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o Context

» Jets as fundamental objects
» The onset of jet substructure

@ The Lund Plane(s): Picture, logic and construction

@ The Lund Plane(s): Applications

radiation visualisation
analytic viewpoint
experimental viewpoint
Monte Carlo generators
Boosted object tagging
Machine Learning
heavy ions

quark v. gluon
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Context:
jets and jet substructure
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Jets mimic hard partons

Hard partons (quarks&gluons)
produced in high-energy collisions
branch into more partons mostly at
small angles
— collimated bunches of hadrons

Jets “collect” these bunches
= jet = proxies to hard partons
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Jets mimic hard partons

Hard partons (quarks&gluons)
produced in high-energy collisions
branch into more partons mostly at

small angles >
. (L]
— collimated bunches of hadrons -
E
2 3 ek
“ ’ ° 244 Gev T
Jets “collect” these bunches E e
o _ o r (f) 1
= jet = proxies to hard partons ) ok _ L \}
e From the discovery of the gluon... 2 e,
(as eTe™ — 3 jets at TASSO) Momentum (GeV/c)
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Jets mimic hard partons

Hard partons (quarks&gluons)
produced in high-energy collisions
branch into more partons mostly at
small angles
— collimated bunches of hadrons

Z — pumpt 4+ 3 jets

Run Number 158466, Event Number 4174272 |,
Date: 2010-07-02 17:49:13 CEST A

Jets “collect” these bunches
= jet = proxies to hard partons

@ From the discovery of the gluon...
(as eTe™ — 3 jets at TASSO)

@ ... to routine usage at the LHC
(2 2/3 analyses)
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Jet substructure

Instead of using jets as “monolithic” objects
look at the extra info in their internal dynamics

JET
SUBSTRUCTURE
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Jet substructure

Instead of using jets as “monolithic” objects
look at the extra info in their internal dynamics

JET
Eagglcn% SUBSTRUCTURE machine
ooste .
objects " \\%_/’ learning
Pileup QCD
mitigation D eno.
Many pheno
e>_<amp|es Monte-Carlo Heavy-ion
will follow generators collisions
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A decade of substructure tools

modified) (generalised)
.I"’_‘;ggé‘r)p angularities
(recursive) "
SoftDrop o N-subjettiness
Trimming
) Energy
Pruning Correlation
Functions
Shower ) Energy flow
JH Top deconstruct Polynomials
tagger
HEP Top Jet Pull
tagger

* Non-exhaustive/biased/... list
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A decade of substructure tools

(generalised)
angularities

tree of QCD branchings flow of energy

Quarks, gluons and Lund plane(s)
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A decade of substructure tools
(generalised) '\\ Jet Images
angularities \
Energy flow
Networks

recent advance in
machine learning

v
v
v
’
’
’

tree of QCD branchings flow of energy
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The Lund Jet Plane(s)
definition/logic
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The Lund plane(s) representation (1/3)

use Cambridge/Aachen to iteratively recombine the closest pair
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The Lund plane(s) representation (1/3)
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The Lund plane(s) representation (1/3)

use Cambridge/Aachen to iteratively recombine the closest pair
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The Lund plane(s) representation (1/3)

use Cambridge/Aachen to iteratively recombine the closest pair

_ i
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The Lund plane(s) representation (1/3)

use Cambridge/Aachen to iteratively recombine the closest pair

—Z L |
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The Lund plane(s) representation (1/3)

use Cambridge/Aachen to iteratively recombine the closest pair

I / |
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The Lund plane(s) representation (1/3)

use Cambridge/Aachen to iteratively recombine the closest pair

\—Z 4 \
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The Lund plane(s) representation (1/3)

use Cambridge/Aachen to iteratively recombine the closest pair

hard

Loft
‘ Soft
Soft

consider the (de-)clusterings in the sequence

hard

p-20f

soft

hard

soft
M hard _/ hard

|

Note: conceptually the largest-energy (p: or z) branch = emissions from the “leading parton”
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Quarks, gluons and Lund plane(s)

CERN, June 3 2022

6 /17



The Lund plane(s) representation (2/3)

larger angles smaller angles

/—==

G

A%

o closely follows our beloved
angular ordering
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The Lund plane(s) representation (2/3)

larger angles smaller angles

o closely follows our beloved
angular ordering

@ i.e. mimics partonic cascade
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The Lund plane(s) representation (2/3)

larger angles smaller angles

rger ang m rang |n kt ~ 29

n~Inl/0
o closely follows our beloved
angular ordering £
@ i.e. mimics partonic cascade
@ can be organised in Lund planes K
£ prol cereee?™
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The Lund plane(s) representation (2/3)

larger angles smaller angles
ES e " In ke ~ 26
n~Inl/0
[ J
o closely follows our beloved °
angular ordering
@ i.e. mimics partonic cascade
. . ([
@ can be organised in Lund planes A
e primary
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The Lund plane(s) representation (2/3)

larger angles smaller angles In ke ~ 20
n~Inl/0
o closely follows our beloved °
angular ordering
@ i.e. mimics partonic cascade
@ can be organised in Lund planes o\ A
e primary

e secondary
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The Lund plane(s) representation (2/3)

larger angles smaller angles

Ink: =~ z0
n~Inl/0
o closely follows our beloved °
angular ordering
@ i.e. mimics partonic cascade
. . [ ]

@ can be organised in Lund planes A

e primary

e secondary O

o ...

@ Other interesting variables: ¥, z, m, ...
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The Lund Jet Plane(s)
(many) applications
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Application: different regions of sensitivity

Concentrate on the primary plane
1 log k¢ n = —logtan(f/2)

?

4
£

ol et

Gregory Soyez Quarks, gluons and Lund plane(s) CERN, June 3 2022 8 /17


https://arxiv.org/abs/2004.03540

Application: different regions of sensitivity

Concentrate on the primary plane
n = —logtan(f/2)

4

M log ki

soft (large angle)

hard

(fixed order)

well-separated
physical regions

6%‘
c
)
%
soft & %,
collinear

Gregory Soyez

?

Quarks, gluons and Lund plane(s)

CERN, June 3 2022

8 /17


https://arxiv.org/abs/2004.03540

Application: different regions of sensitivity

Concentrate on the primary plane

1log k¢ n = —logtan(6/2)
hard
(fixed order)
_ 1 _dN
P = Wiew dn dink,

)

a0

& %

g” c\0//.

© 2,

—  soft & S

& collinear

(2]

O pe Da e QCD

Gregory Soyez

@ meaningfull radiation pattern in each region
as(k¢) running, NP at < 5 GeV, ISR+MPI effects at large angles, ...

QCD jets, full plane

7

Vs =14 TeV, p;>2 TeV
Pythia8.230(Monash13)

In(ke/GeV)

0.0 05 1.0 1.5 2.0 25 3.0 3.5 40 45 5.0
IN(R/BR1,)

T aa_——

00 01 02 03 04 05 06 0.7 08 09
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Application: different regions of sensitivity

Concentrate on the primary plane @ meaningfull radiation pattern in each region
A|Og kt n=—lo tan(9/2 @ measured by ATLAS  [aTLAs, 2004.03540]
] g watch out: different projection: Inky — Inz
L4
hard ATLAS E:TGTEV,|39fb‘,pm>67SGeV .
(fixed order) €
_ g
— 1 &N Yrioek s
P'= N dn dink; B 3
L — 2 <
o s
a0 s Ny
& 69,.
(9] S 5
g ) . =
—  soft & S z
& collinear
wn 05 1 15 2 25 3 35
In(R/AR)
on-pe bative QCD e o

AR = AR(emission, core)
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Application: different regions of sensitivity

Concentrate on the primary plane e meaningfull radiation pattern in each region
2 log kq n=—log tan(9/22 @ measured by ATLAS [atLas, 2004.03540]
hard ’ @ helpful comparison to analytics
(fixed order) NLO(exact O(az))JrNLL(aII»orders separated emissions)+NP(from MC)
, ATLAS setup: 0.147 <A < 0.205
-1 dN
p= Niets dn dink; o7k 4 ATLAS |
o R == NLO+resum+NP
o0 0.6 N
® 05 B
[} = i — 1
80 :,- 0.4 ++_ In1/A 4
° e
— | soft & 03} +,7% ]
< | collinear 02fz et
wn x . [
01rg g g 1
nor-perturbative (k; < Aqcep) 0.0 o<bz o<65 ;.1 — J
z

see also [R.Medves,A.Soto,GS,2205.02861] for a multiplicity observable
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Application: different regions of sensitivity

Concentrate on the primary plane e meaningfull radiation pattern in each region
2 log kq n=—log tan(9/22 @ measured by ATLAS [atLas, 2004.03540]
hard ’ @ helpful comparison to analytics
(fixed order) @ helpful comparison to MC generators
— idziN _ 18E-e Daa | ! T dtas ‘ =5
P M G dink o e I\ B
= 222 12 190 <iitiz <208 3
c %4 & 1E= 4 Herwig 7.13 (Ang. ord) 3
@ N = 08E-w Herwig7.13 (Dipole) =
@ S 0.6F % § ¥ @ @ =
% 04F P
& c\0//. E 02Eg o & & ¥ * =
S 2 AP
[~ soft & @Qﬁ e {pE parton shower hadronlsatlonﬁg
£ . o8 E e
%5 collinear goo_aé TEVTyY Y 441 sk
0 0.6 | I ! | 1 1 1 =
on-berturbative och InR/A
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Crafted observables for MC studies: example AW,

[M.Dasgupta,F.Dreyer,K.Hamilton,P.Monni,G.Salam,GS,2002.11114]

Azimuth between 1%t and 2nd prim. declust. s Ayno, as—0
Ao " T
i 1152 —t PanLocaI(B dlpole)
= P> O PanLocal(8=3, 1 dipole)
\/ ’ ;ﬁ 1.6 O Panlocal(B=3,an tennal,)<
Az . = V  PanGlobal(8=0) }{
P * 1.4F A PanGlobal(B=3) .
‘ / 3 EN = =« Dipole(Dire I)X/
P § s -%- Dipole(Py8) P
" X
\g *
. . W
2 primaries 1.0 [ERA I VA [HA R [P
x-l"( P P
w comensurate k; 0.6 <alog'y <-05,03<f2 <05
084 /4 n/2 3n/4 n

[Ayn2|
Expected ratio of 1 at NLL

NLL failures for “standard” showers
“New” PanScales shower OK at NLL
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Crafted observables for MC studies: example AW,

[A.Karlberg,G.Salam,L.Scyboz,R.Verheyen,2103.16526]

Azimuth between 15t and 2" prim. declust. Allorder 7° = g7, A = 0.5
{ PanGlobal (3 = 0) } PanLocal (ant. 3 = 0.5)
o, A t PanLocal (dip. 3 = 0.5) == Toy shower
" iz AV PS-toy Sl;;v“".

- E it Bt S
€ 0051 MRS TR
0.00 . . S A Dy
PS—toy
EEEC oy x1073

i i
primary + secondary ~}4 oo : =
. both hard-collinear * ol WQ:
] i Se—
0.000 + - - - - =5
- -x/2 0 w2 1w -m -m/2 0 =x/2 =«
Ay Ay
Sensitive to (collinear) spin
“New” PanScales shower have spin at NLL
agrees w EEEC from 2011.02492 (EEEC less sensitive)
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Crafted observables for MC studies: example AW,

[K.Hamilton,A.Karlberg,G.Salam,L.Scyboz,R.Verheyen,2111.01161]

Azimuth between 15t and 2" prim. declust. S g
Atrs —0(a?) - (S+C)/(0(a?)) } Collincar spin
i iz { No spin } Soft + collinear spin
x10~2 All channels x10~2 gg channel
8.8 -
P
x1072 47 channel %1073 Rest channel = =
2.0
\ primary soft ,
'\ secondary hard-collinear
1 1.0
e P ey S
Aty Ay
Sensitive to (soft) spin
“New" PanScales shower have spin at NLL
first all-order result
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Crafted observables for MC studies: example AW,

d [K.Hamilton,A.Karlberg,G.Salam,L.Scyboz,R.Verheyen,2111.01161]
Azimuth between 15t and 2" prim. declust.

7= aq
A1z — 0(a?) - (S+C)/(O(a2)) } Collinear spin
i iz ,  No spin } S<)f1_)+ collinear spin
— Py x10~2 All channels Mxll)’- g9 channel
\/ D5 8.6
A1z ™ ./7 L wel SRR IR WA RAN (SN
‘ P2 ‘ 8.2
1;1/ Possibility to build new/targeted observables ¥ ¥ "
i Rest channel = =
= build your own tools
. for new pheno explorations
) . PRI . |
1 \_secondary hard-collinear \ ™
: 0.5 3 1.0
\ e
\I Aty Ay
1
\, P .
b Sensitive to (soft) spin
[ ) m " H
Y New" PanScales shower have spin at NLL
o first all-order result
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pp (“vacuum’)

Application: heavy-ion collisions

interacting with the QGP

Check how radiation changes when J

Example: largest-0 emission with z > z.;

5 ol
) — g
s
AA (“medium™)
b= =
] £
- py =
) S &
f -

Gregory Soyez

Quarks, gluons and Lund plane(s)

0 0.05 0.1 015 R,

JF
3
25 ey

2

15®

o
35F mPb-Pb0-10%
Sys. uncertainty

1sf ** ] s o

ALICE Preliminary

VS =5.02 TeV
Charged jets anti-k;
R=02 |7, |<05

. < 80 GeV/c
D 24,=0. 3. p-0

=0.89, fi ;=088

05F | :
Gl 75 < <7< To0GeNE
oF om et o s ]
abos ool
e
1.5 Voan etal. Gl =5 Gov?

05t <

o

% o2

04 06 08 1

b
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Application to boosted object tagging

THE typical substructure application: given a high-p; jet

() or Z, H, top, ...

Is it a “standard” QCD jet... ...or a boosted W-boson™ decay?

e
L

Decay angle: 6 E
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Application to boosted object tagging

THE typical substructure application: given a high-p; jet

QCD jets, full plane , W jets, full plane
Vs =14 TeV, pr>2 TeV
Pythia8.230(Monash13)

Vs =14TeV, p;>2TeV
Pythia8.230(Monash13)

5
o clearly N
> . >
8’ different 8
Z 2 radiation 2
1 patterns

-2
0.0 05 1.0 1.5 20 25 3.0 3.5 4.0 45 50 0.0 05 1.0 1.5 2.0 25 3.0 35 40 45 5.0
In(R/AR12) In(R/AR12)

[ [T T

00 01 02 03 04 05 06 07 08 09 00 01 02 03 04 05 06 07 08 09
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Example performance

QCD rejection factor

4

. 10000

1000

10

1

100 o

QCD rejection v. W tagging efficiency

[F.Dreyer,H.Qu

LT

2012.08526]

Pythia 8.223 simulation
signal: pp - WW, background: pp - jj
anti-k; R =1 jets, p,>2 TeV

mMDT mass

Lund+LL

Lund+LSTM

EdgeConv using Lund kinematics
ParticleNet [GQ19]

0.0

1 02 03 04 05 06 07 08 09 10

o

successful W tagging rate

> [graph network using 4-vector(more complex)]

. Graph Net trained on full Lund tree

. Deep-learning (LSTM) using Lund primaries
| Likelihood ratio based on prim. Lund images

| Historical mMDT /SoftDrop

Main messages

o Combination with Deep-Learning methods
@ Large gain from info in the primary plane

@ Yet another gain from the full Lund tree
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Example performance

QCD rejection factor

N

10000

1000

100 o

10

QCD rejection v. W tagging efficiency

[F.Dreyer, H%

2012.08526]

Pythia 8.223 simulation
signal: pp - WW, background: pp - jj
anti-k; R =1 jets, p,>2 TeV

mMDT mass

Lund+LL

Lund+LSTM

EdgeConv using Lund kinematics
ParticleNet [GQ19]

01 02 03 04 05 06 07 08

successful W tagging rate

Gregory Soyez

Quarks, gluons a

A
10000
—
(e}
]
O
8
[ 1000
.0
-
(9]
(]
=
g 100
o
O
(e}
10
1

QCD rejection v. Top tagging efficiency

Pythia 8.223 simulation
signal: pp - tf, background: pp - jj
=1 jets, pr>500 GeV

anti-k¢ R

X,

[F.Dreyer,H.Qu
2012.08526]

—— LundNet-5

LundNet-3
—— RecNN (LCBC '17)
—— Lund+LSTM (DSS '18)
—— ParticleNet (QG '19)

00 01 02 03 04 05 06 0.7 08 09 1.0
S

und plane(s)

successful top tagging rate

CERN, June 3 2022
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Application: quark v. gluons

Last application for today: given a high-p; jet

Is it a quark-initiated jet... ...or a gluon-initiated jet?
e e

WATCH OUT: technically “quark v. gluon” is not a well-defined concept in QCD (see arXiv:1704.03878)
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Application: quark v. gluons

Last application for today: given a high-p; jet

Is it a quark-initiated jet... ...or a gluon-initiated jet?
. i
Question: can we answer given the Lund dweclusterings in a jet? J
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Quark v. gluon jets: |. approach

Optimal discriminant (Neyman-Pearson lemma)
pg(*cprim,tree)

Lprirmjtree =
prim,tree
pq(ﬁprim,tree)
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Quark v. gluon jets: |. approach

Optimal discriminant (Neyman—Pearson lemma) Approach #1
L. _ pg(»cprim,tree) Deep'|eam I[Jprim,tree
prim, tree = 4pq(£prim,tree) LSTM with Lyrim or Lund-Net with Liree
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Quark v. gluon jets: |. approach

Approach #1

Optimal discriminant (Neyman-Pearson lemma)
Lo — M Deep-learn Lirim,tree
prim, tree Pg(Lprim tree) LSTM with Lpim or Lund-Net with Liree

Approach #2
Use pQCD to calculate pg g(Lprim,tree)

o Consider k; > k¢ oyt to stay perturbative
—
—

o Leading order: Lprim tree <* number of primary emissions! e
» Primary emissions get factor % (Cq=Cr, Cg = Ca) :
» Subsidiary emissions get a factor %

@ Next order: include collinear effects (incl. flavour changing)
+ running coupling effects + Sudakov for virtuals + clustering effects at commensurate angles

CERN, June 3 2022 14 /17
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Quark v. gluon jets: Il. ML validation

our analytic discriminant is exact/optimal in the dominant collinear limit 61 > 02 > --- > 0,
= ML expected to give the same performance
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gluon rejection factor, 1/¢,

o o

ratio to Lund density.

Gregory Soyez

ROC: LSTM v. expected likelihood

\ \\ == Lund density

L\ N nsp

\ N —=- analytic (prim)
analytic (tree)
Lund+LSTM (prim)
Lund-Net (tree)

Microjet sample

F R=1,0,=0.5
pe=1TeV, k>1 GeV
0.1 02 03 0.4 05 06 0.7 08 0.9 1.
2 50 5.7 98 D,
EFRN tree  ML=analytic
= <
~

quark efficiency, &g

ROC curves agree

Quark v. gluon jets: Il. ML validation

Microjet
exact
pure-collinear

0.1 0.2 03 04 05 0.6 0.7 0.8 09 1.0

Quarks, gluons and

[M.Dasgupta,F.Dreyer

G.P.Salam,G.Soyez,
1411.5182]

our analytic discriminant is exact/optimal in the dominant collinear limit 61 > 6 > - --
= ML expected to give the same performance

AUC: network convergence

AUC

0.5
- -
—

pe=1TeV, R=1, ki, min = 1 GeV, fixed as

16 32 64 128 256 512
T T T T T

ratio to analytic

4

1‘6 3‘2 6‘4 léB 2_":6 512
LSTM/LundNet dimension
Converges for large-enough networks

Microjet sample |
=

CERN, June 3 2022
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Quark v. gluon jets: Ill. performance

pp — Zg V. pp — Zg (pt ~ 500 GeV, R =0.4)

gluon rejection factor, 1/¢g,

ratio to density

200\ e s .
100 : \\ —=—- analytic (prim)
\:'\z '\)\ —— analytic (tree)
50} \."-\} == Lund+LSTM (prim) ]
'\..\\>\\ == Lund-Net (tree)
20+ NN 1
SN
10} TN 1
ENNRY
sF \\;\\\\ ]
Pythia8, Z+jet "'\\X\\
2 | InkdI1 GeV1>0.0,with ¢ 4
500<p,<5506ev R=04
%.l 02 03 04 05 06 07 08 09 1.0
2.2
2.0
1.8F
1.6
1.4
1.2
1.0
08,

ROC: Pythia sample

T T T T T T T T

—-= Lund density

1 02 03 04 05 06 07 08 09 1.0
quark efficiency, &4

Gregory Soyez

@ clear performance ordering:

@ Lund+ML > Lund analytic > ISD
tree > prim

Quarks, gluons a
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Quark v. gluon jets: Ill. performance

pp — Zg V. pp — Zg (pt ~ 500 GeV, R =0.4) |

gluon rejection factor, 1/g,

ratio to density

oHEENNW
COORONOO o= N

500 g— T T T T

—-= Lund density
200 g\ == Lund+LSTM (prim)

=
o
o

u
o

N
o

-
o

vl

ROC: Pythia sample

\, N, == Lund-Net (tree)
- 4

R
Pythia8, Z-+jet \,:\..\\
| all ke,with ¢ \\\_
500 < pe <550 GeV, R=0.4 Q§

.1 0.2 03 04 05 0.6 0.7 0.8 09 1.0
quark efficiency, &4
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L L L L L L L L
.1 02 03 04 05 06 0.7 0.8 09 1.0

@ clear performance ordering:

@ Lund+ML > Lund analytic > ISD
O tree > prim

@ larger gains with no k; cut

(several potential reasons)

e Q: analytics to other systems (W /Z/H, top)?
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Take-home messages

Jets are ubiquitous at colliders |

Jet substructure

@ Jets have a substructure (internal dynamics) which is worth exploiting

@ Now routinely used at the LHC

@ Broad applications: tagging, pQCD, measurements, Monte Carlo, heavy-ions, machine-learning, ...

Physics with Lund-plane(s)

@ Construction with clear physics properties
» Organised in trees respecting angular ordering
» Different physics effects contribute to different regions
» Opens possibilities to craft your own observables

@ Broad applications: tagging, pQCD, measurements, Monte Carlo, heavy-ions, machine-learning, ...
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Backup
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Quark v. gluon jets: 0. basic considerations

What is a Quark Jet?

From lunch/dinner discussions

lll-Defined What people

v

sometimes
think we mean
A
Quark
as noun

Quark
as adjective

Well-Defined ~ What we mean

Gregory Soyez

pedestrian summary

@ there is no such thing as a
“quark” or a “gluon” jet

A quark parton

o well-defined: tagging process
A (“quark-enriched” (*)) against
process B (“gluon-enriched” (*))

A Born-level quark parton
The initiating quark parton in a final state shower

An eikonal line with baryon number 1/3
and carrying triplet color charge

() ambiguous
A quark operator appearing in a hard matrix element >
in the context of a factorization theorem

A parton-level jet object that has been quark-tagged
using a soft-safe flavored jet algorithm (automatically
collinear safe if you sum constituent flavors)

Our approach(es)

@ discuss process-independent

A phase space region (as defined by an unambiguous

hadronic fiducial cross section measurement) that yields aSpeCtS (at Ieast ana Iyt|Ca I Iy)

an enriched sample of quarks (as interpreted by some )

suitable, though fundamentally ambiguous, criterion) @ probe changes for different
processes

Quarks, gluons and Lund plane(s) CERN, June 3 2022 1/7




J

Question: is your tagger resilient to uncontrolled effects?

One has:

@ a reference sample A
(e.g. network trained+tested w Pythia)

€g

@ an alternate sample B
(e.g. network tested w Herwig)

We want (for a given working point)

() ()

as small as possible.

(would probably deserve a study on its own)
Quarks, gluons and Lund plane(s) CERN, June 3 2022 2/7
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Question: is your tagger resilient to uncontrolled effects?

One has:

@ a reference sample A
(e.g. network trained+tested w Pythia)

€g

@ an alternate sample B
(e.g. network tested w Herwig)

We want (for a given working point)
C 1

2 271
[(e) ()
€ €
(eq) (es) -
as small as possible. Less performant
More resilient

(would probably deserve a study on its own)
Quarks, gluons and Lund plane(s) CERN, June 3 2022 2/7
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Resilience (2/2)

sample dependence (Z+jet v. dijet) 35 Hadron+MP| V. parton level 3 Pyth|a8 V. HerW|g7
S - T S -
Pythia8, hadron+MPI —@- Lund density Pylh\a8 Zﬂet -Q Lund density Z+jet, hadron+MPI --- Lund denswty

° 500 <p;<550 GeV .g%. nsp = 500 <p <550 GeV .g%. nep = 500 <p;<550 GeV .g%. nsp
2 30} antk(R=04) . analytic (prim) 1 2 30t antk(R=04) g analytic (prim) 2 300 antik(®R=04) _ge. anaiytic (prim) |
g Y e analytic (tree) % Y analytic (tree) g i analytic (iree)
S ~$- Lund+LSTM (prim) b} —#- Lund+LSTM (prim) S —#- Lund+LSTM (prim)
= 25k . —e- Lund-Net (tree) 4 % 251 ® —e- Lund-Net (tree) % 25 ® —e- Lund-Net (tree)
2 ‘ 2 ' 2 ’
o X o L ) ¢ ] g L » i
g 20r ke =1GeV | g 20 Kecut =1 GeV Q2.0 ke =1 GeV
© © ©
E ) £ "o £ o =
£ £ £
o o o
t 15F q t 15F 1 t 15F 1
@ @ @
Q Q (=%

. . L . . 1.0bL . . . . . . 1.0Lt . . . . .

! 02 5 10 20 50 100 0.5 1 2 5 10 20 50 100 1 2 5 10 20 50 100

resilience: {pest resilience: {pest resilience: Cpest

e performance = ¢4/, /24
@ working point: k:cut = 1 GeV, optimal performance (reference: Pythia, hadron+MPI, Z-+iet)

@ 3 studies: sample (Z+jet v. dijets), NP effects (hadron v. parton), generator (Pythia v. Herwig)
@ performance: same ordering as before

@ resilience: network-based < Lund analytics < nsp
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Resilience (2/2)

performance: Mpest (reference)

w
=)

g
n

g
o

=
5

D

sample dependence (Z+jet v. dijet)

Pythia8, hadron+MPI —O-
500 < p, <550 GeV  ..[3..

Lund density
Nsp

L & anti-k(R=0.4) _ . analytic (prim) 4
Q\ with y analytic (tree)
N -+ Lund+LSTM (prim)
=0~ Lund-Net (tree) 4

Ink/[1 GeV] cut={-0.5,0,0.5,1,1.5}
or {None,-2,-1.5,-1,-0.5,0,0.5,1,1.5}
filled: kt,cue =1 GeV |

10 20
resilience: {pest

@ same, varying K¢ cut

o for each curve:

o At “large”
o At “small”

Gregory Soyez

performance: Mpest (reference)

3.5

w
o

N
n

N
=)

=
n

Hadr0n+MPI V. parton level

Pytmas Zﬂel o
500 <p <550 GeV .03
antik(R=04) .
with
Y =
-&
-

Lund density
Nsp

analytic (prim) 4
analytic (tree)
Lund+LSTM (prim)
Lund-Net (tree) 4

Ink,/[1 GeV] cut={-0.5,0,0.5,1,1.5}
or {None,-2,-1.5,-1,-0.5,0,0.5,1,1.5}
filled: ke,cut =1 GeV |

resilience: {pest

Quarks, gluons nd plane(s)

performance: Mpest (reference)

PythlaS V. HerW|g7

w
n
]

N N w
o 5 o
T T T

=
n
T

Z+jet, RadronsMPI —o-

500 <p<550 GeV .03

anti-k(R =04)
with

Lund denswty
Nsp

- analytic (prim) 4
—— analytic (tree)

~{ Lund+LSTM (prim)
=0 Lund-Net (tree)

Inky/[1 GeV] cut={-0.5,0,0.5,1,1.5}
or {None,-2,-1.5,-1,-0.5,0,0.5,1,1.5}
filled: ke,cur =1 GeV |

“standard” trade-off between performance and resilience

@ Overall: better behaviour for the new Lund-based approaches:

resilience: better envelope for the Lund analytic approaches
resilience: ML performance gain pays off

5 10 20 50 100
resilience: Cpest
CERN, June 3 20 4/7




Comparison to other approaches: ML-based

Significance: Lund models v. others

4.0 — Lund-Net —— PFN —— EFN |
Approaches:
35¢ 1 @ Lund-Net (full tree)
no k¢ cut
@ o Particle-flow network
=< 301 .
W @ Energy-flow network
[
2 25¢ ]
©
S
=
C V.
220t _
n
15l » small performance gain for Lund
Pythiag, Z +jet » differences might come from details
500 < p: <550 GeV,R=0.4
1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
&q
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Comparison to other approaches: ML-based

Significance: Lund models v. others

4.0f— Lund-Net  — PPN — EFN ]
—— Lund-Net(+ID) == PFN-ID —— Particle-Net Approaches:
35fF 2===23 i _
PSS ok o Lund-Net (full tree)
AN E
@ ”l,’J NN o Particle-flow network
=< 301 ” S .
S 'I;l// N @ Energy-flow network
3 U
e ] .
g 25r ¥ . @ Dashed: with PDG-ID
©
) .
= i) @ Particle-Net
C /] v
2 2.0r m .
n
’ .
15 il » small performance gain for Lund
: I . .
/ Pythia8, Z+jet » differences might come from details
500 < p: <550 GeV,R=0.4
105102 03 04 05 0.6 0.7 0.8 0.9 1.0 > with PDG-ID: PFN~LundZPNet
&q
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Comparison to other approaches: analytics/shapes

Significance: Lund models v. others

ao0f ' : e E
Pythia8, Z+jet L L andNLL /—\pproaches:
500 < p; <550 GeV
3.5 R=04 - @ ISD mult (nsp)
& @ Lund (full tree, analytic)
=z 3.0r ]
W
g ke>1 GeV
ot
c 2.5} .
©
S
b=
= )
2 20F _
n
15t i » clear gain from our analytic approach
1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
&q
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Comparison to other approaches: analytics/shapes

Significance: Lund models v. others

4.0 ) . — N 7
Pythia8, Z+jet s .
5;,0 ' SZ;EG v —— Lund NLL Approaches:
<pe< € —= Ailallk)
3.5 R=04 k> 1Gew [ @ ISD mult (nsp)
& ‘o @ Lund (full tree, analytic)
| | o width (32, prAR;
“ ke>1 GeV (2 PilsRi)
(V] -~
g 25} po -~ j
/ \
:% H N @ Dashed: use subjets with k; > 1 GeV
| a ]
2201 N
I hY
15} /I \\ i » clear gain from our analytic approach
i = » Different behaviour for shapes
1
L0102 03 04 05 06 0.7 0.8 0.9 1.0 » Lund (expectably) better for same info
&q
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Comparison to other approaches: analytics/shapes

Significance: Lund models v. others

40fF T _ == ]
Pythia8, Z+jet s0 _
yimas £+ie —— Lund NLL Approaches:
500 < pr <550 GeV —— Afallky) |SD |
3.5} R=04 e e | ° mult (nsp)
& 5 @ Lund (full tree, analytic)
30k EECos(k:> 1 GeV) |
3 @ width : priAR;
:’). ke>1 GeV (2 PilAR:)
g 25 . o
%’ @ Dashed: use subjets with k; > 1 GeV
2 2.0 _
n
15 i » clear gain from our analytic approach
» Different behaviour for shapes
105102 03 04 05 0.6 0.7 0.8 0.9 1.0 » Lund (expectably) better for same info
&q

Gregory Soyez Quarks, gluons and Lund plane(s) CERN, June 3 2022 6/7



Towards full-event tagging
ete” -Z —qgv.ete” - H—gg (v/s = 125 GeV, no ISR) |

observed performance:

@ tagging both hemispheres
i.e. both jets should be tagged

ROC curve: Z-qq v. H»gg

Pythia8.306, V5 = 125 GeV 1
Lund-Net+ID J
full event clearly worse that (jet)?

1000 |
500

200 [
100
50

1/ez5q6

20
10F

CERN, June 3 2022 /7

2}
= tag each hemispheres
}).1 0.2 0.3 04 05 0.6 0.7 0.8 09 1.0
EH-gg
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Towards full-event tagging
ete” -Z —qgv.ete” - H—gg (v/s = 125 GeV, no ISR) |

observed performance:
@ tagging both hemispheres

EH-gg

ROC curve: Z-qq v. H»gg
1000F \  Pythia8.306, V5 = 125 GeV 1
Lund-Net+ID ]
500 @ double Lund-Net tag
200} 1 train separately on hard & soft hemispheres
100} . use another NN (or MVA) to combine the two
i3
§ sof .
& clear performance gain
~
— 20 L 4
10} .
5 - -
S b= tag each hemispheres
= NN(hard+soft hem)
b102 03 04 05 06 07 08 09 1.0
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Towards full-event tagging
ete” -Z —qgv.ete” - H—gg (v/s = 125 GeV, no ISR) |

observed performance:
@ tagging both hemispheres

ROC curve: Z-qq v. H»gg
'Pythia8.306, VS =125 GeV 1
@ double Lund-Net tag

1000F N\
500 Lund-Net+ID
200 @ Lund-Net for the full event
100 Another performance gain
g
T 50
N
L
— 20 L
10}

= tag each hemispheres
CERN, June 3 2022 /7

S b= NN(hard+soft hem)
= full event
}).1 0.2 0.3 04 05 0.6 0.7 0.8 09 1.0
EH-gg
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Towards full-event tagging
(v/s = 125 GeV, no ISR) J

ete” -Z —qgv.ete” - H—gg
observed performance:

ROC curve: Z-qq v. H»gg
1000F \N\  Pythia8.306, VS = 125 GeV 1 @ tagging both hemispheres
Lund-Net+ID ]
anae e double Lund-Net tag

@ Lund-Net for the full event

500

200}
. Lo0¢ Another performance gain
¥ 50f
W
= 20} : .

1ol Open questions/work in progress
@ How does the analytic do?
e.g. what gain from full-event tagging?

= tag each hemispheres
== NN(hard+soft hem)
== full event
hl 0.2 0.3 04 05 0.6 0.7 0.8 09 1.0
EH-gg
CERN, June 3 2022 /7

@ Applications to other cases (e.g. at the LHC)?
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