Characterization of the QGP with HF: an experimental overview

Orsay - October the 12th 2022

Characterization of the QGP with HF: an experimental overview

Space time evolution of A-A collision

Hard probes of A-A collision

Hard probes in nucleus-nucleus collisions:

- produced at the very early stage of the collisions in partonic processes with large Q²
- pQCD can be used to calculate initial cross sections
 - traverse the hot and dense medium
 - can be used to probe the properties of the medium

HF quarks, due to their rest mass, are natural hard probes

Quarkonium production

- Quarkonia are bound states of cc and bb (QQ) pairs
 - QQ pairs are produced at the very early stage of the collision in partonic processes with large Q²
 - pQCD can be used to calculate initial partonic cross sections
- binding of the QQ pair is a nonperturbative process
- in a QGP, the Debye screening can "melt" the less tightly bounded states [PLB 178 416]
- in a plasma with high density of Q and Q, recombination of independently produced Q and Q can happen [PLB 490 196, PRC63 054905]
 likely for charm at the LHC
 - likely for charm at the LHC energy

colour-charge and quark-mass dependence

can be studied looking ad different hadrons: exclusive channels (D,B), prompt and non-prompt D and J/ψ ,

$$R_{\rm AA} = \frac{1}{\langle T_{\rm AA} \rangle} \frac{{\rm d}N_{\rm AA}/{\rm d}p_{\rm T}}{{\rm d}\sigma_{\rm pp}/{\rm d}p_{\rm T}}$$

Energy loss depends on: • Color charge $\Delta E_g > \Delta E_{u,d,s}$ • Parton mass $\Delta E_c > \Delta E_b$ **At the parton level**: $\Delta E_g > \Delta E_{u,d,s} \ge \Delta E_c > \Delta E_b$

Naive expectation: $R_{AA}(\pi) > R_{AA}(D) > R_{AA}(B)$?

More complicated due to different production kinematics and fragmentation of light and heavy quarks

colour-charge and quark-mass dependence

can be studied looking ad different hadrons: exclusive channels (D,B), prompt and non-prompt D and J/ψ , HF decay leptons ...

colour-charge and quark-mass dependence

can be studied looking ad different hadrons: exclusive channels (D,B), prompt and non-prompt D and J/ψ , HF decay leptons ...

colour-charge and quark-mass dependence

can be studied looking ad different hadrons: exclusive channels, prompt and non-prompt D and J/ ψ , HF decay leptons

nice experimental results ...

... but how to infer the properties of the QGP?

 \rightarrow look at the theory models !

- comparisons to model predictions
- switch on/off ingredients of models
- fine tuning of models on data
 - Bayesian approach

colour-charge and quark-mass dependence

can be studied looking ad different hadrons: exclusive channels, prompt and non-prompt D and J/ ψ , HF decay leptons

PHENIX Au-Au √s=200 GeV

nice experimental results ...

... but how to infer the properties of the QGP?

 \rightarrow look at the theory models !

- comparisons to model predictions
- switch on/off ingredients of models
- fine tuning of models on data
 - Bayesian approach

Arxiv:2203.17058

colour-charge and quark-mass dependence

ATLAS

Phys. Lett. B 829 (2022) 137077

comparisons to model predictions

R_{AA} of D mesons at the LHC

comparisons to model predictions

TAMU: PRL 124, 042301 (2020) PHSD: PRC 93, 034906 (2016) POWLANG: EPJC 75, 121 (2015) CATANIA: PRC 96, 044905 (2017) MC@sHQ+EPOS: PRC 91, 014904 (2015) LIDO: PRC 98 064901 (2018) LBT: PLB 777 (2018) 255-259 LGR: EPJC, 80 7 (2020) 671 DAB-MOD M&T: PRC 96 064903 (2017)

R_{AA} shape: interplay of parton energy loss, shadowing, radial flow, hadronization mechanisms

much better constrains when describing both R_{AA} and v_2 ... I'll come later on that

A parenthesis

Control / understanding of the initial state effects and hadronization mechanism is a prerequisite to use c and b quarks as a probe of the QGP medium

Do we control properly initial state effects (shadowing at LHC)?

Are we sure that the produced c (b) quarks end up in a given charm (beauty) hadrons with the same probability as in pp? same fragmentation fractions in pp and Pb-Pb?

total charm cross-section (i.e. integrated down to $p_T=0$) is a prime quantity to be measured with precision

Total charm cross section

Ξ0 D**

 Λ_{c}^{*}

D

Prompt D meson R_{AA} and v_2

25/11/21

deeper insight into models

|y| < 0.8

20 30

 p_{τ} (GeV/c)

p_ (GeV/c)

1

switch on/off ingredients of models

- Role of radiative dE/dx vs. elastic collisions
 - Switching off radiative E loss
- Role of hadronization Switching off recombination

25/11/21

ALI-PUB-498699

|v| < 0.8

20 30

 p_{\perp} (GeV/c)

Charm spatial diffusion coefficient

key transport parameter (quantifies drag, thermal, recoil forces)

Charm spatial diffusion coefficient

key transport parameter (quantifies drag, thermal, recoil forces)

Charm spatial diffusion coefficient

key transport parameter (quantifies drag, thermal, recoil forces)

Simply obtained as the ranges of the $2\pi D_S T_C$ parameters used by a set of theory models that provides a good description of R_{AA} ($\chi^2/ndf<5$), v_2 and v_3 ($\chi^2/ndf<2$) experimental data

v₂ of HF hadrons

a deeper look at beauty v_2

first measurement of non-prompt D⁰ v2

Mass splitting of **charm** and **bottom** at low p_T in v_2

Qualitative conclusion: as naively expected, b quarks less effected by collective dynamics, hence far away from thermalization

to be quantitative \rightarrow theory descriptions (in synchro with that of the c sector)

- very clear ordering of *R*_{AA} as in the sequential melting picture
 - transport calculation describe measurements
 - small contribution from regeneration

First measurement of Y(3S) in Pb-Pb

- $\frac{R_{AA}^{(3S)}}{R_{AA}^{(2S)}} \approx 0.7$
- what is the origin of those Y(3S)?
 - from corona ?
 - from peripheral collisions ?
 - just from recombination ?

12/10/22

J/ψ suppression and regeneration: LHC vs. RHIC

dominant contribution from recombination at the LHC

- bulk of production at low p_T
- Iow p_T effect

Inclusive $\psi(2S)$ production in Pb-Pb

scronger suppression of $\psi(2S)$ than J/ψ sequential suppression for charmonium? Increasing trend of R_{AA} towards low p_T also for $\psi(2S)$

- Hint of $\psi(2S)$ production via regeneration
- □ Compatible with midrapidity CMS results in the common p_T range
- **TAMU** reproduces the $R_{AA} p_T$ dependence

TAMU also compatible with the centrality dependence of the $\psi(2S) / J/\psi$ ratio

$J/\psi R_{AA}$ in Pb-Pb collisions at $\sqrt{s_{NN}}=5.02$ TeV

- □ Rise of inclusive J/ψ R_{AA} at low p_T, stronger effect at y=0 [¬]
 decisive signature of recombination
- The SHM can describe the data at low p_T, while the TAMU transport model agrees with data in the whole measured p_T ranges
- Also centrality dependence qualitatively reproduced by models

8

$J/\psi R_{AA}$ in Pb-Pb collisions at $\sqrt{s_{NN}}=5.02$ TeV

- □ Rise of inclusive J/ψ R_{AA} at low p_T, stronger effect at y=0
 decisive signature of recombination
- □ The SHM can describe the data at low p_T , while the TAMU transport model agrees with data in the whole measured p_T ranges
- Effect confirmed when looking at prompt J/ψ production at low p_T and midrapidity, clear centrality dependence

12/10/22

HF jets in Heavy ion collisions

Parton energy loss

Jet quenching → best control of the partonic kinematic Momentum broadening

Medium response

Jets are quenched in AA collisions

• up to $p_T = 1 \text{ TeV}$

enhancement of particles carrying a small fraction of the jet momentum is observed in Pb-Pb w.r.t. pp, which increases with centrality and with increasing jet transverse momentum

25/11/21

b jets in Pb-Pb at LHC

LIDO: FONLL + HF diffusion+energy loss ; Dai et al.: Sherpa + Langevin transport+radiation Li&Vitev: (SCET) EFTs + medium modified splitting

b jets suppressed in central collisions

LIDO model describes well b-jet R_{AA}, while Li&Vitev and Dai underpredict the data.

b jets in Pb-Pb at LHC

LIDO: FONLL + HF diffusion+energy loss ; Dai et al.: Sherpa + Langevin transport+radiation Li&Vitev: (SCET) EFTs + medium modified splitting

- b jets suppressed in central collisions
- **LIDO** model describes well b-jet R_{AA} , while Li&Vitev and Dai underpredict the data.
- RAA(b jet) ~ RAA(inc. jet) in peripheral while RAA(b jet) > RAA(inc. jet) in central collisions.
- Dai calculations describe better the b / inclusive jet RAA ratio.
- Differences between b and inclusive jets dominated by quark vs gluon energy loss effects.

Radial shape modification of b-jets

both b and inclusive jet shapes broader than in pp

Radial shape modification of b-jets

both b and inclusive jet shapes broader than in pp
 relative modifications of b jets stronger than inclusive jets

Radial shape modification of b-jets

- both b and inclusive jet shapes broader than in pp
- □ relative modifications of b jets stronger than inclusive jets
- \square more low p_{T} tracks at large radius in b jets than inclusive jets

12/10/22

Conclusions and outlook

- good precision of HF experimental results reached at LHC and RHIC
 - stringent constraints to models
- quantitative properties of the QGP to be inferred from models that describe several observables at the same time
 - nice example at this workshop: approach to understand role of hadronization in HF production

Conclusions and outlook

Improved measurements: expected to offer new constraints to models; further insights into the hot and dense medium, origin of collectivity in small systems

EXTRA

Y(1S) and Y(2S) R_{AA}

stronger suppression of $\Upsilon(2S)$ compared to $\Upsilon(1S)$

confirmation at forward rapidity of the sequential suppression (CMS discovery)

mild centrality dependence of R_{AA}

in agreement with models (also without including regeneration mechanism)

rapidity dependence: hint for a decrease of $\Upsilon(1S) R_{AA}$ for $\gamma > 3$

12/10/22

Elliptic flow of J/ψ and Y(1S)

ALI-DER-498819

large J/ψ v₂ at low p_T
 further proof of recombination
 suggesting also charm thermalization
 no sign of Y(1S) flow

Elliptic flow of J/ψ and Y(1S)

JHEP 2020 (2020) 141 PRL123 (2019) 192301

- large J/ ψ v_2 at low p_T
 - further proof of recombination
 - suggesting also charm thermalization

models soon improved

accounting for the x^{μ} - p^{μ} correlation of the diffusing c and \overline{c} in a hydrodynamically expanding fireball and revisiting the suppression of the primordial J/ ψ component

12/10/22

Elliptic and triangular flow of J/ ψ compared to π

12/10/22

Elliptic and triangular flow of J/ ψ

coalescence: constituent quarks have ~ same velocity \rightarrow sharing of D⁰ $p_T \propto$ effective m_q

$p_{\mathrm{T}}^{\mathrm{q}}/p_{\mathrm{T}}^{\mathrm{D}} = 0.2$ (black curve)	disfavoured by data
$p_{\rm T}^{\rm q}/p_{\rm T}^{\rm D} = 0.4 \; (\text{dark blue curve})$	best agreement
$p_{\rm T}^q / p_{\rm T}^D = 0.5$ (green curve)	rather good description

12/10/22