
Quarks and gluons in the Lund plane(s)

Gregory Soyez, with Frederic Dreyer, Andrew Lifson, Gavin Salam and Adam Takacs
based on arXiv:1807.04758, arXiv:2007.06578 and arXiv:2112.09140

IPhT, CNRS, CEA Saclay

CERN, June 3 2022

Gregory Soyez Quarks, gluons and Lund plane(s) CERN, June 3 2022 1 / 17

https://arXiv.org/abs/1807.04758
https://arXiv.org/abs/2007.06578
https://arXiv.org/abs/2112.09140


Plan

Context
▶ Jets as fundamental objects
▶ The onset of jet substructure

The Lund Plane(s): Picture, logic and construction

The Lund Plane(s): Applications
▶ radiation visualisation
▶ analytic viewpoint
▶ experimental viewpoint
▶ Monte Carlo generators
▶ Boosted object tagging
▶ Machine Learning
▶ heavy ions
▶ quark v. gluon
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Context:
jets and jet substructure
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Jets mimic hard partons

Hard partons (quarks&gluons)
produced in high-energy collisions
branch into more partons mostly at

small angles
→ collimated bunches of hadrons

Jets “collect” these bunches
⇒ jet ≡ proxies to hard partons

From the discovery of the gluon...
(as e+e− → 3 jets at TASSO)

... to routine usage at the LHC
(≳ 2/3 analyses)

q

q
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Jet substructure

Instead of using jets as “monolithic” objects

look at the extra info in their internal dynamics

JET
SUBSTRUCTURE

tagging
boosted
objects

Pileup
mitigation

Monte-Carlo
generators

Heavy-ion
collisions

QCD
precision
pheno

machine
learning

Many
examples

will follow
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A decade of substructure tools

(modified)
MassDrop
Tagger

(recursive)

SoftDrop
Trimming

Pruning

Shower
deconstructn

JH Top
tagger

HEP Top
tagger

(generalised)

angularities

N-subjettiness

Energy
Correlation
Functions

Energy flow
Polynomials

Jet Pull

* Non-exhaustive/biased/... list

tree of QCD branchings flow of energy
recent advance in
machine learning

Jet Images

CNN,DNN
LSTM,...

Energy flow
Networks

ParticleNet

LundNet
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The Lund Jet Plane(s)
definition/logic
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The Lund plane(s) representation (1/3)

use Cambridge/Aachen to iteratively recombine the closest pair

hard
hard

hard hard

hard

hard

so
ft

so
ft

so
ft

soft

so
ft

soft

consider the (de-)clusterings in the sequence

Note: conceptually the largest-energy (pt or z) branch ≡ emissions from the “leading parton”
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The Lund plane(s) representation (2/3)

larger angles smaller angles

closely follows our beloved
angular ordering

i.e. mimics partonic cascade

can be organised in Lund planes

primary
secondary
...

Other interesting variables: ψ, z , m, ...

ln kt ≈ zθ

η ≈ ln 1/θ

k
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The Lund Jet Plane(s)
(many) applications
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Application: different regions of sensitivity

Concentrate on the primary plane

log kt η = − log tan(θ/2)

well-separated
physical regions

soft &
collinear

hard
collinear

so
ft
(l
ar
ge

an
gl
e)

hard
(fixed order)

non-perturbative (kt ≲ ΛQCD)

ρ = 1
Njets

d2N
dη d lnkt

meaningfull radiation pattern in each region

measured by ATLAS [ATLAS, 2004.03540]

helpful comparison to analytics

helpful comparison to MC generators
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αs (kt ) running, NP at ≲ 5 GeV, ISR+MPI effects at large angles, ...
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Application: different regions of sensitivity
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Application: different regions of sensitivity

Concentrate on the primary plane

log kt η = − log tan(θ/2)
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non-perturbative (kt ≲ ΛQCD)

ρ = 1
Njets
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dη d lnkt

meaningfull radiation pattern in each region

measured by ATLAS [ATLAS, 2004.03540]

helpful comparison to analytics
NLO(exact O(α2

s ))+NLL(all-orders separated emissions)+NP(from MC)

helpful comparison to MC generators
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ATLAS setup: 0.147 < < 0.205
ATLAS
NLO+resum+NP

see also [R.Medves,A.Soto,GS,2205.02861] for a multiplicity observable
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lnR/∆

parton shower hadronisation
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Crafted observables for MC studies: example ∆Ψ12

Azimuth between 1st and 2nd prim. declust.

~n1 ~n2

∆ψ12

P1

P2

∆ψ12

~p1
~p3

~p2
~p4

~p5

2 primaries
w comensurate kt
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| 12|
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M
C
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N
LL

(
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,k
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|k
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-0.6 < slogkt, 1
Q < -0.5, 0.3 < kt2

kt1
< 0.5

12, s 0
PanLocal( =0,dipole)
PanLocal( =1

2 ,dipole)
PanLocal( =1

2 ,antenna)
PanGlobal( =0)
PanGlobal( =1

2 )
Dipole(Dire v1)
Dipole(Py8)

Expected ratio of 1 at NLL

NLL failures for “standard” showers
“New” PanScales shower OK at NLL

[M.Dasgupta,F.Dreyer,K.Hamilton,P.Monni,G.Salam,GS,2002.11114]
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All-order γ∗ → qq̄, λ = −0.5

Sensitive to (collinear) spin
“New” PanScales shower have spin at NLL

agrees w EEEC from 2011.02492 (EEEC less sensitive)

[A.Karlberg,G.Salam,L.Scyboz,R.Verheyen,2103.16526]
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Crafted observables for MC studies: example ∆Ψ12

Azimuth between 1st and 2nd prim. declust.
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Sensitive to (soft) spin
“New” PanScales shower have spin at NLL

first all-order result

[K.Hamilton,A.Karlberg,G.Salam,L.Scyboz,R.Verheyen,2111.01161]
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Possibility to build new/targeted observables

⇒ build your own tools

for new pheno explorations
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Application: heavy-ion collisions

pp (“vacuum”)

AA (“medium”)

Check how radiation changes when
interacting with the QGP

Example: largest-θ emission with z > zcut
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Application to boosted object tagging

THE typical substructure application: given a high-pt jet

Is it a “standard” QCD jet... ...or a boosted W -boson(∗) decay?

Decay angle: θ ∝ m
pt

(∗) or Z, H, top, ...
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Application to boosted object tagging

THE typical substructure application: given a high-pt jet
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Example performance
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1/
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D

Pythia 8.223 simulation
signal: pp WW, background: pp jj

anti-kt R = 1 jets, pt > 2 TeV

QCD rejection v. W tagging efficiency

mMDT mass
Lund+LL
Lund+LSTM
EdgeConv using Lund kinematics
ParticleNet [GQ19]

successful W tagging rate

Q
C
D

re
je
ct
io
n
fa
ct
or

[F.Dreyer,H.Qu
2012.08526]

[graph network using 4-vector(more complex)]

Graph Net trained on full Lund tree

Deep-learning (LSTM) using Lund primaries

Likelihood ratio based on prim. Lund images

Historical mMDT/SoftDrop

Main messages

Combination with Deep-Learning methods

Large gain from info in the primary plane

Yet another gain from the full Lund tree
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Application: quark v. gluons

Last application for today: given a high-pt jet

Is it a quark-initiated jet... ...or a gluon-initiated jet?

WATCH OUT: technically “quark v. gluon” is not a well-defined concept in QCD (see arXiv:1704.03878)
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Application: quark v. gluons

Last application for today: given a high-pt jet

Is it a quark-initiated jet... ...or a gluon-initiated jet?

Question: can we answer given the Lund dweclusterings in a jet?
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Quark v. gluon jets: I. approach

Optimal discriminant (Neyman–Pearson lemma)

Lprim,tree =
pg (Lprim,tree)

pq(Lprim,tree)
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Quark v. gluon jets: I. approach

Optimal discriminant (Neyman–Pearson lemma)

Lprim,tree =
pg (Lprim,tree)

pq(Lprim,tree)

Approach #1

Deep-learn Lprim,tree

LSTM with Lprim or Lund-Net with Ltree
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Quark v. gluon jets: I. approach

Optimal discriminant (Neyman–Pearson lemma)

Lprim,tree =
pg (Lprim,tree)

pq(Lprim,tree)

Approach #1

Deep-learn Lprim,tree

LSTM with Lprim or Lund-Net with Ltree

Approach #2

Use pQCD to calculate pq,g (Lprim,tree)

Consider kt ≥ kt,cut to stay perturbative

Leading order: Lprim,tree ↔ number of primary emissions!

▶ Primary emissions get factor 2αs (kt)Ci

π (Cq = CF , Cg = CA)

▶ Subsidiary emissions get a factor 2αs (kt)CA

π

Next order: include collinear effects (incl. flavour changing)
+ running coupling effects + Sudakov for virtuals + clustering effects at commensurate angles
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Quark v. gluon jets: II. ML validation

our analytic discriminant is exact/optimal in the dominant collinear limit θ1 ≫ θ2 ≫ · · · ≫ θn
⇒ ML expected to give the same performance
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Converges for large-enough networks
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Quark v. gluon jets: III. performance

pp → Zq v. pp → Zg (pt ∼ 500 GeV, R = 0.4)
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ROC: Pythia sample

clear performance ordering:

Lund+ML > Lund analytic > ISD
tree > prim

larger gains with no kt cut
(several potential reasons)

Q: analytics to other systems (W /Z/H, top)?
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larger gains with no kt cut
(several potential reasons)

Q: analytics to other systems (W /Z/H, top)?
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Take-home messages

Jets are ubiquitous at colliders

Jet substructure

Jets have a substructure (internal dynamics) which is worth exploiting

Now routinely used at the LHC

Broad applications: tagging, pQCD, measurements, Monte Carlo, heavy-ions, machine-learning, ...

Physics with Lund-plane(s)

Construction with clear physics properties
▶ Organised in trees respecting angular ordering
▶ Different physics effects contribute to different regions
▶ Opens possibilities to craft your own observables

Broad applications: tagging, pQCD, measurements, Monte Carlo, heavy-ions, machine-learning, ...
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Backup
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Quark v. gluon jets: 0. basic considerations

What is a Quark Jet?
From lunch/dinner discussions

A quark parton

A Born-level quark parton

The initiating quark parton in a final state shower

An eikonal line with baryon number 1/3 
and carrying triplet color charge

A quark operator appearing in a hard matrix element 
in the context of a factorization theorem

A parton-level jet object that has been quark-tagged 
using a soft-safe flavored jet algorithm (automatically 
collinear safe if you sum constituent flavors)

A phase space region (as defined by an unambiguous 
hadronic fiducial cross section measurement) that yields 
an enriched sample of quarks (as interpreted by some 
suitable, though fundamentally ambiguous, criterion)

Ill-Defined

Well-Defined What we mean

What people 

sometimes 

think we mean

Quark 

as adjective

Quark 

as noun

pedestrian summary

there is no such thing as a
“quark” or a “gluon” jet

well-defined: tagging process
A (“quark-enriched”(∗)) against
process B (“gluon-enriched”(∗))

(∗) ambiguous

Our approach(es)

discuss process-independent
aspects (at least analytically)

probe changes for different
processes
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Resilience (1/2)

Question: is your tagger resilient to uncontrolled effects?

One has:

a reference sample A
(e.g. network trained+tested w Pythia)

an alternate sample B
(e.g. network tested w Herwig)

We want (for a given working point)

ζ =

[(
∆εq
⟨εq⟩

)2

+

(
∆εg
⟨εg ⟩

)2
]−1

as small as possible.

(would probably deserve a study on its own)

εq

εg

A B
ζ−1

A B
ζ−1

Less performant
More resilient
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Resilience (2/2)
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performance = εq/
√
εg

working point: kt,cut = 1 GeV, optimal performance (reference: Pythia, hadron+MPI, Z+jet)

3 studies: sample (Z+jet v. dijets), NP effects (hadron v. parton), generator (Pythia v. Herwig)

performance: same ordering as before

resilience: network-based < Lund analytics ≲ nSD
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for each curve: “standard” trade-off between performance and resilience

Overall: better behaviour for the new Lund-based approaches:

At “large” resilience: better envelope for the Lund analytic approaches
At “small” resilience: ML performance gain pays off
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Comparison to other approaches: ML-based
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▶ small performance gain for Lund

▶ differences might come from details

▶ with PDG-ID: PFN∼Lund≳PNet
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Comparison to other approaches: analytics/shapes
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Dashed: use subjets with kt > 1 GeV

▶ clear gain from our analytic approach

▶ Different behaviour for shapes

▶ Lund (expectably) better for same info
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Towards full-event tagging

e+e− → Z → qq̄ v. e+e− → H → gg (
√
s = 125 GeV, no ISR)
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Pythia8.306, s = 125 GeV

ROC curve: Z qq v. H gg

tag each  hemispheres

observed performance:

tagging both hemispheres
i.e. both jets should be tagged

full event clearly worse that (jet)2

double Lund-Net tag

Lund-Net for the full event
Another performance gain

Open questions/work in progress

How does the analytic do?
e.g. what gain from full-event tagging?

Applications to other cases (e.g. at the LHC)?
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observed performance:

tagging both hemispheres

double Lund-Net tag
train separately on hard & soft hemispheres
use another NN (or MVA) to combine the two

clear performance gain

Lund-Net for the full event
Another performance gain

Open questions/work in progress

How does the analytic do?
e.g. what gain from full-event tagging?

Applications to other cases (e.g. at the LHC)?
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observed performance:

tagging both hemispheres

double Lund-Net tag

Lund-Net for the full event
Another performance gain

Open questions/work in progress

How does the analytic do?
e.g. what gain from full-event tagging?

Applications to other cases (e.g. at the LHC)?
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