HF2022: Heavy Flavours from small to large systems 3-21 October 2022 Institut Pascal, Université Paris-Saclay

Open heavy flavour and quarkonia from small to large systems: a multiplicity point of view

Elena G. Ferreiro IGFAE, Universidade de Santiago de Compostela, Spain

E. G. Ferreiro USC

Open heavy flavour & quarkonia from small to large systems: multiplicity point of view

Old paradigm: the three systems (understanding before 2012)

Pb-Pb

p-Pb

Hot QCD matter:

This is where we expect the QGP to be created in central collisions

QCD baseline: This is the baseline for "standard" QCD phenomena

Cold QCD matter:

This is to isolate nuclear effects in absence of QGP, e.g. nuclear pdfs

New paradigm: small systems

Totally unexpected:

the discovery of correlations –ridge, flow- in small systems pA & pp at high multiplicity

- Smooth continuation of heavy ion phenomena to small systems
- Small systems as pA and pp show QGP-like features
- Two different explanations remain today:
 - initial state: quantum correlations as calculated by CGC
 - final state: with (hydrodynamics) or without (multiparticle interactions) equilibration
- The old paradigm that
 - we study hot & dense matter properties in heavy ion AA collisions
 - cold nuclear matter modifications in pA
 - and we use **pp** primarily as comparison data **appears no longer sensible**

We should examine a new paradigm, where the physics underlying collective signals can be the same in all high energy reactions, from pp to central AA, depending on energy density/mult

Measuring nuclear effects: the nuclear modification factor

Nuclear modification factor $R_{\mbox{\tiny AA}}$

$$R_{AA} = \frac{d^2 N^{AA} / dp_T d\eta}{N_{coll} d^2 N^{pp} / dp_T d\eta}$$

- R_{AA}<1: suppression
- R_{AA}=1: no nuclear effects
- R_{AA}>1: enhancement

Original motivation to measure quarkonium in nuclear collisions (AA): Signal of QGP Observable: R_{AA} vs energy density

• The 3 upsilon states are suppressed with increasing centrality/energy density

 $\mathsf{R}_{\mathsf{A}\mathsf{A}}[\mathsf{Y}(\mathsf{1}\mathsf{S})] > \mathsf{R}_{\mathsf{A}\mathsf{A}}[\mathsf{Y}(\mathsf{2}\mathsf{S})] > \mathsf{R}\mathsf{A}\mathsf{A}[\mathsf{Y}(\mathsf{3}\mathsf{S})]$

=> Sequential melting

AA

...but the situation is by far much more complex

Nuclear modification factor R_{AA}

$$R_{AA} = \frac{d^2 N^{AA} / dp_T d\eta}{N_{coll} d^2 N^{pp} / dp_T d\eta}$$

- R_{AA}<1: suppression
- R_{AA}=1: no nuclear effects
- R_{AA}>1: enhancement

Open heavy flavour & quarkonia from small to large systems: multiplicity point of view 4

pp & pA

...but the situation is by far much more complex

pp & pA

$R_{AA} = -$	$d^2 N^{\scriptscriptstyle AA}/dp_{\scriptscriptstyle T} d\eta$
	$N_{coll}d^2N^{ hop}/dp_T^{}d\eta$

- R_{AA}<1: suppression
- R_{AA}=1: no nuclear effects
- R_{AA}>1: enhancement

E. G. Ferreiro USC

Open heavy flavour & quarkonia from small to large systems: multiplicity point of view

Δ

...but the situation is by far much more complex

- Modification of the gluon flux
- initial-state effect
- Parton propagation in medium initial/final effect
- Quarkonium-medium interaction final-state effect

 There are other effects, not related to colour screening, that induce suppression of quarkonium states

pА

- These effects are not all mutually exclusive
- They should be also taken into account in AA collisions

 $\frac{1}{5}$ the distinction of these effects is not straightforward, y_{cms} their factorization is not easily established

- Nuclear PDF in nuclei: nPDF shadowing
 - Gluon saturation at low x: CGC
 - Coherent energy loss
 - Comover interaction/transport models
 - Nuclear break-up

Other QGP-like effects?

E. G. Ferreiro USC

Open heavy flavour & quarkonia from small to large systems: multiplicity point of view 5 HF2022 4/10/2022

Modification of the gluon flux: nuclear modification of PDFs

Gluon shadowing/antishadowing: Parton distribution functions are modified by the nuclear environment $\Rightarrow J/\psi$ suppression or enhancement as a function of the parton momentum fraction x in the nucleon

E. G. Ferreiro USC

pА

Modification of the gluon flux: nuclear modification of PDFs

Modification of the gluon flux initial-state effect

Nuclear PDF in nuclei: nPDF shadowing

Gluon shadowing/antishadowing: Parton distribution functions are modified by the nuclear environment

- \Rightarrow J/ ψ suppression or enhancement as a function of the parton momentum fraction x in the nucleon
- It can explain the suppression at forward rapidity, the effect is around 1 at backward rapidity
- Roughly agrees with quarkonium ground-state data
- Issue: results very much widespread, applicability of reweithing? Extra effect in the backward region?

E. G. Ferreiro USC

Open heavy flavour & quarkonia from small to large systems: multiplicity point of view

HF2022 4/10/2022

pA

Modification of the gluon flux: nuclear modification of PDFs

Modification of the gluon flux *initial-state effect*

Nuclear PDF in nuclei: nPDF shadowing

8

Gluon shadowing/antishadowing: Parton distribution functions are modified by the nuclear environment

- \Rightarrow Y(1S) suppression or enhancement as a function of the parton momentum fraction x in the nucleon
- It can explain the suppression at forward rapidity, the effect is around 1 at backward rapidity
- Roughly agrees with quarkonium ground-state data
- Issue: results very much widespread, applicability of reweithing? Extra effect in the backward region?

E. G. Ferreiro USC

Open heavy flavour & quarkonia from small to large systems: multiplicity point of view

HF2022 4/10/2022

pА

These initial effects on open heavy mesons: nPDFs

Prompt D⁰ production at \sqrt{s}_{NN} =5.02 TeV LHC Prompt D⁰ production at $\sqrt{s_{NN}}$ =5.02 TeV LHC Inclusive B⁺ production at $\sqrt{s_{NN}}$ =8.16 TeV LHC 2.2 2 2.5<y^{D⁰}_{cms}<4.0 2.5<y_B^+<3.5 $P_T^{D^0} < 10 \text{ GeV}$ 2 nCTEQ15_{rwHF} nCTEQ15_{rwHF} nCTEQ15_{rwHF} C 1.8 1.8 1.8 1.6 1.6 LHCb data -----LHCb data H LHCb data H 1.6 1.4 1.4 1.4 1.2 RpPb RpPb 1.2 RpPb 1.2 0.8 0.8 0.6 0.8 0.6 0.4 0.4 0.6 0.2 0.2 0.4 2 2 -4.0<y^{D⁰}_{cms}<-2.5 0.2 -3.5<y^{B⁺}_{cms}<-2.5 1.8 1.8 0 1.6 -2 1.6 Inclusive B⁺ production at $\sqrt{s_{NN}}$ =8.16 TeV LHC 1.4 1.4 1.2 2.2 RpPb RpPb 1.2 2 2<P_T^B^+/GeV<20 nCTEQ15_{rwHF} 0.8 EPPS16_{rwHF} 0.8 1.8 0.6 LHCb data ++++ 0.6 1.6 0.4 0.4 1.4 0.2 0.2 n RpPb 1.215 20 5 10 0 P_T^{D⁰} [GeV] P^{B⁺} [GeV] 0.8 arXiv:2012.11462 0.6 Good agreement within the experimental 0.4 Applicability 0.8 0.2 and theoretical uncertainties of reweithing?^{0.6} EPPS1616 nCTEQ15 -3 -2 Open heavy flavour & quarkonia from small to large systems: multiplicity point of view HF2022 4/10/2022 E. G. Ferreiro USC 9

pА

Nuclear modification of PDFs: centrality dependence

- The centrality dependence of shadowing can be parameterized assuming that the inhomogeneous shadowing is proportional to the local density, $\rho_A(b,z)$, Woods-Saxon distribution for the nucleon density in the nucleus, related to the nuclear profile function $T_A(b)$ $R_i^A(b,x,Q^2) = 1 + [R_i^A(x,Q^2) - 1]N_\rho \frac{\int dz \rho_A(b,z)}{\int dz \rho_A(b,z)}$
- Obviously, this induces a depencence of the shadowing with the multiplicity

E. G. Ferreiro USC

Modification of the gluon flux: gluon saturation

Gluon saturation: Result of gluon recombination at small x at LHC $Q_{sA}^2 = A^{\frac{1}{3}} \times 0.2 \times \left(\frac{x_0}{x}\right)^{\lambda}$ $\lambda \sim 0.2 \div 0.3$ $x_0 = 0.01$

- \Rightarrow J/ ψ suppression at forward rapidity (this effect does not apply in the backward rapidity region)
- CEM with improved geometry Ducloue et al
- NRQCD: results depend on the CO channel mix, contribution of CS channel relatively small Venugopalan et al
- Issue: Results can vary depending of the production mechanism Shadowing & CGC are mutually exclusive

E. G. Ferreiro USC

Open heavy flavour & quarkonia from small to large systems: multiplicity point of view 11

Gluon saturation: centrality dependence

- The centrality dependence of the CGC can be parameterized through the saturation scale
- Q_s^2 rises as a function of centrality since the quantity of interest is the number of gluons per unit area in • the target nucleus as seen by a particular projectile $Q_s \equiv Q_s(x,b) = \left(\frac{x_0}{x}\right)^{\frac{\lambda}{2}} \left[\exp\left(-\frac{b^2}{2B_{CCC}}\right) \right]^{\frac{1}{2\gamma_s}}$
- The more the number of gluons, the higher the saturation scale ٠
- Obviously, this induces a dependence of the saturation with the multiplicity

E. G. Ferreiro USC

 $B_{\rm CGC} = 5.5 \ {\rm GeV^{-2}}$

12

pA & AA

Parton propagation in medium: coherent energy loss

These *initial* effects on open heavy mesons: coherente energy loss pА

- Are nPDFs the only nuclear effect at work or is part of the effect observed in data due to CEL?
- Not mutually exclusive

Challenges

from high-

events

Parton dynamics beyond collinear factorization?

Charm- and bottom-hadron R_{pA} can be reasonably well described by models with either nPDF modifications or coherent CNM energy loss, at least for **MB** events CMS pPb 8.16TeV

E. G. Ferreiro USC

Open heavy flavour & quarkonia from small to large systems: multiplicity point of view

Coherente energy loss: centrality dependence

pA & AA

- The average number of target nucleons participating in the rescattering of the fast color octet Q⁻Q pair depends on the centrality
- As expected the deviations of R_{pA} from unity are largest in the most central collisions, while in the most peripheral pPb collisions (centrality class 4), $R_{pA}(p_{\perp}) \simeq 1$ at all $p_{\perp} \& 2-3$ GeV
- Obviously, this induces a depencence of the energy loss with the multiplicity

Multiplicity dependence of the *initial*-state effects

- The amount of the considered initial effects is huge in AA collisions
- Example: putting together some ancient predictions...
- This compromises our interpretation of the *final*-state effects, either of partonic or hadronic origin, with or without equilibration

Final-state effects

- Quarkonium-medium interaction *final-state effect*
- Comover interaction & transport models

17

- J/ψ shows stronger suppression at forward rapidity while compatible with 1 at backward rapidity.
- The pattern is consistent with initial-state effect models

 ψ (2S) shows similar suppression in both intervals

- Cannot be described by only initial-state effects
- Inclusion of final-state effects give a good description for both states

Data from RHIC & LHC

- Relative $\psi(2S)/J/\psi$ suppression in dAu collisions @ 200 GeV (PHENIX)
- Relative $\psi(2S)/J/\psi$ suppression in pPb collisions @ 5 & 8 TeV (ALICE & LHCB)
- Relative $\psi(2S)/J/\psi$ suppression in pPb collisions @ 5 TeV (CMS & ATLAS)
- Relative Y(nS)/Y(1S) suppression in pPb collisions @ 5 TeV & 8TeV (CMS & ATLAS & LHCB)
- Initial-state effects modification of nPDFs / coherent E loss- identical for the family
- Any difference among the states should be due to final-state effect
- At low E: the relative suppression can be explained by nuclear absorption $\sigma_{\text{breakup}} \alpha r^2_{\text{meson}}$ At high E: too long formation times $t_f = \gamma \tau_f >> R =>$ the quantum state does not matter!

A natural explanation would be a final-state effect acting over sufficiently long time => interaction with a comoving medium through a transport equation

pА

Excited states: comover interaction

- In a comover model: suppression from scatterings of the nascent Q with comoving medium of partonic/hadronic origin Gavin, Vogt, Capella, Armesto, EGF, Tywoniuk...
- Rate equation governing the charmonium density:

Going to a microscopic level:

Excited states: comover interaction

Transport model with final interactions Du & Rapp (2015) "similar in spirit to comover suppression"

 \rightarrow New results on $\psi(2S)$ confirm stronger suppression w.r.t. to J/ψ in the Pb-going direction.

→ Final state effects are needed to reproduce the $\psi(2S)$ suppression.

> Stronger suppression in the nucleus-going direction (higher mult) => CI can improve agreement for the ground state in the backward region (initial nPDFs modification also included)

cc & comovers at later stage

Zhang, Watanabe (2018)

E. G. Ferreiro USC

Open heavy flavour & quarkonia from small to large systems: multiplicity point of view

Comover interaction: centrality dependence

pA & AA

- Comover density is proportional to the multiplicity
- For asymmetric pA collisions, the suppression is stronger in the backward región
- Supression increases with centrality

To get rid of initial-state effects: double ratio excited-over-ground state

Open heavy flavour & quarkonia from small to large systems: multiplicity point of view 21

Relative multiplicity:

Charged particle multiplicity, number of tracks, transverse energy, ...

- Numerator characterises each event.
- Denominator is averaged over the full datasample.

Relative yields:

i defines the multiplicity interval

- Numerator quantifies the number of quarkonia in bin *i*.
- Denominator gives the average number of quarkonia in the datasample.

Jana Crkovska's slide

E. G. Ferreiro USC

Open heavy flavour & quarkonia from small to large systems: multiplicity point of view 22

Measuring *nuclear-like* effects in pp: the observables

E. G. Ferreiro USC

Open heavy flavour & quarkonia from small to large systems: multiplicity point of view 23 HF202

Quarkonium & HF vs multiplicity

 J/ψ , D and Y(1S) at mid rapidity: stronger-than-linear increase

- Independent of hadronisation and energy? Same amount of effect at different collision energies
- Importance of rapidity? Effect absent in forward rapidity
- Does hardness of the probe play a role? The harder the probe, the stronger the difference

E. G. Ferreiro USC

Quarkonium & HF vs multiplicity: models

- **EPOS:** MPI via Pomeron exchange (initial) + hydrodynamic expansión (final) hydro on/off has small effect, hadronic cascade on/off has no effect
- **PYTHIA:** MPI, hard scatterings (initial) + color reconnection, string shoving (final)
- CGC: Gluon saturation (initial) => Impact on particle producción, reduction
- **Percolation:** String saturation (initial) => Reduction on the number of charged particle

Initial state effects play a fundamental role:

Quarkonium & HF vs multiplicity: MPI

EPOS: MPI via Pomeron exchange (initial) + hydrodynamic expansión (final) hydro on/off has small effect, hadronic cascade on/off has no effect

pp

PYTHIA: MPI, hard scatterings (initial) + color reconnection, string shoving (final)

Initial state effects play a fundamental role:

MPI can introduce collectivity => Increase of hardeness

Quarkonium & HF vs multiplicity: color reconnection

- **EPOS:** MPI via Pomeron exchange (initial) + hydrodynamic expansión (final) hydro on/off has small effect, hadronic cascade on/off has no effect
- **PYTHIA:** MPI, hard scatterings (initial) + color reconnection, string shoving (final)

E. G. Ferreiro USC

Open heavy flavour & quarkonia from small to large systems: multiplicity point of view 27 HF2022

HF2022 4/10/2022

pp

Quarkonium & HF vs multiplicity: color reconnection

In several approaches strings combine into colour ropes, leading to enhanced strangeness and baryon production from the higher string tension or considering the strings to form a coherent colour field

E. G. Ferreiro USC

Open heavy flavour & quarkonia from small to large systems: multiplicity point of view 28

HF2022 4/10/2022

pp

Quarkonium & HF vs multiplicity: saturation

ALI-PUB-483581

At mid rapidity: saturation effect on the x-axis

CGC: Gluon saturation (initial) => Impact on particle producción, reduction

Percolation: String saturation (initial) => Reduction on the number of charged particle

Initial state effects play a fundamental role:

Saturation => Decrease on total multiplicities => Indirect increase of the hard probe (less affected by saturation)

- Events at different energies with the same ρ_{strings} or Q_s are identical
- The harder the probe, the stronger the difference Multiplicity and probe measured in the same rapidity interval (both mid rapidities)

Open heavy flavour & quarkonia from small to large systems: multiplicity point of view 29

Quarkonium & HF vs multiplicity: saturation

pp

Open heavy flavour & quarkonia from small to large systems: multiplicity point of view **30**

Quarkonium & HF vs multiplicity: saturation

At mid rapidity: saturation effect on the x-axis At forward rapidity: saturation also on the y-axis

$$Q_{s{
m A}}^2=A^{1\over 3}\! imes\! 0.2\! imes\! \left({x_0\over x}
ight)^{\!\lambda}$$
 Q $_{\!s}$ increases with y

Saturation => Decrease on total multiplicities => Indirect increase of the hard probe (less affected by saturation)

- Events at different energies with the same $\rho_{strings}$ or Q_s are identical
- The harder the probe, the stronger the difference

HF2022 4/10/2022

45

рр

To get rid of initial-state effects: double ratio excited-over-ground state

 Initial-state effects cancel

 Final-state effects at play?

E. G. Ferreiro USC

Open heavy flavour & quarkonia from small to large systems: multiplicity point of view 32

Quarkonium & HF vs multiplicity: excited states

Studies of ground vs excited states can improve our understanding of the final-state effects ATLAS-CONF-2022-023

E. G. Ferreiro USC

Open heavy flavour & guarkonia from small to large systems: multiplicity point of view

HF2022 4/10/2022

pp

Final remarks

- Quarkonium ground states and open heavy mesons R_{pA} can be reasonably well described by *initial state effects*: nPDF modifications *or* CGC *and/or* coherent energy loss
- In order to describe excited states R_{pA}, *final state effects* become mandatory: Botzmann eq to describe the interaction with the medium, not necessarily in thermal equilibrium
- Clearly the extrapolated pA effects are significant and need to be understood for a proper interpretation of the AA results: The effects that are at play in pA should be also taken into account in AA collisions
- Collectivity effects are also present in high-multiplicity pp collisions: *initial* or *final* effects? The similarity between the D and J/ ψ suggests that this behaviour is most likely related to the production processes. Moreover, no significant energy dependence is observed, which agrees with saturation approach
- Final effects are required to explain excited over ground state data also in pp high-multiplicity collisions
- In more general terms, if equilibrium is no longer a requirement, this naturally explain why pp data on azimuthal correlations appears to be so similar to data obtained in AA collisions (hydro vs. non-hydro initial-state explanation) How far can we go in this direction?