Azimuthal Asymmetries Numerical Results Introduction Gluon TMDs Conclusions STRONG anr® 2.2 ACHUT university of

groningen

Studying gluon TMDs via double J/ψ production in proton-proton collisions Based on work of Florent SCARPA and Alice COLPANI SERRI

Jelle BOR

Heavy flavours from small to large systems, Institut Pascal (Orsay, France); recent results and perspectives in hadron physics

October 17, 2022

Jelle BOR

University of Groningen, Université Paris-Saclav

Gluon TMDs in J/ψ -pair production at LHC

D'ORSA

TMD Evolution

1 Introduction

- 2 Gluon TMDs
- 3 Azimuthal Asymmetries
- **4** TMD Evolution
- **5** Numerical Results

6 Conclusions

Jelle BOR

・ (日) (四) (日) (日) (日)

University of Groningen, Université Paris-Saclay

1 Introduction

2 Gluon TMDs

- 3 Azimuthal Asymmetries
- **4** TMD Evolution
- **5** Numerical Results

6 Conclusions

Jelle BOR

- ・ロト・4日・4日・4日・ 三日 のへの

University of Groningen, Université Paris-Saclay

Inclusive production of J/ψ pairs in *pp* collisions (via gluon fusion) gives azimuthal asymmetries

Results \iff (future) measurements at LHC (fixed-target) experiments \hookrightarrow Transverse Momentum Dependent PDFs (TMDs)

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ■ ● ● ●

 $\begin{array}{l} \textbf{PDFs} \rightarrow \text{great precision} \\ \textbf{Collinear QCD phenomenology} \end{array}$

 \hookrightarrow only 1D information $\hookrightarrow x$ dependence

∜

3D structure of the nucleon Beyond collinear factorisation

↓ Transverse dynamics

Nucleon structure in terms of TMDs

Jelle BOR

315

TMDs \rightarrow 3D structure of the nucleon Correlations between k_T and the polarisation of the nucleon/parton

2 components ▷ collinear (x) ▷ transversal $(\vec{k_{\perp}}) \rightarrow$ **generate** q_T (final-state)

Quark TMDs extracted from data \hookrightarrow SIDIS, DY processes

 $\begin{array}{l} \mbox{Gluon TMDs} \\ \hookrightarrow \mbox{Extremely poorly known} \\ \hookrightarrow \mbox{How to measure them?} \\ \mbox{Inclusive quarkonium production} \end{array}$

A. Bacchetta et al. (JHEP 08 (2008) 023)

University of Groningen, Université Paris-Saclay

 $\exists \rightarrow$

Jelle BOR

EL OQO

Experimental point of view:

- Quarkonium production observed in different experiments
- J/ψ : easy to produce and detect
 - \hookrightarrow plenty of experimental data

Theoretical point of view:

- Not clear how to treat quarkonium production in general
- 3 common models \rightarrow Colour Singlet Model (CSM) \rightarrow Colour Octet Mechanism (COM) \rightarrow Colour Evaporation Model (CEM)
- Not complete agreement with experimental data
- However, for J/ψ -pair production: **CSM** is the best!

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ■ ● ● ●

TMD Evolution

Introduction

2 Gluon TMDs

- 3 Azimuthal Asymmetries
- 4 TMD Evolution
- 6 Numerical Results

6 Conclusions

Jelle BOR

- ・ロト・4日・4日・4日・ 三日 のへの

University of Groningen, Université Paris-Saclay

Study of gluon TMDs \rightarrow TMD factorisation ($q_T \ll Q$)

General factorised cross section \hookrightarrow partonic scattering amplitude (*perturbative*) \hookrightarrow k_T -dependent correlators (*non-perturbative*)

$$d\sigma = \int dx_1 dx_2 d^2 \vec{k}_{T1} d^2 \vec{k}_{T2} \delta^{(2)} (\vec{k}_{T1} + \vec{k}_{T2} - \vec{q}_T) \\ \times \Phi_g^{\mu\nu} (x_1, \vec{k}_{T1}) \Phi_g^{\rho\sigma} (x_2, \vec{k}_{T2}) \Big[\hat{\mathcal{M}}_{\mu\rho} \, \hat{\mathcal{M}}_{\nu\sigma}^* \Big]_{\substack{k_1 = x_1 P_1 \\ k_2 = x_2 P_2}} + \mathcal{O}\left(\frac{q_T^2}{Q^2}\right)$$

• In order to stay in TMD regime: $max(q_T) = Q/2$

→ □ → → 三 → → 三 → → のへぐ

 \hookrightarrow Second term goes to 0 if if $k_T = 0$

P.J. Mulders and J. Rodrigues (Phys.Rev.D 63 (2001) 094021)

▲□> ▲ E > ▲ E > E E のQ@

Gluon TMDs in J/ψ -pair production at LHC

University of Groningen, Université Paris-Saclay

Gluon TMDs in J/ψ -pair production at LHC

Introduction 00000	Gluon TMDs 0000●	Azimuthal Asymmetries	TMD Evolution	Numerical Results	Conclusions
Why di- J/ψ production?					

- Single J/ψ production (CSM): a lot of data at low q_T √
 ⇒ but gluon in the final state → presence of soft gluons (non-perturbative) between Initial State Interactions (ISIs) and Final State Interactions (FSIs) can be problematic
 ⇒ no TMD factorisation X
- Single η_c production: no gluon in the final state \checkmark \hookrightarrow but **no** data at low $q_T X$
- Double J/ψ production:
 ▷ data at low q_T √
 - \triangleright no gluon in the final state \checkmark
 - \hookrightarrow gluon fusion: ISI can be encapsulated in the TMDs \checkmark
 - \hookrightarrow consider CSM: no FSIs \checkmark

\rightarrow Safe TMD factorisation

PhD Thesis F. Scarpa (10.33612/diss.128346301)

Jelle BOR

A = A = A = A = A = A = A

Introduction

2 Gluon TMDs

3 Azimuthal Asymmetries

4 TMD Evolution

6 Numerical Results

6 Conclusions

University of Groningen, Université Paris-Saclay

The general formula for the cross section of gluon fusion is:

 $d\sigma_{UU}^{gg} \propto F_1 \times C[f_1^g f_1^g] + F_2 \times C[w_2 h_1^{\perp g} h_1^{\perp g}] + (F_3 \times C[w_3 f_1^g h_1^{\perp g}] + F_3' \times C[w_3' h_1^{\perp g} f_1^g]) \cos(2\Phi_{CS}) + (F_4 \times C[w_4 h_1^{\perp g} h_1^{\perp g}]) \cos(4\Phi_{CS})$

- First two members: azimuthally independent
- Third member: $\cos(2\Phi_{CS})$ -asymmetry
- Fourth member: cos (4Φ_{CS})-asymmetry

Introduction Gluon TMDs Azimuthal Asymmetries TMD Evolution Numerical Results Conclusions OOO Conclusions Computation of azimuthal asymmetries (average)

The corresponding expressions for $\cos(2\Phi_{CS})$ and $\cos(4\Phi_{CS})$:

$$\langle \cos(2\phi_{CS}) \rangle = \frac{1}{2} \frac{F_3 \mathcal{C}[w_3 f_1^g h_1^{\perp g}] + F_3' \mathcal{C}[w_3 h_1^{\perp g} f_1^g]}{F_1 \mathcal{C}[f_1^g f_1^g] + F_2 \mathcal{C}[w_2 h_1^{\perp g} h_1^{\perp g}]} \langle \cos(4\phi_{CS}) \rangle = \frac{1}{2} \frac{F_4 \mathcal{C}[w_4 h_1^{\perp g} h_1^{\perp g}]}{F_1 \mathcal{C}[f_1^g f_1^g] + F_2 \mathcal{C}[w_2 h_1^{\perp g} h_1^{\perp g}]}$$

- The hard-scattering coefficients (F_1 , F_2 , F_3 , F'_3 , F_4) give the explicit dependence on $M_{\psi\psi}$ and θ_{CS} (given in backup slides)
- Modulations due to $h_1^{\perp g}$
- Set hard scale $Q\equiv M_{\psi\psi}$
- TMD evolution applied within the convolutions

University of Groningen, Université Paris-Saclay

Jelle BOR

Introduction 00000	Gluon TMDs 00000	Azimuthal Asymmetries	TMD Evolution	Numerical Results	Conclusions

Introduction

2 Gluon TMDs

3 Azimuthal Asymmetries

4 TMD Evolution

6 Numerical Results

6 Conclusions

Jelle BOR

- ・ロト・西ト・ヨト・ヨト 正正 うへの

University of Groningen, Université Paris-Saclay

Introduction Evolution (1)

Gluon TMDs

Introduction

 Beyond tree level, the TMDs and hard factors F become scale dependent J. Collins (ISBN: 9781107645257)

TMD Evolution

0000

 Implementing evolution is more easily done in impact parameter space (b_T), where convolutions become simple products:

Azimuthal Asymmetries

$$d\sigma_{UU}^{gg} \propto \int d^2 \mathbf{b}_T \, e^{-i\mathbf{b}_T \cdot \mathbf{q}_T} \, \hat{W}(\mathbf{b}_T, Q) + \mathcal{O}(\mathbf{q}_T^2/Q^2)$$
$$\hat{W}(\mathbf{b}_T, Q) = \, \hat{f}(\mathbf{x}_1, \mathbf{b}_T; \zeta_f, \mu) \, \hat{g}(\mathbf{x}_2, \mathbf{b}_T; \zeta_g, \mu) \, \mathcal{H}(Q; \mu)$$

• The convolutions are rewritten by Fourier transforming:

$$\begin{aligned} \mathcal{C}[w f g](x_1, x_2, \vec{q}_T) &= \int d^2 \vec{k}_{T1} \int d^2 \vec{k}_{T2} \, \delta^{(2)}(\vec{k}_{T1} + \vec{k}_{T2} - \vec{q}_T) \\ &\times w_{n,m}(\vec{k}_{T1}, \vec{k}_{T2}) \, f(x_1, \vec{k}_{T1}) \, g(x_2, \vec{k}_{T2}) \\ &\Rightarrow \int_0^\infty \frac{db_T}{2\pi} \, b_T^n \, J_m(b_T \, q_T) \, \hat{f}(x_1, b_T) \, \hat{g}(x_2, b_T) \end{aligned}$$

University of Groningen, Université Paris-Saclay

Jelle BOR

Gluon TMDs in J/ψ -pair production at LHC

E AQA

Conclusions

$$\mathcal{C}[w f g](x_1, x_2, \vec{q}_T; Q) = \int_0^\infty \frac{db_T}{2\pi} b_T^n J_m(b_T q_T) \\ \times e^{-S_A(b_T; Q^2, Q)} \hat{f}(x_1, b_T; \mu_b^2, \mu_b) \hat{g}(x_2, b_T; \mu_b^2, \mu_b)$$

- S_A contains In Qb_T
- Expressions (based on pQCD) are valid when: $b_0/Q \le b_T \le b_{T,max}$
- At lower limit $\mu_b = b_0/b_T$ becomes larger than Q, i.e. evolution should stop $(S_A = 0)$
- At upper limit perturbation theory starts to fail, which is not exactly known. Common to take $b_{T,max} = 0.5 \,\text{GeV}^{-1}$ or $b_{T,max} = 1.5 \,\text{GeV}^{-1}$.
- This effectively boils down to a different resummation: $\mu_b(b_T)/Q \to \mu_b(b_T^*)/Q$

Conclusions

• We need to add a component that takes over as $b_T > b_{T,\max}$:

$$\hat{W}(b_T,Q)\equiv\hat{W}(b_T^*,Q)e^{-\mathcal{S}_{NP}(b_T,Q)}$$

• There are different parameterizations for S_{NP} in the literature, but typically it is chosen to be a Gaussian:

$$S_{NP}(b_T; Q) = A \ln \frac{Q}{Q_{NP}} b_T^2$$
 with $Q_{NP} = 1 \text{ GeV}$

• We obtain the following expression for the convolutions:

$$C[wfg](x_1, x_2, \vec{q}_T; Q) = \int_0^\infty \frac{db_T}{2\pi} b_T^n J_m(b_T q_T) e^{-S_A(b_T^*; Q^2, Q)} e^{-S_{NP}(b_T; Q)} \\ \times \hat{f}(x_1, b_T^*; \mu_b^2, \mu_b) \hat{g}(x_2, b_T^*; \mu_b^2, \mu_b)$$

Jelle BOR

★ 문 ▶ ★ 문 ▶ 문 문 ■ ♥ ♥ ♥ ♥

- **5** Numerical Results

Jelle BOR

<ロ> <四> <回> <回> <回> <回> <回> <回> <回> <回> <回</p>

University of Groningen, Université Paris-Saclay

F. Scarpa et al. (Eur.Phys.J. C 80 no.2, (2020) 87)

Jelle BOR

University of Groningen, Université Paris-Saclay

-≣ →

Gluon TMDs in J/ψ -pair production at LHC

三日 わへの

R. Aaij et al. (JHEP06(2017)047)

Goal: phenomenological study of the azimuthal asymmetries for J/ψ pair production in *pp* collisions with $\rightarrow x_1 \neq x_2$

Implementation: ex-novo code in Python; faster and we implement use of LHAPDF package for PDFs (for perturbative tails TMDs)

 $\downarrow \\ \text{Code validation: reproduced published results } (x_1 = x_2) \\ \downarrow \\ \text{NEW: first studies with } x_1 \neq x_2 \\ \text{(two sets of } x_1, x_2 \text{ but same rapidity } y = \frac{1}{2} \ln \frac{x_1}{x_2}) \end{cases}$

University of Groningen, Université Paris-Saclay

伺 ト イヨト イヨト ヨヨー わすべ

Jelle BOR

Plots considering:

- Range of $\cos(\theta_{CS})$: [0.25; 0.50], $Q = M_{ubub} = 8,16$ GeV
- Two different sets $(x_1; x_2)$: $(10^{-3}; 10^{-1})$ and $(10^{-4}; 10^{-2})$

 \triangleright contribution up to 3%

 \triangleright big overlap in the low q_T region, not for large q_T

 \sim same magnitude for low and high Q

-University of Groningen, Université Paris-Saclav

|▲ 臣 ▶ 三国 = つへで

Plots considering:

- Range of $\cos(\theta_{CS})$: [0; 0.25], Q = 8,16 GeV
- Two different sets $(x_1; x_2)$: $(10^{-3}; 10^{-1})$ and $(10^{-4}; 10^{-2})$

 \triangleright max contribution 5 – 6%

 \triangleright overlap $\forall q_T$

▷ much higher amplitude for high Q (at high q_T)

Jelle BOR

Gluon TMDs in J/ψ -pair production at LHC

EL OQO

< ∃ >

University of Groningen, Université Paris-Saclav

6 Conclusions

Jelle BOR

<ロ> <四> <回> <回> <回> <回> <回> <回> <回> <回> <回</p>

University of Groningen, Université Paris-Saclay

Introduction 00000	Gluon TMDs 00000	Azimuthal Asymmetries	TMD Evolution	Numerical Results	Conclusions ○●
Summary	,				

- Double J/ψ production is a very promising process to investigate gluon TMDs
 - Quarkonium q_T spectrum probes gluon transverse momenta
 - Azimuthal asymmetries arise due to linear polarization of gluons inside unpolarized hadrons
 - $x_1 \approx x_2$ seems to be favoured: lower azimuthal asymmetries for $\frac{x_1}{x_2} \neq 1$
 - Further studies can be made considering polarised protons \rightarrow access to more gluon TMDs
 - For $pp \rightarrow \eta_{c,b} X$:
- A. Bacchetta et al. (arXiv:2208.06252) and proceedings
 - For $ep \rightarrow J/\psi X$:
- J. Bor and D. Boer (Phys.Rev.D 106 (2022) 1)

Backup slides

Jelle BOR

University of Groningen, Université Paris-Saclay

<(□) < □) < □) < □) < □| < ○) < ○)

Results for $x_1 = x_2$: $\cos(2\Phi_{CS})$

Plots considering:

- Two ranges of cos (θ_{CS}): [0; 0.25] and [0.25; 0.50]
- Three values for the invariant mass: 12, 21, 30 GeV; x1=x2

うせん 正正 スポッスポッスポッス

Results for $x_1 = x_2$: $\cos(4\Phi_{CS})$

Plots considering:

- Two ranges of cos (θ_{CS}): [0; 0.25] and [0.25; 0.50]
- Three values for the invariant mass: 12, 21, 30 GeV; x1=x2

University of Groningen, Université Paris-Saclay

Results in for $x_1 \neq x_2$: cos ($2\Phi_{CS}$)

Plots considering:

- Range of $\cos(\theta_{CS})$: [0; 0.25], $Q = M_{\psi\psi}$
- Two different sets $(x_1; x_2)$: $(10^{-3}; 10^{-1})$ and $(10^{-4}; 10^{-2})$

 \triangleright contribution below 1%

 \triangleright big overlap in the low q_T region, not for large q_T

 $\triangleright \ \sim \ {\rm same} \ {\rm magnitude} \ {\rm for}$ low and high Q

Jelle BOR

Gluon TMDs in J/ψ -pair production at LHC

ELE NOR

University of Groningen, Université Paris-Saclav

Results in for $x_1 \neq x_2$: cos (4 Φ_{CS})

Plots considering:

- Range of $\cos{(\theta_{CS})}$: [0.25; 0.50], $Q = M_{\psi\psi}$
- Two different sets $(x_1; x_2)$: $(10^{-3}; 10^{-1})$ and $(10^{-4}; 10^{-2})$

▷ contribution up to 3%

b higher amplitude for highQ (low Q negligible)

University of Groningen, Université Paris-Saclav

Jelle BOR

Gluon TMDs in J/ψ -pair production at LHC

3 = 1 - NQA

Hard scattering coefficients

$$F_{1} = \frac{\mathcal{N}}{\mathcal{D}M_{\Psi}^{2}} \sum_{n=0}^{6} f_{1,n} (\cos \theta_{CS})^{2n} \qquad F_{2} = \frac{2^{4} 3 M_{\Psi}^{2} \mathcal{N}}{\mathcal{D}M_{\Psi\Psi}^{4}} \sum_{n=0}^{4} f_{2,n} (\cos \theta_{CS})^{2n}$$

$$F_{3}' = F_{3} = \frac{-2^{3} (1 - \alpha^{2}) \mathcal{N}}{\mathcal{D}M_{\Psi\Psi}^{2}} \sum_{n=0}^{5} f_{3,n} (\cos \theta_{CS})^{2n}$$

$$F_{4} = \frac{(1 - \alpha^{2})^{2} \mathcal{N}}{\mathcal{D}M_{\Psi\Psi}^{2}} \sum_{n=0}^{6} f_{4,n} (\cos \theta_{CS})^{2n}$$

with:
$$\alpha = \frac{2M_{\Psi}}{M_{\Psi\Psi}}$$
, $\mathcal{N} = 2^{11}3^{-4}(N_c^2 - 1)^{-2}\pi^2 \alpha_s^4 |R_{\Psi}(0)|^4$,
 $\mathcal{D} = M_{\Psi\Psi}^4 (1 - (1 - \alpha^2)\cos\theta_{CS}^2)^4$ and $R_{\Psi}(0)$ is the J/ψ radial wave function at the origin and $N_c = 3$.

The Sudakov Factor and Scales

• The solution of the evolution equations results in:

$$\hat{f}_{1}^{g}(x_{1}, \mathbf{b}_{T}; \zeta, \mu) = e^{-\frac{1}{2}S_{A}(b_{T}; \zeta, \mu)} \hat{f}_{1}^{g}(x_{1}, \mathbf{b}_{T}; \mu_{b}^{2}, \mu_{b})$$
$$\hat{h}_{1}^{\perp g}(x_{1}, \mathbf{b}_{T}; \zeta, \mu) = e^{-\frac{1}{2}S_{A}(b_{T}; \zeta, \mu)} \hat{h}_{1}^{\perp g}(x_{1}, \mathbf{b}_{T}; \mu_{b}^{2}, \mu_{b})$$

- $\mu \sim Q$ avoids large logarithms in ${\cal H}$
- TMDs should be evaluated at their natural scale: $\sqrt{\zeta_0} \sim \mu_0 \ll \sqrt{\zeta} \sim \mu$
- \Rightarrow take $\sqrt{\zeta_0} \sim \mu_0 \sim \mu_b \equiv b_0/b_T$ (with $b_0 = 2e^{-\gamma_E}$), in order to minimize both logarithms of μb_T and ζb_T^2 in S_A , and then evolved up to $\sqrt{\zeta} \sim \mu \sim Q$

<□> < => < => < => < =| = <0 < 0

• The large transverse momentum perturbative tail of the TMDs can be written as:

$$\begin{split} \hat{f}_{1}^{g}(x, b_{T}; \mu_{b}^{2}, \mu_{b}) &= f_{g/P}(x; \mu_{b}) + \mathcal{O}(\alpha_{s}) + \mathcal{O}(b_{T}\Lambda_{\text{QCD}}) \\ \hat{h}_{1}^{\perp g}(x, b_{T}; \mu_{b}^{2}, \mu_{b}) &= -\frac{\alpha_{s}(\mu_{b})}{\pi} \int_{x}^{1} \frac{dx'}{x'} \left(\frac{x'}{x} - 1\right) \left\{ C_{A} f_{g/P}(x'; \mu_{b}) + C_{F} \sum_{i=q,\bar{q}} f_{i/P}(x'; \mu_{b}) \right\} + \mathcal{O}(\alpha_{s}^{2}) + \mathcal{O}(b_{T}\Lambda_{\text{QCD}}) \end{split}$$

P. Sun et al. (Phys.Rev.D 84 (2011) 094005)

University of Groningen, Université Paris-Saclay

<ロ> <四> <回> <回> <回> <回> <回> <回> <回> <回> <回</p>

Jelle BOR

b_T -Domains

• To ensure $b_0/Q \le b_T$ we take:

$$b_c(b_T) = \sqrt{b_T^2 + \left(rac{b_0}{Q}
ight)^2}$$

• For
$$b_T \leq b_{T,\max}$$
:

$$b_T^*(b_c(b_T)) = rac{b_c(b_T)}{\sqrt{1+\left(rac{b_c(b_T)}{b_{T, ext{max}}}
ight)^2}}$$

J. Collins et al. (Phys.Rev.D 94 (2016) 3, 034014)

University of Groningen, Université Paris-Saclay

<ロ> <四> <回> <回> <回> <回> <回> <回> <回> <回> <回</p>

Jelle BOR

The Non-perturbative Sudakov Factor

$$S_{NP}(b_T; Q) = A \ln \frac{Q}{Q_{NP}} b_T^2$$
 with $Q_{NP} = 1 \text{ GeV}$

$b_{T, {\sf lim}} \; ({\sf GeV}^{-1})$	$r~({ m fm}\sim 1/(0.2~{ m GeV}))$	A (GeV ²)
2	0.2	0.64
4	0.4	0.16
8	0.8	0.04

Table 1: Values of the parameter A for $b_{T,\text{lim}}$ and r determined at Q = 12 GeV. A is defined at which $\exp(-S_{NP})$ becomes negligible ($\sim 10^{-3}$). To estimate the uncertainty associated with the S_{NP} we vary $b_{T,\text{lim}}$ spanning roughly from $b_{T,\text{max}} = 1.5 \text{ GeV}^{-1}$ to the charge radius of the proton. r is the range over which the interactions occur from the centre of the proton.

伺 ト イヨト イヨト ヨヨー わすべ

Abstract

Jelle BOR

In this talk I will explain why double J/ψ production in proton-proton collisions is a promising process to study gluon TMDs. I will touch upon the azimuthal asymmetries that arise in this process and the TMD evolution that is included in the computations. To conclude I will present some numerical results from F. Scarpa and A. Colpani and refer to some other interesting studies.

University of Groningen, Université Paris-Saclay