Quarks and gluons in the Lund plane(s)

Gregory Soyez, with Frederic Dreyer, Andrew Lifson, Gavin Salam and Adam Takacs based on arXiv:1807.04758, arXiv:2007.06578 and arXiv:2112.09140

IPhT, CNRS, CEA Saclay

CERN, June 3 2022

Plan

• Context

- Jets as fundamental objects
- The onset of jet substructure
- The Lund Plane(s): Picture, logic and construction
- The Lund Plane(s): Applications
 - radiation visualisation
 - analytic viewpoint
 - experimental viewpoint
 - Monte Carlo generators
 - Boosted object tagging
 - Machine Learning
 - heavy ions
 - quark v. gluon

Context: jets and jet substructure

▶ < ∃ ▶</p>

Hard partons (quarks&gluons) produced in high-energy collisions branch into more partons mostly at small angles \rightarrow collimated bunches of hadrons

Jets "collect" these bunches \Rightarrow jet \equiv proxies to hard partons

Jets mimic hard partons

Hard partons (quarks&gluons) produced in high-energy collisions branch into more partons mostly at small angles \rightarrow collimated bunches of hadrons

Jets "collect" these bunches \Rightarrow jet \equiv proxies to hard partons

• From the discovery of the gluon... (as $e^+e^-
ightarrow$ 3 jets at TASSO)

Jets mimic hard partons

Hard partons (quarks&gluons) produced in high-energy collisions branch into more partons mostly at small angles \rightarrow collimated bunches of hadrons

Jets "collect" these bunches \Rightarrow jet \equiv proxies to hard partons

- From the discovery of the gluon... (as $e^+e^-
 ightarrow$ 3 jets at TASSO)
- ... to routine usage at the LHC $(\gtrsim 2/3 \text{ analyses})$

Jet substructure

Jet substructure

Jet substructure

A decade of substructure tools

	(modified) MassDrop Tagger	(generalised) angularities	
(recursive) SoftDrop	Trimming	1	V-subjettiness
ЈН Тор	Pruning Shower deconstruct ⁿ	Energy Correlation Functions	Energy flow Polynomials
tagger	HEP Top tagger	Jet Pull	

* Non-exhaustive/biased/... list

ъ.

A decade of substructure tools

CERN, June 3 2022 5 / 17

-

A decade of substructure tools

The Lund Jet Plane(s) definition/logic

313 DQC

▶ < ∃ ▶</p>

use Cambridge/Aachen to iteratively recombine the closest pair

 closely follows our beloved angular ordering

ELE DOG

- closely follows our beloved angular ordering
- i.e. mimics partonic cascade

315

< E

- closely follows our beloved angular ordering
- i.e. mimics partonic cascade
- can be organised in Lund planes

315

▶ < ∃ ▶</p>

- closely follows our beloved angular ordering
- i.e. mimics partonic cascade
- can be organised in Lund planes
 - primary

315

▶ < ∃ ▶</p>

- closely follows our beloved angular ordering
- i.e. mimics partonic cascade
- can be organised in Lund planes
 - primary
 - secondary

- closely follows our beloved angular ordering
- i.e. mimics partonic cascade
- can be organised in Lund planes
 - primary
 - secondary
 - ...
- Other interesting variables: ψ , z, m, ...

The Lund Jet Plane(s) (many) applications

313 990

▶ < ∃ ▶</p>

-

• meaningfull radiation pattern in each region

 $\alpha_s(k_t)$ running, NP at \lesssim 5 GeV, ISR+MPI effects at large angles, ...

-

• • = • • = •

Application: different regions of sensitivity

- meaningfull radiation pattern in each region
- measured by ATLAS [ATLAS, 2004.03540] watch out: different projection: $\ln k_t \rightarrow \ln z$

-

- meaningfull radiation pattern in each region
- measured by ATLAS [ATLAS, 2004.03540]
- helpful comparison to analytics NLO(exact $O(\alpha_s^2)$)+NLL(all-orders separated emissions)+NP(from MC)

see also [R.Medves,A.Soto,GS,2205.02861] for a multiplicity observable

- meaningfull radiation pattern in each region
- measured by ATLAS [ATLAS, 2004.03540]
- helpful comparison to analytics
- helpful comparison to MC generators

ELE DOG

Sensitive to (collinear) spin "New" PanScales shower have spin at NLL agrees w EEEC from 2011.02492 (EEEC less sensitive)

< 口 > < 凸

Quarks, gluons and Lund plane(s)

▶ < 글 ▶ < 글 ▶ 글| = ∽ < ↔ CERN, June 3 2022 9 / 17

 $\gamma^* \rightarrow q\bar{q}$ $- O(\alpha_*^2) \cdot \langle S + C \rangle / \langle O(\alpha_*^2) \rangle$ Collinear spin No spin Soft + collinear spin $\times 10^{-2}$ $\times 10^{-2}$ All channels qq channel 8.8 8.6 9.8 $\frac{1}{\sigma_{tot}} \frac{d\sigma}{d\Delta \psi_{12}}$ 8.4 9.68.2 9.4 $\times 10^{-2}$ $\times 10^{-3}$ Rest channe $a\bar{a}$ channel 2.0 $\frac{1}{\sigma_{\text{tot}}} \frac{1}{d\Delta\psi_{12}}$ 1.5 1.50.5 1.0 $\pi/2$ $-\pi/2$ 0 π $-\pi/2$ $\pi/2$ $-\pi$ $-\pi$ $\Delta \psi_{12}$ $\Delta \psi_{12}$ Sensitive to (soft) spin

[K.Hamilton, A.Karlberg, G.Salam, L.Scyboz, R.Verheyen, 2111.01161]

"New" PanScales shower have spin at NLL first all-order result

▶ ∢ ⊒

315

Application: heavy-ion collisions

Check how radiation changes when interacting with the QGP

Example: largest- θ emission with $z > z_{cut}$

Application to boosted object tagging

THE typical substructure application: given a high- p_t jet

^(*) or Z, H, top, ...

Is it a "standard" QCD jet...

...or a **boosted** *W*-boson^(*) decay?

Decay angle: $\theta \propto \frac{m}{p_t}$

ELE DOG

Application to boosted object tagging

THE typical substructure application: given a high- p_t jet

Example performance

▲ロト ▲冊 ▶ ▲ ヨト ▲ ヨト 三日日 のの()

Example performance

Application: quark v. gluons

Last application for today: given a high- p_t jet ... or a gluon-initiated jet?

Is it a guark-initiated jet...

.....

WATCH OUT: technically "quark v. gluon" is not a well-defined concept in QCD (see arXiv:1704.03878)

> = = 000

Application: quark v. gluons

ls it a quark-initiated jet...

.....

... or a gluon-initiated jet?

Question: can we answer given the Lund dweclusterings in a jet?

Quark v. gluon jets: I. approach

 $\begin{array}{l} \text{Optimal discriminant (Neyman-Pearson lemma)} \\ \mathbb{L}_{\mathsf{prim},\mathsf{tree}} = \frac{p_{\mathcal{G}}(\mathcal{L}_{\mathsf{prim},\mathsf{tree}})}{p_{q}(\mathcal{L}_{\mathsf{prim},\mathsf{tree}})} \end{array}$

-

Quark v. gluon jets: I. approach

Optimal discriminant (Neyman–Pearson lemma) $\mathbb{L}_{\text{prim,tree}} = \frac{p_g(\mathcal{L}_{\text{prim,tree}})}{p_q(\mathcal{L}_{\text{prim,tree}})}$ Approach #1

 $\begin{array}{c} \text{Deep-learn } \mathbb{L}_{\text{prim},\text{tree}} \\ \text{LSTM with } \mathcal{L}_{\text{prim}} \text{ or Lund-Net with } \mathcal{L}_{\text{tree}} \end{array}$

Quark v. gluon jets: I. approach

Optimal discriminant (Neyman–Pearson lemma) $\mathbb{L}_{prim,tree} = \frac{p_g(\mathcal{L}_{prim,tree})}{p_q(\mathcal{L}_{prim,tree})}$

Approach #1

 $\begin{array}{l} \text{Deep-learn } \mathbb{L}_{\text{prim},\text{tree}} \\ \text{LSTM with } \mathcal{L}_{\text{prim}} \text{ or Lund-Net with } \mathcal{L}_{\text{tree}} \end{array}$

Approach #2

Use pQCD to calculate $p_{q,g}(\mathcal{L}_{prim,tree})$

- Consider $k_t \ge k_{t,{\rm cut}}$ to stay perturbative
- Leading order: $\mathbb{L}_{prim,tree} \leftrightarrow$ number of primary emissions!
 - Primary emissions get factor $\frac{2\alpha_s(k_t)C_i}{\pi}$ ($C_q = C_F, C_g = C_A$)
 - Subsidiary emissions get a factor $\frac{2\alpha_s(k_t)C_A}{\pi}$
- Next order: include collinear effects (incl. flavour changing)
 - + running coupling effects + Sudakov for virtuals + clustering effects at commensurate angles

くロット (雪) (ヨ) (モ) (ヨ) (ロ)

our analytic discriminant is exact/optimal in the dominant collinear limit $\theta_1 \gg \theta_2 \gg \cdots \gg \theta_n$ \Rightarrow ML expected to give the same performance

> < = > = = < < <

our analytic discriminant is exact/optimal in the dominant collinear limit $\theta_1 \gg \theta_2 \gg \cdots \gg \theta_n$ \Rightarrow ML expected to give the same performance

Quark v. gluon jets: III. performance

$pp \rightarrow Zq \text{ v. } pp \rightarrow Zg \qquad (p_t \sim 500 \text{ GeV}, R = 0.4)$

• clear performance ordering:

Lund+ML > Lund analytic > ISD 2 tree > prim

Gregory Soyez

ELE DOG

- 4 西

Quark v. gluon jets: III. performance

pp ightarrow Zq v. pp ightarrow Zg ($p_t \sim 500$ GeV, R = 0.4)

• clear performance ordering:

Lund+ML > Lund analytic > ISD
 tree > prim

• larger gains with no k_t cut

(several potential reasons)

• Q: analytics to other systems (W/Z/H, top)?

315

▶ < ∃ ▶</p>

Jets are ubiquitous at colliders

Jet substructure

- Jets have a substructure (internal dynamics) which is worth exploiting
- Now routinely used at the LHC
- Broad applications: tagging, pQCD, measurements, Monte Carlo, heavy-ions, machine-learning, ...

Physics with Lund-plane(s)

- Construction with clear physics properties
 - Organised in trees respecting angular ordering
 - Different physics effects contribute to different regions
 - Opens possibilities to craft your own observables
- Broad applications: tagging, pQCD, measurements, Monte Carlo, heavy-ions, machine-learning, ...

Backup

<ロト < 同ト < 回ト < 回ト

≣া≡ ৩৭৫

Quark v. gluon jets: 0. basic considerations

What is a Quark Jet?

From lunch/dinner discussions

pedestrian summary

- there is no such thing as a "quark" or a "gluon" jet
- well-defined: tagging process A ("quark-enriched"(*)) against process B ("gluon-enriched"(*))

(*) ambiguous

Our approach(es)

- discuss process-independent aspects (at least analytically)
- probe changes for different processes

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○○○

Resilience (1/2)

Question: is your tagger resilient to uncontrolled effects?

One has:

• a reference sample A

(e.g. network trained+tested w Pythia)

• an alternate sample B

(e.g. network tested w Herwig)

We want (for a given working point)

$$\zeta = \left[\left(\frac{\Delta \varepsilon_{q}}{\langle \varepsilon_{q} \rangle} \right)^{2} + \left(\frac{\Delta \varepsilon_{g}}{\langle \varepsilon_{g} \rangle} \right)^{2} \right]^{-1}$$

as small as possible.

(would probably deserve a study on its own)

Gregory Soyez

Resilience (1/2)

Question: is your tagger resilient to uncontrolled effects?

 ε_{g}

One has:

• a reference sample A

(e.g. network trained+tested w Pythia)

• an alternate sample B

(e.g. network tested w Herwig)

We want (for a given working point)

$$\zeta = \left[\left(\frac{\Delta \varepsilon_{q}}{\langle \varepsilon_{q} \rangle} \right)^{2} + \left(\frac{\Delta \varepsilon_{g}}{\langle \varepsilon_{g} \rangle} \right)^{2} \right]^{-1}$$

as small as possible.

- performance = $\varepsilon_q/\sqrt{\varepsilon_g}$
- working point: $k_{t,\text{cut}} = 1$ GeV, optimal performance (reference: Pythia, hadron+MPI, Z+jet)
- 3 studies: sample (Z+jet v. dijets), NP effects (hadron v. parton), generator (Pythia v. Herwig)
- performance: same ordering as before
- resilience: network-based < Lund analytics $\lesssim n_{SD}$

313 DQC

Resilience (2/2)

- same, varying $k_{t,cut}$
- for each curve: "standard" trade-off between performance and resilience
- Overall: better behaviour for the new Lund-based approaches:
 - At "large" resilience: better envelope for the Lund analytic approaches
 - At "small" resilience: ML performance gain pays off

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▲ のへで

Comparison to other approaches: ML-based

Approaches:

- Lund-Net (full tree)
- Particle-flow network
- Energy-flow network

- small performance gain for Lund
- differences might come from details

-

Comparison to other approaches: ML-based

Approaches:

- Lund-Net (full tree)
- Particle-flow network
- Energy-flow network
- Dashed: with PDG-ID
- Particle-Net
- small performance gain for Lund
- differences might come from details
- ▶ with PDG-ID: PFN~Lund≳PNet

-

▶ ∢ ⊒

Comparison to other approaches: analytics/shapes

Significance: Lund models v. others 4.0 Pvthia8. Z+iet n_{sD} Lund NLL $500 < p_t < 550 \text{ GeV}$ 3.5 R = 0.4significance, $\varepsilon_q/\sqrt{\varepsilon_g}$ 3.0 $k_t > 1 \text{ GeV}$ 2.5 2.0 1.5 1.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.1 εα

clear gain from our analytic approach

Comparison to other approaches: analytics/shapes

Significance: Lund models v. others 4.0 **N**SD Pvthia8. Z+iet Lund NLL $500 < p_t < 550 \text{ GeV}$ $\lambda_1(\text{all}k_t)$ 3.5 R = 0.4 $\lambda_1(k_t > 1 \text{ GeV})$ significance, $\varepsilon_q/\sqrt{\varepsilon_g}$ 3.0 $k_t > 1 \text{ GeV}$ 2.5 2.0 1.5 1.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 01 εα

Approaches:

- ISD mult (n_{SD})
- Lund (full tree, analytic)
- width $(\sum_i p_{ti} \Delta R_i)$
- Dashed: use subjets with $k_t > 1 \text{ GeV}$
- clear gain from our analytic approach
- Different behaviour for shapes
- Lund (expectably) better for same info

315

▶ ∢ ⊒

Comparison to other approaches: analytics/shapes

Approaches:

- ISD mult (*n*_{SD})
- Lund (full tree, analytic)
- width $(\sum_i p_{ti} \Delta R_i)$
- EE correlation $(\sum_{i,j} p_{ti} p_{tj} \Delta R_{ij}^{\beta})$
- Dashed: use subjets with $k_t > 1 \text{ GeV}$
- clear gain from our analytic approach
- Different behaviour for shapes
- Lund (expectably) better for same info

315

▶ < ∃ ▶</p>

$e^+e^- ightarrow Z ightarrow q ar q$ v. $e^+e^- ightarrow H ightarrow gg$ $(\sqrt{s}=125$ GeV, no ISR)

observed performance:

• tagging both hemispheres i.e. both jets should be tagged

full event clearly worse that $(jet)^2$

$e^+e^- ightarrow Z ightarrow q ar q$ v. $e^+e^- ightarrow H ightarrow gg$ $(\sqrt{s}=125$ GeV, no ISR)

observed performance:

- tagging both hemispheres
- double Lund-Net tag train separately on hard & soft hemispheres use another NN (or MVA) to combine the two

clear performance gain

$e^+e^- ightarrow Z ightarrow q ar q$ v. $e^+e^- ightarrow H ightarrow gg$ $(\sqrt{s}=125$ GeV, no ISR)

observed performance:

- tagging both hemispheres
- double Lund-Net tag
- Lund-Net for the full event Another performance gain

- A - TH

$e^+e^- ightarrow Z ightarrow q ar q$ v. $e^+e^- ightarrow H ightarrow gg$ $(\sqrt{s} = 125$ GeV, no ISR)

observed performance:

- tagging both hemispheres
- double Lund-Net tag
- Lund-Net for the full event Another performance gain

Open questions/work in progress

- How does the analytic do?
 - e.g. what gain from full-event tagging?
- Applications to other cases (e.g. at the LHC)?