Recent results from JPAC collaboration

Miguel Albaladejo (IFIC)

Recent results and perspectives in hadron physics (Institute Pascal, Orsay, Oct. 17th, 2022)

STR**®**NG-<mark>2©20</mark>

JPAC: Joint Physics Analysis Center

- Joint IU and JLab venture to extract physics results from JLab12
- Work in theoretical/experimental/phenomenological analysis
- Light/heavy meson spectroscopy
- Interaction with many experimental collaborations: (GlueX, CLAS, BES, ...) and LQCD groups

M. Albaladejo (IFIC)	2	L. Bibrzycki (Krakow)	I. Danilkin (Mainz)	T	S. Dawid (IU)	
S. González-Solís (Los Álamos)		C. Fernández-Ramírez	A. Hiller-Blin (Tubingen)	Â	A. Jackura (JLab)	
V. Mathieu (Barcelona)		M. Mikhasenko (Munich)	V. Mokeev (JLab)	Ø	E. Ortiz-Pachecho (UNAM)	
E. Passemar (IU)	3	R. Perry (Taiwan)	A. Pilloni (Messina)	9	A. Rodas (JLab)	
D. Winney (Guangdong)		J. A. Silva-Castro (UNAM)	N. Sherrill (IU)		W. A. Smith (IU)	J PAC
A. Szczepaniak (IU)	3					

Outline

- XYZ photoproduction:
 - Exclusive photoproduction [JPAC Collab., PR,D102,114010('20)]
 - Inclusive photoproduction [JPAC Collab., 2209.05882 (accepted PRD)]
- **2** Khuri-Treiman equations and $V \rightarrow 3\pi$ decays:
 - $\circ \; \omega
 ightarrow 3\pi \; {
 m and} \; \omega
 ightarrow \gamma^* \pi^0$ [JPAC Collab., EPJ,C80,1107('20)]
 - $J/\psi
 ightarrow 3\pi$ [Work in progress...]

XYZ excl. photoproduction		$\omega ightarrow 3\pi, \gamma^* \pi^0$	
0000			

XYZ states and photoproduction

- A new method to confirm or discard these new *XYZ* states
- In principle, photoproduction is free of triangle-singularities that can give rise to resonance-like effects
- Photoproduction framework has been used before

XYZ excl. photoproduction		$\omega ightarrow 3\pi, \gamma^* \pi^0$	
0000			

Exclusive XYZ photoproduction amplitude

JPAC Collab., PR,D102,114010('20)

• VMD couples $V(=J/\psi, \Upsilon(nS))$ to photon $\Gamma(V \to e^+e^-) = 4\pi \alpha^2 \frac{f_V^2}{3m_V}$

• Top vertex VHE $\Gamma(H \to V E) = \frac{1}{2J_H + 1} \frac{p}{8\pi m_H^2} \sum_{\text{pol.}} \left| \mathcal{T}_{\lambda_V \lambda_H}^{\alpha_1 \cdots \alpha_j} \varepsilon_{\alpha_1 \cdots \alpha_j}^*(k, \lambda_E) \right|^2$

• Bottom vertex *NN* \mathcal{E} Taken from standard phenomenology (e.g. $NN\pi \rightarrow g_{NN\pi}$)

XYZ excl. photoproduction XYZ incl. (
0000 00	00	000000	00	0

Exclusive XYZ photoproduction amplitude

JPAC Collab., PR,D102,114010('20)

• VMD couples $V(=J/\psi, \Upsilon(nS))$ to photon $\Gamma(V \to e^+e^-) = 4\pi \alpha^2 \frac{f_V^2}{3m_V}$

• Top vertex VHE $\Gamma(H \to V \mathcal{E}) = \frac{1}{2J_H + 1} \frac{p}{8\pi m_H^2} \sum_{\text{pol.}} \left| \mathcal{T}_{\lambda_V \lambda_H}^{\alpha_1 \cdots \alpha_j} \varepsilon_{\alpha_1 \cdots \alpha_j}^*(k, \lambda_{\mathcal{E}}) \right|^2$

• Bottom vertex *NN* \mathcal{E} Taken from standard phenomenology (e.g. $NN\pi \rightarrow g_{NN\pi}$)

0000 00 000 00 00 0	XYZ excl. photoproduction		$\omega ightarrow 3\pi, \gamma^* \pi^0$	
	0000			

$Z_{c,b}$ exclusive photoproduction

JPAC Collab., PR,D102,114010('20)

	Ζ	<i>m_Z</i> (MeV)	Γ _Z (MeV)	$g_{\gamma Z\pi}$ (×10 ⁻²)	V	$\mathcal{B}(Z \rightarrow V\pi)$ (%)	$g_{VZ\pi}$
Ī	$Z_c(3900)^+$	3888.4(2.5)	28.3(2.5)	5.17	J/ψ	10.5 ± 3.5	1.91
Ī					Ƴ(15)	$0.54^{+0.19}_{-0.15}$	0.49
	$Z_b(10610)^+$	10607.2(2.0) 1	18.4(2.4)	5.80	Ƴ(2 <i>S</i>)	$3.6^{+1.1}_{-0.8}$	3.30
				Ƴ(3S)	$2.1^{+0.8}_{-0.6}$	9.22	
Ī						0.17 ^{+0.08}	0.21
	$Z_b'(10650)^+$	10652.2(1.5) 11.5(2.2)	2.90	(2 <i>S</i>)	$1.4^{+0.6}_{-0.4}$	1.47	
					Ƴ(3S)	$1.6^{+0.7}_{-0.5}$	4.80

• Top vertex $Z \rightarrow V\pi$: Sizeable branching fractions

$$\mathcal{T}_{\lambda_{V}\lambda_{Z}} = \frac{g_{VZ\pi}}{m_{Z}} \varepsilon_{\mu}(q,\lambda_{V}) \varepsilon_{\nu}^{*}(q',\lambda_{Z}) \left[(q \cdot k) g^{\mu\nu} - k^{\mu} q^{\nu} \right] \qquad \left[g_{\gamma Z\pi} = \sum_{V} \frac{ef_{V}}{m_{V}} g_{VZ\pi} \right]$$

• Bottom vertex $NN\pi$:

$$\mathcal{B}_{\lambda_N \lambda'_N} = \sqrt{2} g_{\pi NN} \beta(t) \,\overline{u}(p', \lambda'_N) \,\gamma_5 \, u(p, \lambda_N)$$

•
$$g_{\pi_{NN}}^2/(4\pi)\simeq 13.81(0.12)$$
 and $eta(t)=\expig(t'/\Lambda_\pi^2ig)$ with $\Lambda_\pi=0.9\,{
m GeV}$

- Propagator:
 - Fixed spin up to $W_{\gamma p} \lesssim E_{\rm th} + 10 \, {\rm GeV}$
 - Reggeized pions: $\alpha(t) = \alpha'(t m_{\pi}^2)$ with $\alpha' = 0.7 \, {\rm GeV}^{-2}$

0000 00 00 00 00 00 00 00	

$Z_{c,b}$ exclusive photoproduction

JPAC Collab., PR,D102,114010('20)

Z	<i>m_Z</i> (MeV)	Г _Z (MeV)	$g_{\gamma Z\pi} (imes 10^{-2})$	V	$\mathcal{B}(Z \rightarrow V\pi)$ (%)	$g_{VZ\pi}$
$Z_{c}(3900)^{+}$	3888.4(2.5)	28.3(2.5)	5.17	J/ψ	10.5 ± 3.5	1.91
				Ύ(15)	$0.54^{+0.19}_{-0.15}$	0.49
Z _b (10610) ⁺	10607.2(2.0)	18.4(2.4)	5.80	Ƴ(2 <i>S</i>)	$3.6^{+1.1}_{-0.8}$	3.30
				Ƴ(3 <i>S</i>)	$2.1^{+0.8}_{-0.6}$	9.22
				↑ (15)	$0.17^{+0.08}_{-0.06}$	0.21
Z'_b(10650) ⁺	10652.2(1.5)	11.5(2.2)	2.90	$\Upsilon(2S)$	$1.4^{+0.6}_{-0.4}$	1.47
				$\Upsilon(3S)$	$1.6^{+0.7}_{-0.5}$	4.80

XYZ excl. photoproduction			
0000			

$\chi_{c1}(1P)$ and X(3872) photoproduction

JPAC Collab., PR,D102,114010('20)

X	m_X (MeV)	Γ_X (MeV)	<i>V'</i>	$\mathcal{B}(X o \gamma V')$ (%)	$g_{\gamma XV'}$ (·10 ⁻³)
			ρ	$2.16(0.17) \cdot 10^{-4}$	0.92
$\chi_{c1}(1P)$ 3510.67(0.05) 0.84(0.04	7510 (7(0.05)	0.94(0.04)	ω	$6.8(0.8) \cdot 10^{-5}$	0.52
	0.84(0.04)	ϕ	$2.4(0.5) \cdot 10^{-5}$	0.42	
			J/ψ	34.3(1.0)	$1.0 \cdot 10^{3}$
				$\mathcal{B}(X \to J/\psi \mathcal{E})$ (%) g_{ψ}	$b_{XE} g_{\gamma XE} (\cdot 10^{-3})$
X(3872) 3871.69(0.17)		4 40(0 40)	ρ	$4.1^{+1.9}_{-1.1}$ 0.	.13 3.6
	1.19(0.19) ω	ω	$4.4^{+2.3}_{-1.3}$ 0.	.30 8.2	

XYZ incl. photoproduction	$\omega ightarrow$ 3 $\pi, \gamma^* \pi^0$	
•0		

JPAC Collab., 2209.05882 (accepted PRD)

 $\gamma(q)$ Z(q')N'(p')p(p)

 Generations applied theorem to relate ~ X ~ < X () with × XZ multiplie

Pion-exchange

(M. A)¹⁰⁰ who among it are were a

 $i = m_{1}^{2} \longrightarrow -\alpha \cdot (-\alpha_{0}) \longrightarrow 2 \longrightarrow (m_{1}^{2})$

 Model benchmarked in b₁ (1235) inclusive photoproduction (right plot)

XYZ incl. photoproduction	$\omega ightarrow$ 3 $\pi, \gamma^* \pi^0$	
•0		

 $\sum_{p(p)}^{\gamma(q)} \sum_{z(q')}^{Z(q')} \left\{ Q \right\}$

$$E_{Z} \frac{d^{3}\sigma}{d^{3}q_{f}} = \mathcal{K} \sum_{[\lambda]} \sum_{Q} \int \prod_{n} \frac{d^{3}p_{n}}{(2\pi)^{3} 2E_{n}} \left| A_{[\lambda]}^{\gamma N \to Z Q} \right|^{2} (2\pi)^{4} \delta^{4} \left(q + p - q' - P_{Q} \right)$$
$$= 2\mathcal{K} \sum_{\{\lambda\}} \text{Disc } A_{[\lambda]}^{\gamma N \tilde{Z}}$$

JPAC Collab., 2209.05882 (accepted PRD)

• Generalized optical theorem to relate $\gamma\, N \to Z\, Q$ with $\gamma\, N\bar{Z}$ amplitude

Pion-exchange

0000 00 00		

JPAC Collab., 2209.05882 (accepted PRD)

• Generalized optical theorem to relate $\gamma N \rightarrow Z Q$ with $\gamma N \overline{Z}$ amplitude

• Pion-exchange model (as in exclusive) to write $\sigma_{\gamma N \to ZQ}$ in terms of $\sigma^{\pi^*N}(t, M_Q^2)$

$$\frac{1}{t-m_{\pi}^2} \stackrel{P_{\pi}(t,s)}{\longleftrightarrow} - \alpha' \, \Gamma(-\alpha(t)) \frac{1+e^{-i\pi\,\alpha(t)}}{2} \, \left(\frac{s}{M_Q^2}\right)^{\alpha(t)}$$

0000 00 00		

JPAC Collab., 2209.05882 (accepted PRD)

$$\gamma(q) \qquad E_{Z} \frac{d^{3}\sigma}{d^{3}q_{f}} = \mathcal{K} \sum_{[\lambda]} \sum_{Q} \int \prod_{n} \frac{d^{3}p_{n}}{(2\pi)^{3} 2E_{n}} \left| A_{[\lambda]}^{\gamma N \to ZQ} \right|^{2} (2\pi)^{4} \delta^{4} \left(q + p - q' - P_{Q} \right)$$

$$= 2\mathcal{K} \sum_{[\lambda]} \text{Disc } A_{[\lambda]}^{\gamma NZ}$$

$$\simeq \frac{1}{16\pi^{3}} \frac{\lambda^{1/2} (M_{Q}^{2}, t, m_{N}^{2})}{2E_{\gamma} \sqrt{s}} |T_{\pi}(t) \mathcal{P}_{\pi}(t, s)|^{2} \sigma^{\pi^{*}N}(t, M_{Q}^{2})$$

- Generalized optical theorem to relate $\gamma N \rightarrow Z Q$ with $\gamma N \overline{Z}$ amplitude
- Pion-exchange model (as in exclusive) to write $\sigma_{\gamma N \to ZQ}$ in terms of $\sigma^{\pi^*N}(t, M_Q^2)$

$$\frac{1}{t-m_{\pi}^2} \stackrel{P_{\pi}(t,s)}{\longleftrightarrow} -\alpha' \Gamma(-\alpha(t)) \frac{1+e^{-i\pi\alpha(t)}}{2} \left(\frac{s}{M_Q^2}\right)^{\alpha(t)}$$

Model benchmarked in b₁(1235) inclusive photoproduction [right plot]

XYZ incl. photoproduction	$\omega ightarrow$ 3 $\pi, \gamma^* \pi^0$	
00		

JPAC Collab., 2209.05882 (accepted PRD)

- Near threshold:
 - Relevant contribution from inelastic for Z⁺ prod. [left plot]
 - Dominant contribution from Δ^{++} in Z^- prod. [right plot]

• High energy:

	$\sigma(\gamma p ightarrow H^{\pm} Q)$ [pb]					ı) [pb]
Н	30 GeV	60 GeV	90 GeV	30 GeV	60 GeV	90 GeV
<i>b</i> ₁ (1235)	$60 \cdot 10^3$	$60 \cdot 10^3$	$61 \cdot 10^{3}$	43	2.3	$< 10^{-8}$
$Z_{c}(3900)$	187	146	140	19	1.0	$< 10^{-8}$
$Z_b(10610)$	163	15	5	150	10	$< 10^{-8}$
$Z_b(10650)$	40	4	1	37	2.4	$< 10^{-8}$

	Introduction to KT	$\omega ightarrow 3\pi, \gamma^* \pi^0$	
	0		

Introduction: Khuri-Treiman equations in a nutshell

• Partial wave expansion in the s-channel:

$$T(s, t, u) = \sum_{\ell=0}^{\infty} (2\ell + 1) P_{\ell}(z_s) t_{\ell}(s)$$

- Two main (connected) problems:
 - Infinite number of PW
 - PW have RHC and LHC
- Only RHC: BS equation, K-matrix, DR,...
- Problem with "truncation": t_l(s) only depends on s, so singularities in the t-, u-channel can only appear suming an infinite number of PW.

n

a

h

 In many decay processes one wants to take into account unitarity/FSI interactions in the three possible channels.

	Introduction to KT	$\omega ightarrow$ 3 $\pi, \gamma^* \pi^0$	
	00		

Introduction: Khuri-Treiman equations in a nutshell

• Khuri-Treiman equations are a tool to achieve this two-body unitarity in the three channels

[N. Khuri, S. Treiman, Phys. Rev. 119, 1115 (1960)]

- Consider three (*s*-, *t*-, *u*-channels) **truncated** "isobar" expansions.
- Isobars $f_{\ell}^{(s)}(s)$ have only RHC: amenable for dispersion relations.

$$T(s,t,u) = \sum_{\ell=0}^{n_s} (2\ell+1) P_{\ell}(z_s) t_{\ell}(s)$$

= $\sum_{\ell=0}^{n_s} (2\ell+1) P_{\ell}(z_s) f_{\ell}^{(s)}(s) + \sum_{\ell=0}^{n_t} (2\ell+1) P_{\ell}(z_t) f_{\ell}^{(t)}(t) + \sum_{\ell=0}^{n_u} (2\ell+1) P_{\ell}(z_u) f_{\ell}^{(u)}(u)$

- s-channel singularities appear in the s-channel isobar, $t_{\ell}^{(s)}(s)$.
- Singularities in the *t*-, *u*-channel are recovered!
- The LHC of the partial waves are given by the RHC of the crossed channel isobars

$$t_{\ell}(s) = \frac{1}{2} \int dz P_{\ell}(z) T(s, t', u') = f_{\ell}^{(s)}(s) + \frac{1}{2} \int dz Q_{\ell\ell'}(s, t') f_{\ell'}^{(t)}(t') .$$

	$\omega ightarrow 3\pi, \gamma^* \pi^0$	
	00000	

$\omega ightarrow$ 3 π amplitude. Phenomenology

JPAC Collab., EPJ,C80,1107('20)

Amplitude:

$$\mathcal{M}_+(s,t,u) = \frac{\sqrt{\phi(s,t,u)}}{2} F(s,t,u) . \qquad \left(\phi(s,t,u) = 4sp^2(s)q^2(s)\sin^2\theta_s\right)$$

- Decay width: $d^2\Gamma \sim \phi(s,t,u) |F(s,t,u)|^2$
- Dalitz plot parameters (α , β , γ) "equivalent" to bins... $(X, Y) \leftrightarrow (Z, \varphi) \leftrightarrow (s, t, u)$

$$|F(s,t,u)|^2 = |\mathcal{N}|^2 \left(1 + 2\alpha Z + 2\beta Z^{\frac{3}{2}} \sin 3\varphi + 2\gamma Z^2 + \cdots\right)$$

• Why revisit $\omega \rightarrow 3\pi$?

One (or more) out of three is wrong.
 3) Control opposition

	roduction to KT ω	$\gamma \rightarrow 3\pi, \gamma^* \pi^0$	
) •	00000	

$\omega ightarrow$ 3 π amplitude. Phenomenology

JPAC Collab., EPJ,C80,1107('20)

Amplitude:

$$\mathcal{M}_+(s,t,u) = \frac{\sqrt{\phi(s,t,u)}}{2} F(s,t,u) . \qquad \left(\phi(s,t,u) = 4sp^2(s)q^2(s)\sin^2\theta_s\right)$$

- Decay width: $d^2\Gamma \sim \phi(s,t,u) |F(s,t,u)|^2$
- Dalitz plot parameters (α , β , γ) "equivalent" to bins... $(X, Y) \leftrightarrow (Z, \varphi) \leftrightarrow (s, t, u)$

$$|F(s,t,u)|^2 = |\mathcal{N}|^2 \left(1 + 2\alpha Z + 2\beta Z^{\frac{5}{2}} \sin 3\varphi + 2\gamma Z^2 + \cdots\right)$$

• Why revisit $\omega \rightarrow 3\pi$?

	Bonn (2012)		JPAC (2015)		BESIII (2018)
	Eur. Phys. J., C72, 2014 (2012)		Phys. Rev., D91, 094029 (2015)		Phys. Rev., D98, 112007 (2018)
	w/o KT	w KT	w/o KT	w KT	Exp.
α	130 ± 5	79 ± 5	125	84	$120.2 \pm 7.1 \pm 3.8$
β	31 ± 2	26 ± 2	30	28	$29.5\pm8.0\pm5.3$

	roduction to KT ω	$\gamma \rightarrow 3\pi, \gamma^* \pi^0$	
) •	00000	

$\omega ightarrow 3\pi$ amplitude. Phenomenology

JPAC Collab., EPJ,C80,1107('20)

Amplitude:

$$\mathcal{M}_+(s,t,u) = \frac{\sqrt{\phi(s,t,u)}}{2} F(s,t,u) . \qquad \left(\phi(s,t,u) = 4sp^2(s)q^2(s)\sin^2\theta_s\right)$$

- Decay width: $d^2\Gamma \sim \phi(s,t,u) |F(s,t,u)|^2$
- Dalitz plot parameters (α , β , γ) "equivalent" to bins... $(X, Y) \leftrightarrow (Z, \varphi) \leftrightarrow (s, t, u)$

$$|F(s,t,u)|^2 = |\mathcal{N}|^2 \left(1 + 2\alpha Z + 2\beta Z^{\frac{3}{2}} \sin 3\varphi + 2\gamma Z^2 + \cdots\right)$$

• Why revisit $\omega \rightarrow 3\pi$?

	Bonn (2012)		JPAC (2015)		BESIII (2018)
	Eur. Phys. J., C72, 2014 (2012)		Phys. Rev., D91, 094029 (2015)		Phys. Rev., D98, 112007 (2018)
	w/o KT	w KT	w/o KT	w KT	Exp.
α	130 ± 5	79 ± 5	125	84	$120.2 \pm 7.1 \pm 3.8$
β	31 ± 2	26 ± 2	30	28	$29.5 \pm 8.0 \pm 5.3$

• One (or more) out of three is wrong...

1) Experiment?

2) KT eqs., in general?3) Something particular?

	$\omega \rightarrow 3\pi, \gamma^* \pi^0$	
	00000	

KT equations: DR, subtractions, solutions, and all that...

• PW decomposition:
$$F(s, t, u) = \sum_{j \in d} P'_j(\cos \theta_s)[p(s)q(s)]^{j-1}f_j(s) = f_1(s) + \cdots$$

• KT/isobar decomposition: consider only j = 1 (ρ) isobar, F(s):

$$F(s,t,u) = F(s) + F(t) + F(u)$$

• PW projection of the KT decomposition:

$$f_1(s) = F(s) + \hat{F}(s)$$
, $\hat{F}(s) = \frac{3}{2} \int_{-1}^{1} dz_s (1 - z_s^2) F(t(s, z_s))$

• Discontinuity:

$$\Delta F(s) = \Delta f_1(s) = \rho(s)t_{11}^*(s)f_1(s) = \rho(s)t_{11}^*(s)\left(F(s) + \hat{F}(s)\right)$$

Unsubtracted DR	Once-subctracted DR
$F(s) = a F_0(s)$ $F_0(s) = \Omega(s) \left[1 + \frac{s}{\pi} \int_{4m_\pi^2}^{\infty} \frac{ds'}{s'} \frac{\sin \delta(s') \hat{F}_0(s')}{ \Omega(s') (s'-s)} \right]$	$F(s) = a \left(F'_{a}(s) + b F_{b}(s) \right)$ $F'_{a}(s) = \Omega(s) \left[1 + \frac{s^{2}}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{ds'}{s'^{2}} \frac{\sin \delta(s') \hat{F}'_{a}(s')}{ \Omega(s') (s'-s)} \right]$ $F_{b}(s) = \Omega(s) \left[s + \frac{s^{2}}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{ds'}{s'^{2}} \frac{\sin \delta(s') \hat{F}_{b}(s')}{ \Omega(s') (s'-s)} \right]$

	$\omega ightarrow 3\pi, \gamma^* \pi^0$	
	00000	

KT equations: DR, subtractions, solutions, and all that...

Unsubtracted DR	Once-subctracted DR
$F(s) = a F_0(s)$ $F_0(s) = \Omega(s) \left[1 + \frac{s}{\pi} \int_{4m_\pi^2}^{\infty} \frac{ds'}{s'} \frac{\sin \delta(s') \hat{F}_0(s')}{ \Omega(s') (s'-s)} \right]$	$F(s) = a \left(F'_{a}(s) + b F_{b}(s) \right)$ $F'_{a}(s) = \Omega(s) \left[1 + \frac{s^{2}}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{ds'}{s'^{2}} \frac{\sin \delta(s') \hat{F}'_{a}(s')}{ \Omega(s') (s'-s)} \right]$ $F_{b}(s) = \Omega(s) \left[s + \frac{s^{2}}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{ds'}{s'^{2}} \frac{\sin \delta(s') \hat{F}_{b}(s')}{ \Omega(s') (s'-s)} \right]$

	$\omega ightarrow$ 3 $\pi, \gamma^* \pi^0$	
	00000	

 $\omega
ightarrow \pi^0$ transition form factor

• The decays $\omega(\to \pi^0 \gamma^*) \to \pi^0 l^+ l^-$ and $\omega \to \pi^0 \gamma$ governed by the TFF $f_{\omega \pi^0}(s)$.

$$\mathcal{M}(\omega \to \pi^0 \ell^+ \ell^-) = f_{\omega \pi^0}(s) \epsilon_{\mu\nu\alpha\beta} \epsilon^{\mu}(p_{\omega}, \lambda) p^{\nu} q^{\alpha} \frac{ie^2}{s} \bar{u}(p_-) \gamma^{\beta} v(p_+) ,$$

$$\Gamma(\omega \to \pi^0 \gamma) = \left| f_{\omega \pi^0}(0) \right|^2 \frac{e^2 (m_{\omega}^2 - m_{\pi^0}^2)^3}{96\pi m_{\omega}^3} ,$$

Dispersive representation:

$$\int_{\pi^{+}}^{\gamma^{*}} \int_{\pi^{-}}^{\pi^{-}} f_{\omega\pi^{0}}(s) = f_{\omega\pi^{0}}(0) + \frac{s}{12\pi^{2}} \int_{4m_{\pi}^{2}}^{\infty} ds' \frac{q_{\pi}(s')^{3}}{s'^{\frac{3}{2}}(s'-s)} \left(F(s') + \hat{F}(s')\right) F_{\pi}^{V}(s')^{*}$$

• $f_{\omega\pi^0}(0) = |f_{\omega\pi^0}(0)| e^{i\phi_{\omega\pi^0}(0)}$

• Experimental information: $F_{\omega \pi^0}(s) = \frac{f_{\omega \pi^0}(s)}{f_{\omega \pi^0}(0)}$

• Only the relative phase
$$\frac{a}{f_{\omega\pi^0}(0)} = \frac{|a|}{|f_{\omega\pi^0}(0)|} \frac{1}{e^{i(\phi_{\omega\pi^0}(0)-\phi_a)}}$$

	$\omega ightarrow 3\pi, \gamma^* \pi^0$	
	000000	

Summary of amplitudes/free parameters/exp. input

	$\omega ightarrow 3\pi, \gamma^* \pi^0$	
	000000	

First analysis in three steps

 $\Gamma_{\omega \to 3\pi}, \Gamma_{\omega \to \gamma\pi}.$

1

2

JPAC Collab., EPJ,C80,1107('20)

1
$$\chi^2_{\text{DP}} = \left(\frac{\alpha^{(t)} - \alpha^{(e)}}{\sigma_{\alpha}}\right)^2 + \cdots$$

2 $\chi^2_{\Gamma} = \left(\frac{\Gamma^{(t)}_{3\pi} - \Gamma^{(e)}_{3\pi}}{\sigma_{\Gamma_{3\pi}}}\right)^2 + \left(\frac{\Gamma^{(t)}_{\gamma\pi} - \Gamma^{(e)}_{\gamma\pi}}{\sigma_{\Gamma_{\gamma\pi}}}\right)^2$

3
$$\chi^{2}_{A2,NA60} = \sum_{i} \left(\frac{|F_{\omega\pi}(s_{i})|^{2} - |F_{\omega\pi}^{(i)}|^{2}}{\sigma_{F_{\omega\pi}^{(i)}}} \right)^{2}$$

Fix $|b| \simeq 2.9$, $\phi_b \simeq 1.9$ with the DP parameters.

3 You are left with $\phi_{\alpha\pi^0}(0)$ and the TFF Data.

Fix $|a| \simeq 280 \text{ GeV}^{-3}$, $|f_{\omega \pi^0}(0)| \simeq 2.3 \text{ GeV}^{-1}$ from

- Both have similar y² of the TFF.

Make a **global, simultaneous** analysis

	$\omega ightarrow 3\pi, \gamma^* \pi^0$	
	000000	

First analysis in three steps

 $\Gamma_{\omega \to 3\pi}, \Gamma_{\omega \to \gamma\pi}.$

Fix |b| ≃ 2.9, φ_b ≃ 1.9 with the DP parameters.
 Fix |a| ≃ 280 GeV⁻³, |f_{ciπ0}(0)| ≃ 2.3 GeV⁻¹ from

3 You are left with $\phi_{\alpha\pi^0}(0)$ and the TFF Data.

JPAC Collab., EPJ,C80,1107('20)

$$\begin{array}{l} \mathbf{1} \quad \chi^2_{\mathsf{DP}} = \left(\frac{\alpha^{(t)} - \alpha^{(e)}}{\sigma_{\alpha}}\right)^2 + \cdots \\ \mathbf{2} \quad \chi^2_{\mathsf{\Gamma}} = \left(\frac{\Gamma^{(t)}_{3\pi} - \Gamma^{(e)}_{3\pi}}{\sigma_{\mathsf{\Gamma}_{3\pi}}}\right)^2 + \left(\frac{\Gamma^{(t)}_{\gamma\pi} - \Gamma^{(e)}_{\gamma\pi}}{\sigma_{\mathsf{\Gamma}_{\gamma\pi}}}\right)^2 \\ \mathbf{3} \quad \chi^2_{\mathsf{A2},\mathsf{NA60}} = \sum_i \left(\frac{|F\omega\pi(s_i)|^2 - \left|F^{(i)}_{\omega\pi}\right|^2}{\sigma_{\mathsf{F}^{(i)}_{\omega\pi}}}\right)^2 \end{array}$$

- Two different minima (low and high $\phi_{\omega\pi^0}(0)$) are found.
- Both have similar χ^2 of the TFF.

Make a **global, simultaneous** analysis

$$\overline{\chi}^{2} = N \left(\frac{\chi_{\mathsf{DP}}^{2}}{N_{\mathsf{DP}}} + \frac{\chi_{\Gamma}^{2}}{N_{\Gamma}} + \frac{\chi_{\mathsf{NA60}}^{2}}{N_{\mathsf{NA60}}} + \frac{\chi_{\mathsf{A2}}^{2}}{N_{\mathsf{A2}}} \right)$$

	$\omega \rightarrow 3\pi, \gamma^* \pi^0$ 00000	

Results

JPAC Collab., EPJ,C80,1107('20)

	α	β	γ
BESIII	111(18)	25(10)	22(29)
low	112(15)	23(6)	29(6)
high	109(14)	26(6)	19(5)

Using once-subtracted DR for KT:
 Agreement is restored with DP parameters by BESIII
 One can also describe the ωπ⁰ TFF

	$\omega ightarrow$ 3 $\pi, \gamma^* \pi^0$	$J/\psi ightarrow 3\pi$	
		0	

$J/\psi ightarrow$ 3π decays

- Completely analogous formalism (V)
- BESIII data [PL,B710('12)]
- The decay is dominated by ho, even if there is a larger phase space
- **0-sub** (prediction) get the basic features
- 1-sub (fit) improves the description
- 1-sub + F-wave [$ho_3(1690)$] describes better the movements above $\gtrsim 1.5$ GeV.

	$\omega ightarrow$ 3 $\pi, \gamma^* \pi^0$	$J/\psi ightarrow 3\pi$	
		0	

$J/\psi ightarrow$ 3π decays

- Completely analogous formalism (V)
- BESIII data [PL,B710('12)]
- The decay is dominated by ρ , even if there is a larger phase space
- **0-sub** (prediction) get the basic features
- 1-sub (fit) improves the description
- **1-sub +** *F***-wave** [$\rho_3(1690)$] describes better the movements above $\gtrsim 1.5$ GeV.

	$\omega ightarrow$ 3 $\pi,\gamma^{st}\pi^{0}$	$J/\psi ightarrow 3\pi$	
		00	

${\sf J}/\psi ightarrow {\sf 3}\pi$ decays

- Dalitz plot distribution similar to exp. one
- More statistics will allow to unveil other effects (resonances, interferences,...)
- Predictions can be done for angular [z = cos θ_s] distributions, specially restricted to ρ-mass region.

	$\omega ightarrow 3\pi, \gamma^* \pi^0$	Summary ●

Summary

- JPAC very active in several hadron physics topics
- XYZ photoproduction

JPAC Collab., PR,D102,114010('20) JPAC Collab., 2209.05882 (accepted PRD)

- Photoproduction of XYZ offers the opportunity of investigating these enigmatic states in a new, perhaps cleaner, way.
- $\circ~$ Exclusive photoproduction studied with quite general formalisms for both for low (fixed-spin) and high (reggeized) $\gamma~N$ energy
- Vertices extracted as much as possible from known experimental information and phenomenology.
- Inclusive reactions improves perspective (role of Δ)
- Code can be found at https://github.com/dwinney/jpacPhoto
- KT equations and $V \rightarrow 3\pi$:
 - KT equations are a powerful tool to study 3-body decays
 - They allow to implement two-body unitarity in all the three channels (s, t, u).
 - For $\omega \to 3\pi$ decays:

JPAC Collab., EPJ,C80,1107('20)

- $\,\circ\,\,$ Using once-subtracted DRs, we are able to reproduce the $\omega\,\rightarrow\,$ 3 π DP parameters,
- and the $\omega \to \pi^0 \gamma^*$ transition form factor data.
- $\circ~$ For $J/\psi \rightarrow$ 3 π decays, good agreement with the data is found assuming elastic (P- and F-waves).

Recent results from JPAC collaboration

Miguel Albaladejo (IFIC)

Recent results and perspectives in hadron physics (Institute Pascal, Orsay, Oct. 17th, 2022)

STR**®**NG-<mark>2©20</mark>