Generated from detailed air-shower simulations where you know both true and reconstructed quantities!

Point-Spread Function (PSF)

- System Response to perfect point in **space** $P(\overrightarrow{p}_{\text{reco}} | \overrightarrow{p}_{\text{true}})$
- Usually assume no translation, only dispersion

Energy-Migration Matrix:

- System Response to a **mono-energetic** source $P(E_{\text{reco}} | E_{\text{true}})$
- Takes into account both energy resolution and energy **bias**

Effective Collection Area (A_{eff}):

- How likely it is to detect a gamma ray shower with respect to the number of true showers times the true area simulated on the ground
- $P(N_{\text{reco}} | N_{\text{true}}) \cdot A_{\text{true}}$

These vary with: time, direction on sky, direction relative to Earth (alt/az), energy, sky brightness, ... K. Kosack, ISAPP 2022 74

Generated from detailed air-shower simulations where you know both true and reconstructed quantities!

Point-Spread Function (PSF)

- System Response to perfect point in **space** $P(\overrightarrow{p}_{\text{reco}} | \overrightarrow{p}_{\text{true}})$
- Usually assume no translation, only dispersion

Energy-Migration Matrix:

- System Response to a **mono-energetic** source $P(E_{\text{reco}} | E_{\text{true}})$
- Takes into account both energy and energy **bias**

Fun Fact:

Effective Collection Area (A_{eff}):

 How likely it is to detect a gan with respect to the number of times the true area simulated

In CTA we currently generate Petabytes of simulations to determine these!

• $P(N_{\text{reco}} | N_{\text{true}}) \cdot A_{\text{true}}$

These vary with: time, direction on sky, direction relative to Earth (alt/az), energy, sky brightness, ... K. Kosack, ISAPP 2022 74

From True Flux to Predicted counts

Assume: IRFs are independent factors (no cross-terms)

•
$$N_{\text{predicted}}^{\text{signal}} = \mathbf{F}_{\text{true}} \circledast \left(A_{\text{eff}} \cdot \right)$$

But that's not all:

•
$$N_{\text{predicted}}^{observed} = N_{\text{predicted}}^{signal} + N_{\text{predicted}}^{b}$$

Given: flux model F that is a function of true energy, time, space:

$$PSF \cdot E_{mig}$$

background oredicted

From True Flux to Predicted counts

Assume: IRFs are independent factors (no cross-terms)

•
$$N_{\text{predicted}}^{\text{signal}} = \mathbf{F}_{\text{true}} \circledast \left(A_{\text{eff}} \right)$$

But that's not all:

Given: flux model F that is a function of true energy, time, space:

 $\cdot PSF \cdot E_{mig}$

In a residual-background-dominated instruments like IACTs and WCTs, this term is very important!

Background Model

We are still missing something! How to account for the residual background?

• Measure N_{events} = N_{signal} + N_{background}

Background Estimation:

- Simulate it?
- Measure it!
 - Most of the sky is free of gamma-rays.

> Assume emission-free zones, and measure background counts from them ► In the same field-of-view, or from ensemble of other observations

https://docs.gammapy.org/0.18.2/tutorials/analysis_3d.html

Not so easy, uncertainties in hadronic physics + huge computational burden!

Only works for 1 region in space: good for spectra and light-curves, but not images

Karl Kosack - ISAPP 2022

run020199-off.png

Only works for 1 region in space: good for spectra and light-curves, but not images

Integrating over a ring region has the effect of removing any systematic gradients

(normally instrumental, but not always)

OFF Region

Allows background to be measured (nearly) everywhere

ON Region

Exclusion region

observation position

In the old days:

- Take a 28 minute **ON-source** exposure
- take 2 minutes to Slew 30' minutes back in Right Ascension
- Take a 28 minute **OFF exposure** (which you assume has no source)
- Tracks the same column of air in the atmosphere (with 30' delay)

Now:

- Can use historic observations with few or no sources in the FOV to generate a background model, use **atmosphere calibration info**, plus a control-region in the FOV to match ON to OFF
- This is often used to build multi-dimensional binned background **models**: averaging many blank fields to provide enough statistics to make a background **cube** (space + energy).

On-Off observations \rightarrow **3D background models**

Counts and Background Models

Basic Aperture Photometry

۵ 🧳

۹ 🍙

۹ 🌘

$$N_{\rm excess} = N_{on} - \alpha N_{off}$$

 α corrects for ON/OFF exposure differences (depends on how you build background model)

Significance can be computed using the Li and Ma formula (likelihood derived from Poisson statistics)

$$\ln \lambda = -N_{\rm on} \ln \left[\left(\frac{1+\alpha}{\alpha} \right) \frac{N_{\rm on}}{N_{\rm on} + N_{\rm off}} \right] - N_{\rm off} \ln \left[(1+\alpha) \frac{N_{\rm off}}{N_{\rm off}} \right]$$

$$S = \sqrt{-2\ln\lambda}$$

Useful for testing "is there a source"

12

۵ ک

Forward Folding Likelihood Minimization

Data cube

Luca Giunti, thesis presentation 2021

5^h38^m 36^m 34^m 32^m Right Ascension

41
Forward Folding: Likelihood

Poisson likelihood: Depends on the method you are using

• Poisson data + modeled background:

$$\mathscr{L} = \mathcal{P}(N_{\rm ON} | \mu_{\rm sig} + \mu_{\rm bkg})$$
$$= \frac{(\mu_{\rm sig} + \mu_{\rm bkg})^{N_{\rm ON}}}{N_{\rm ON}!} e^{-(\mu_{\rm sig} + \mu_{\rm bkg})}$$

 Poisson data + Poisson background (from an OFF region)

$$\mathscr{L} = \mathcal{P}(N_{\rm ON}|\mu_{\rm sig} + \mu_{\rm bkg}) \times \mathcal{P}(N_{\rm OFF}|\mu_{\rm bkg}/\alpha)$$
$$= \frac{(\mu_{\rm sig} + \mu_{\rm bkg})^{N_{\rm ON}}}{N_{\rm ON}!} e^{-(\mu_{\rm sig} + \mu_{\rm bkg})} \times \frac{(\mu_{\rm bkg}/\alpha)^{N_{\rm OFF}}}{N_{\rm OFF}!} e^{-\mu_{\rm bkg}/\alpha}$$

Advantage: can do any sort of modeling in the same way, just divide into bins:

- 1D (energy ≈spectrum), (time≈light-curve)
- 2D (space ≈*image*) or (energy+time)
- 3D (energy+space) or (space+time),
- 4D (energy+space+time)

Likelihoods can be summed over all bins (log likelihoods can be multiplied)

Dimensionality Limited by statistics and your physics model

The output is a source model in physical units!

Iterative Modeling

N component model

Perform forwardfolding likelihood maximization

Compute Change in **Test Statistic**

K. Kosack, ISAPP 2022 84

L. Giunti, Thesis 2021

A&A 612, A1 (2018)

In the next session: you try!

Enc

Backup Material

Ground-based Telescopes: Visibility

Visible from Southern Hemisphere

