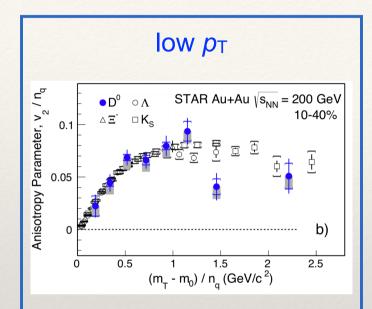
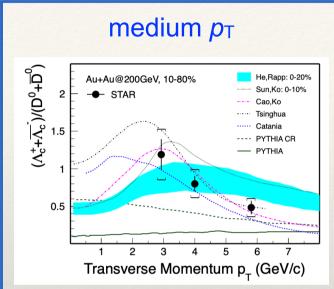

Probing QGP properties with heavy quark transport

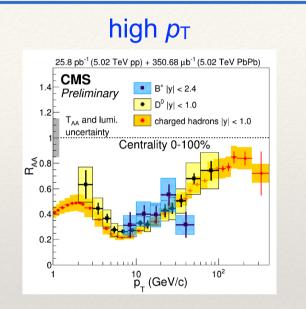
HF2022: Heavy Flavours from small to large systems

Shanshan Cao *Shandong University*


October 12, 2022


Outline

- Heavy quark theories/models at different momentum scales
 - Heavy quark energy loss at high p_T
 - Color potential interaction at low p_T
- Probing properties of nuclear matter in heavy-ion collisions
 - System size dependence of QGP properties
 - Medium geometry and evolution profile of the strong electromagnetic field


Heavy quark physics at different scales

- Study the thermalization process of heavy quarks
- Constrain the color potential of HQ-medium interaction

- Study the hadronization process of heavy quarks
- Constrain the in-medium hadron wave-function

- Study the energy loss process of heavy quarks
- Constrain the flavor hierarchy of parton energy loss

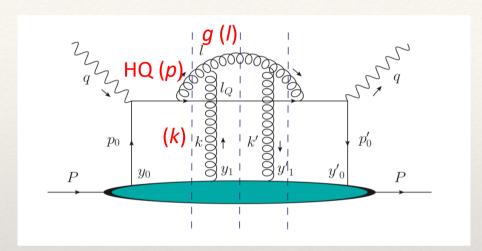
High p_T parton-medium interaction

Linear Boltzmann Transport (LBT)

$$p_a \cdot \partial f_a(x_a, p_a) = E_a(\mathcal{C}_a^{\text{el}} + \mathcal{C}_a^{\text{inel}})$$

Elastic energy loss ($ab \rightarrow cd$)

$$\mathscr{C}_{a}^{\mathrm{el}} = \sum_{b,c,d} \int \prod_{i=b,c,d} \frac{d[p_{i}]}{2E_{a}} (\gamma_{d}f_{c}f_{d} - \gamma_{b}f_{a}f_{b}) \cdot (2\pi)^{4} \delta^{4}(p_{a} + p_{b} - p_{c} - p_{d}) \left| \mathcal{M}_{ab \to cd} \right|^{2}$$


$$2 \to 2 \text{ scattering matrices}$$

loss term: scattering rate (for Monte-Carlo simulation)

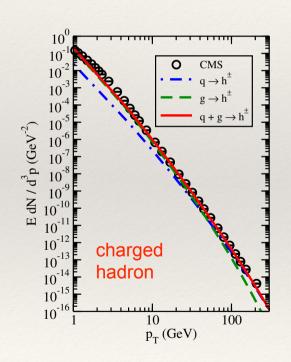
$$\Gamma_{a}^{\text{el}}(\mathbf{p}_{a}, T) = \sum_{b, c, d} \frac{\gamma_{b}}{2E_{a}} \int \prod_{i=b, c, d} d[p_{i}] f_{b} \cdot (2\pi)^{4} \delta^{(4)}(p_{a} + p_{b} - p_{c} - p_{d}) \left| \mathcal{M}_{ab \to cd} \right|^{2}$$

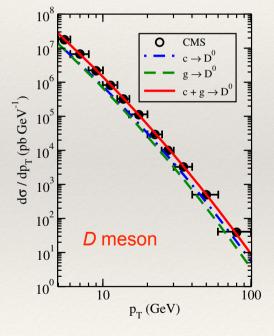
Inelastic energy loss

Inelastic scattering with a general medium

[Majumder PRD 85 (2012); Zhang, Wang and Wang, PRL 93 (2004)]

• Higher-twist: collinear expansion ($\langle k_\perp^2 \rangle \ll l_\perp^2 \ll Q^2$)

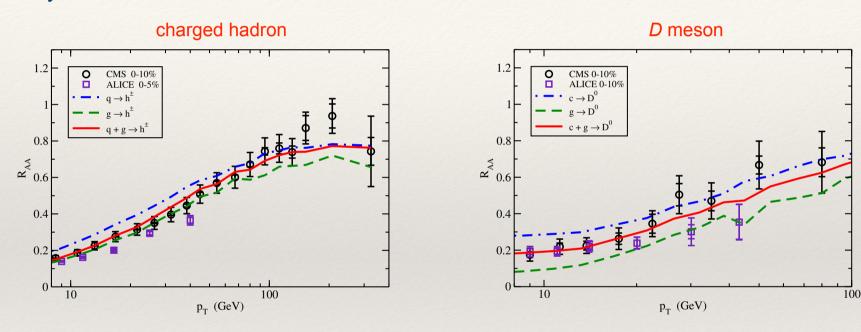

$$\frac{d\Gamma_a^{\text{inel}}}{dzdl_{\perp}^2} = \frac{dN_g}{dzdl_{\perp}^2dt} = \frac{6\alpha_s P(z)l_{\perp}^4 \hat{q}}{\pi(l_{\perp}^2 + z^2 M^2)^4} \sin^2\left(\frac{t - t_i}{2\tau_f}\right)$$


• Medium information absorbed in $\hat{q} \equiv d \langle p_{\perp}^2 \rangle / dt$

Flavor hierarchy of jet quenching

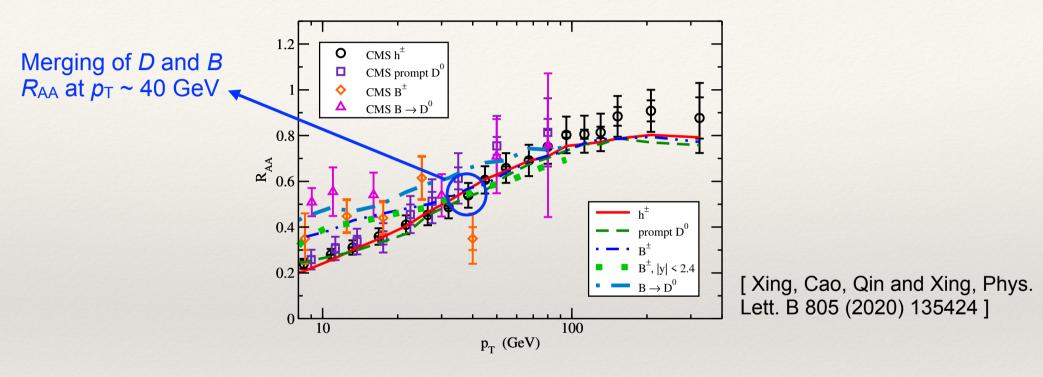
Clean perturbative framework is sufficient for describing the flavor hierarchy at high p_T (> 8 GeV) [Xing, Cao, Qin and Xing, Phys. Lett. B 805 (2020) 135424]

NLO (gluon spitting) contribution to heavy vs. light hadron production



Gluon fragmentation

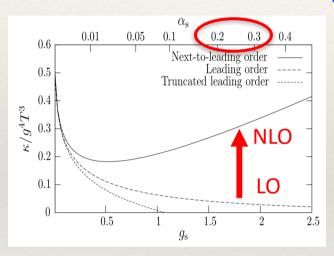
- dominates h^{\pm} production up to 50 GeV
- contributes to over 40% D up to 100 GeV


Flavor hierarchy of jet quenching

NLO initial production and fragmentation + Boltzmann transport (elastic and inelastic energy loss) + hydrodynamic medium for QGP

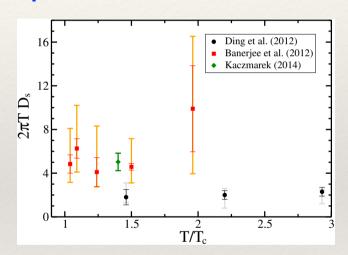
- g-initiated $h \& D R_{AA} < q$ -initiated $h \& D R_{AA} => \Delta E_g > \Delta E_q > \Delta E_c$ holds
- Although R_{AA} $(c->D) > R_{AA}$ (q->h), R_{AA} $(g->D) < R_{AA}$ (g->h) due to different fragmentation functions => R_{AA} $(h) \approx R_{AA}$ (D)

Flavor hierarchy of jet quenching



- A simultaneous description of charged hadron, D meson, B meson, B-decay D meson R_{AA} 's starting from $p_T \sim 8$ GeV
- Predict R_{AA} separation between B and h / D below 40 GeV, but similar values above wait for confirmation from future precision measurement

Low p_T HQ's — color potential interaction


- Suppression of radiative energy loss due to the "dead cone effect"
- Heavy quark diffusion, **diffusion coefficient** κ or D_s as important input into transport models

Perturbation calculation fails at low p_T

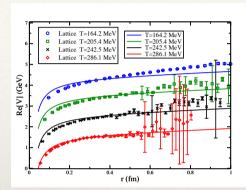
- LO: Svetitsky, PRD 37 (1988)
 Moore and Teaney, PRC 71 (2005)
- NLO: Caron-Huot and Moore, JHEP 02 (2008)
- A factor of over 5 increase at NLO

Inputs from lattice calculations

- Uncertainty is still large
- No results for finite momentum HQ yet

Perturbative calculation with effective propagator approach

> Parametrization of the heavy-quark-QGP interaction potential:


Parameters can describe the lattice potential

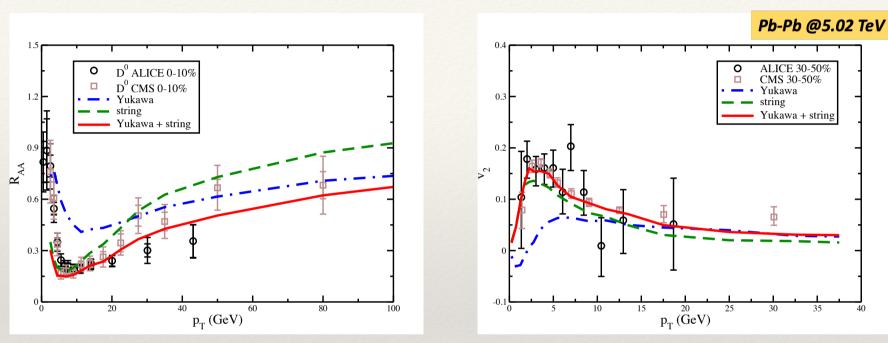
$$V(r,T) = -\frac{4}{3}\alpha_s \frac{e^{-m_d r}}{r} - \frac{\sigma}{m_s} e^{-m_s r}$$

Yukawa (color coulomb)

String

in which $m_d = a + b * T$ and $m_s = \sqrt{a_s + b_s * T}$ are the respective screening masses, α_s and σ are the respective Yukawa and confining interaction strength.

Burnier, Kaczmarek and Rothkopf, Phys. Rev. Lett. 114 (2015) 082001

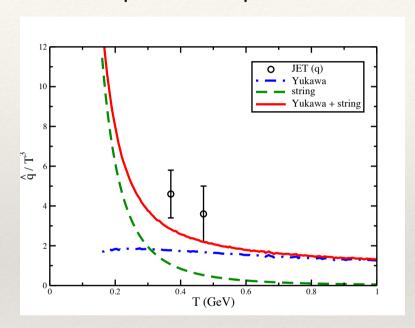

By Fourier transformation,

$$V(\vec{q},T) = -\frac{4\pi\alpha_s C_F}{m_d^2 + |\vec{q}|^2} - \frac{8\pi\sigma}{\left(m_s^2 + |\vec{q}|^2\right)^2}$$

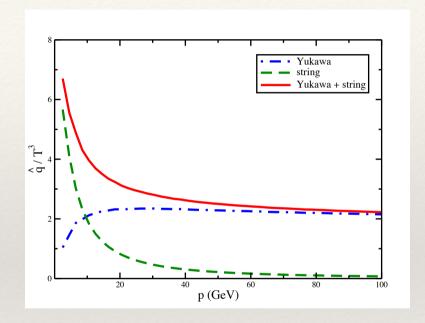
For Qq o Qq process, we express the scattering amplitude with effective potential propagator, Riek and Rapp, Phys. Rev. C 82 (2010) 035201

$$iM = iM_C + iM_S = \overline{u}\gamma^{\mu}uV_{c}\overline{u}\gamma^{\nu}u + \overline{u}uV_{S}\overline{u}u$$

R_{AA} and v_2 of D mesons at LHC

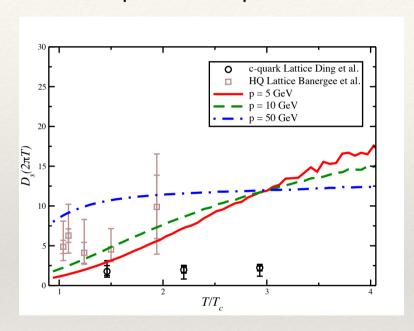


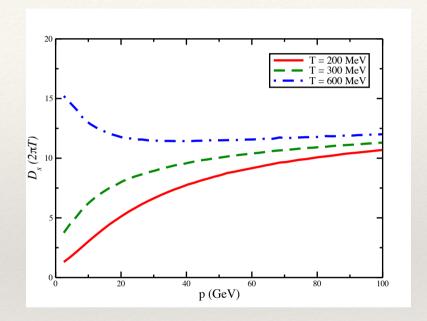
Xing, Qin, Cao, arXiv:2112.15062


- At high p_T , the Yukawa interaction dominates heavy-quark-medium interaction
- At low to intermediate p_T , the string interaction dominates, stronger contribution at later evolution stage (near T_c)

Transport coefficients — \hat{q}

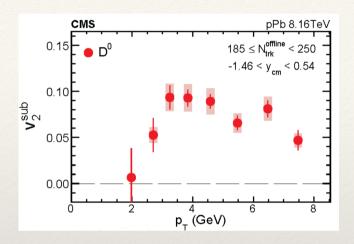
Temperature dependence

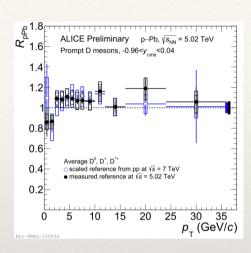

Momentum dependence


- Yukawa interaction dominates at high temperature and high momentum
- String interactions dominates at low temperature and low momentum

Transport coefficients — $D_{\rm s}$

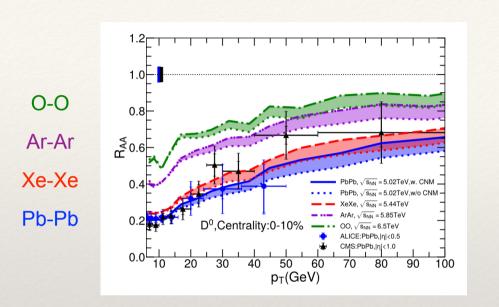
Temperature dependence

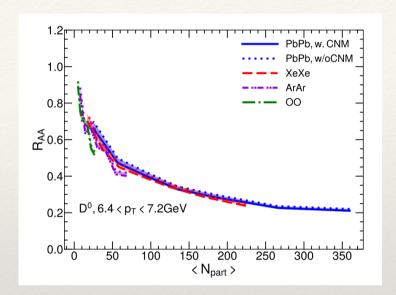

Momentum dependence


- Stronger temperature dependence at lower momentum
- Different momentum dependence at different temperature

Probing system size dependence of energy loss

Small system (p-Pb) puzzle

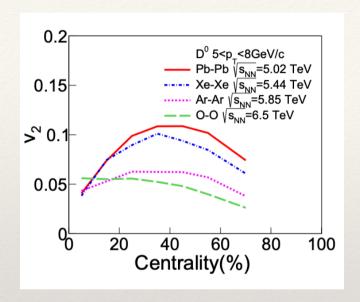

Large D meson v_2 up to 8 GeV

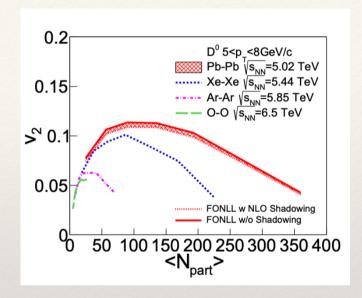


Almost no suppression

- Not consistent with the QGP effect
- Proposal of the initial state effect [Zhang, Marquet, Qin, Wei and Xiao, PRL 122 (2019)]
- Separation of initial state and QGP effect a system size scan of nuclear modification to bridge large and small systems

D meson R_{AA} in different systems

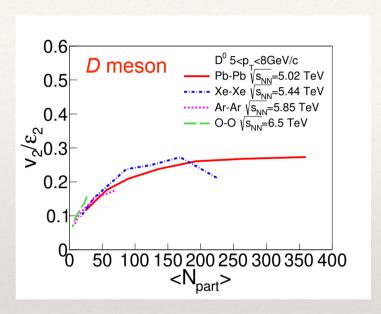


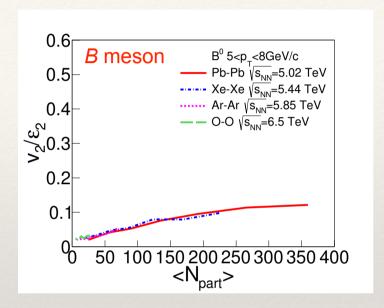


Liu, Xing, Wu, Qin, Cao, Xing, PRC 105 (2022) 4, 044904

- Clear hierarchy of R_{AA} with respect to the system size
- Significant R_{AA} in the small O-O system, existence of QGP
- Scaling of R_{AA} with the system size (quantified by N_{part}) across different collision systems

D meson v_2 in different systems

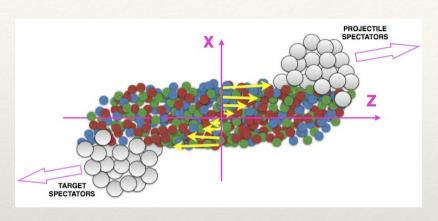




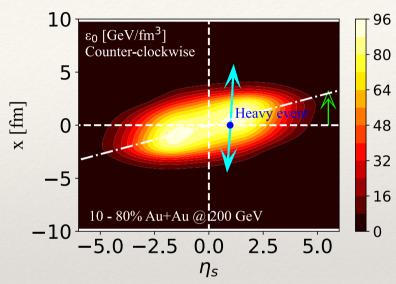
Li, Xing, Wu, Cao, Qin, EPJC 81 (2021) 11, 1035

- Energy loss effect: for a given centrality, v_2 increases with the system size
- Geometry effect: for a given N_{part} , v_2 increases from O-O, Ar-Ar, Xe-Xe to Pb-Pb

Scaling of v_2/ε_2 with respect to N_{part}

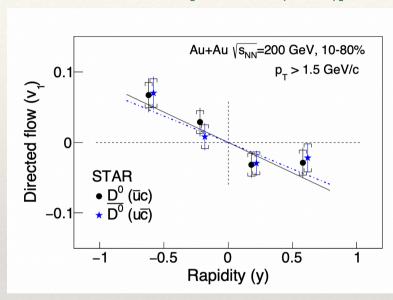


Li, Xing, Wu, Cao, Qin, EPJC 81 (2021) 11, 1035

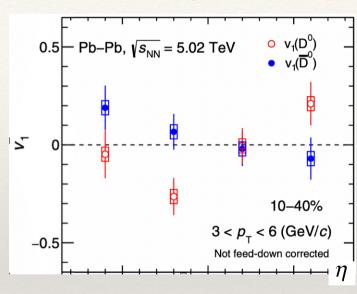

- Separate energy loss and geometry effects by rescaling heavy quark v_2 with bulk ε_2
- v_2/ε_2 scales with the system size across different collision systems
- Search for the breaking of the scaling with future experiments initial state effect overwhelms QGP effect

Probing medium geometry and E & M field

Non-central heavy-ion collisions


Counter clockwise tilt of the medium

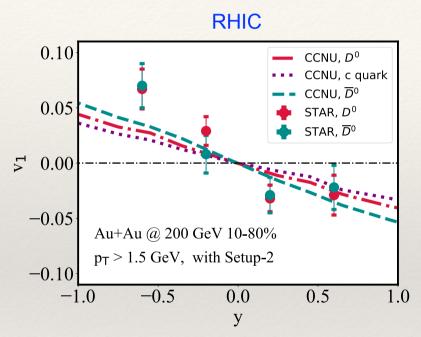
- At $\eta_s > 0$, longer path length (more energy loss) of heavy quark towards $+\hat{x}$ than $-\hat{x}$
- Directed flow: $v_1 = \langle p_x/p_T \rangle < 0$ of heavy quarks at $\eta_s > 0$
- E & M field deflects c and \bar{c} towards different directions $\to v_1$ separation (Δv_1) between D^0 and \overline{D}^0


Different observations at RHIC and LHC

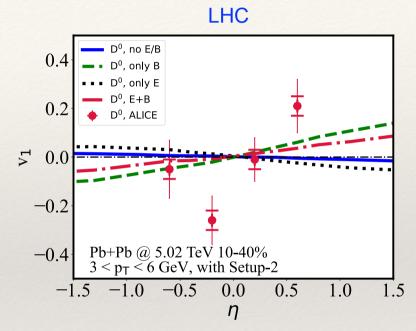
RHIC/STAR [PRL 123 (2019)]

- Negative slope for both D^0 and \overline{D}^0

LHC/ALICE [PRL 125 2020]

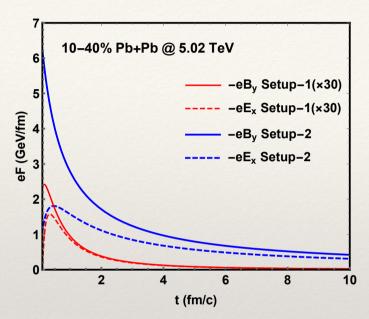


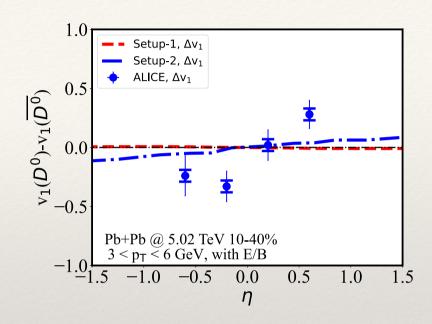
• Negative slope for \overline{D}^0 , positive for D^0


Different dominant mechanisms for directed flow of D between RHIC and LHC

Understand the difference between RHIC and LHC

Jiang, Cao, Xing, Wu, Yang, Zhang, PRC 105 (2022) 3, 034901




- Less energetic collision
- Stronger tilted initial geometry (dominant effect)
- Weaker E & M field

- More energetic collision
- Weaker tilted initial geometry
- Stronger E & M field (dominant effect)

Probing evolution profiles of the E & M field

- Compare two model calculations of $E \ \& \ M$ field
 - Setup 1: Direct solution of Maxwell equation with constant electric conductivity $\sigma = 0.023~{\rm fm}^{-1}$
 - Setup 2: Model $B_v(\tau) \sim B_v^{\rm vac}(0)/(1+\tau/\tau_B)$, then solve E_x from B_v with Maxwell equation
- Δv_1 data favor larger magnitude of B_v than $E_x o guide improvement for <math>E \ \& \ M$ calculation

Summary

Heavy-quark-QGP interaction at different p_T and in different collision systems

- pQCD is sufficient to describe flavor hierarchy of jet quenching above 8 GeV
- Color potential interaction significantly improves model calculation at low p_T
- Scaling behaviors of heavy quark R_{AA} and v_2 across different collision systems may help distinguish initial state and QGP effects at different system size
- Heavy quark v_1 probes medium deformation at RHIC, while E & M field at LHC