

The W-boson mass and the strong interaction

Maarten Boonekamp

CEA/IRFU and Guest Scientist at Helmholtz Institut, Mainz

Tests of the electroweak theory

Tests of the electroweak theory

Electroweak predictions in leading order

- The electroweak gauge sector of the SM is constrained by three precisely known parameters :
 - The electromagnetic coupling constant :
 - The muon decay constant :
 - The Z boson mass :

- **α** = 1/137035999206(11)
- **G**_µ = 1.1663787(6) GeV⁻²

• The W boson mass is given by

$$m_W^2 = \frac{m_Z^2}{2} \left(1 + \sqrt{1 - 4 \frac{\pi \alpha}{\sqrt{2} G_\mu m_Z^2}} \right)$$

Quantum corrections : m_W

• Higher-order corrections, predominantly the boson self-energies, modify the leading-order relations to

$$m_{W}^{2} = \frac{m_{Z}^{2}}{2} \left(1 + \sqrt{1 - 4 \frac{\pi \alpha}{\sqrt{2} G_{\mu} m_{Z}^{2}}} \frac{1}{1 - \Delta r} \right)$$

$$\sim (r_{t}, q\bar{q}) \sim (tb, H, ...) \sim W$$

$$\Delta r = \Delta \alpha - \tan^{2} \theta_{W} \Delta \rho = \sim 0.059 - \frac{3 G_{\mu} m_{W}^{2}}{8 \sqrt{2} \pi^{2}} \left[\frac{m_{up}^{2}}{m_{W}^{2}} \cot^{2} \theta_{W} - \left(\ln \frac{m_{H}^{2}}{m_{W}^{2}}, \frac{5}{6} \right) + ... \right]$$

$$\Rightarrow \alpha(0) \sim 1/137... \Rightarrow \alpha(m_{Z}) \sim 1/128.9$$

Quantum corrections : mw

Quantum corrections : m_w m_w [GeV] 81 80.8 80.6 predicted 80.4 80.2 Measured value? 80 me 79.8 79.6 $\Delta \mathbf{r} = \mathbf{0}$ $\Delta \mathbf{r} = \Delta \alpha$ Œ 79.4 $\Delta \mathbf{r} = \Delta \alpha - \tan^2 \theta_w \Delta \rho(\mathbf{m}_{top}^2, ...)$ (m_H=125 GeV) 79.2 100 120 160 180 200 220 240 140 Nowadays: m_{top} [GeV]

- Inputs : $\delta m_{top} \sim 0.7 \text{ GeV}$ $\delta m_H < 0.2 \text{ GeV}$
- Output : m_w = 80.356 +/- 0.008 GeV

- Incomplete kinematics (missing neutrino!)
 - \rightarrow no invariant mass
 - $\rightarrow\,$ rely on measured quantities, and exploit momentum conservation in the transverse plane
- Event representation :
- Main signature : single electron or muon $\vec{p}_T^{\ l}$
- Recoil : sum of "everything else" reconstructed in the calorimeters; a measure of p_T^{w,z}

$$\vec{u}_{\mathrm{T}} = \sum_{i} \vec{E}_{\mathrm{T},i}$$

 $p_T^{\tilde{l}}$

• The process at leading order, no width :

$$\hat{\sigma}_{u\bar{d}\to\ell^+\nu} = \frac{1}{3} \frac{|V_{ud}|^2}{3\pi} \left(\frac{G_F m_W^2}{\sqrt{2}}\right)^2 \delta(m^2 - m_W^2)$$

Unpolarized differential cross section (spin 1) :

$$\frac{d\hat{\sigma}_{u\bar{d}\to\ell^+\nu}}{d\cos\theta} \propto 1 + \cos^2\theta \qquad \rightarrow \qquad \frac{d\hat{\sigma}_{u\bar{d}\to\ell^+\nu}}{dp_{\rm T}^\ell} \propto \frac{\left(1 - \frac{2p_{\rm T}^\ell}{m_W^2}\right)}{\sqrt{1 - \frac{4p_{\rm T}^\ell}{m_W^2}}} \qquad \qquad \rightarrow \qquad \text{the "Jacobian peak"}$$

• The process at leading order, no width :

• Natural width :

• Radiation in the initial state (QCD)

 $\rightarrow\,$ non trivial transverse momentum distribution

Radiation in the final state (QED)

 \rightarrow decays leptons lose a fraction of their energy

- Summary of physics effects
 - \rightarrow all carry uncertainties to be quantified!

- Detector effects, also with uncertainties :
 - Lepton calibration and resolution; Missing E_T resolution ~ 5 15 GeV
 - Efficiencies and acceptance ~15% (with non-trivial kinematic dependence!)

• Mass measurement : produce models ("templates") of the final state distributions for different mass hypotheses; compare to data

- The valence and sea distributions
 - Determine the W-boson rapidity distribution \rightarrow acceptance & fiducial distributions
 - The valence distributions polarize the W decay, with corresponding uncertainties.
 - For W⁺ :

- The valence and sea distributions
 - Determine the W-boson rapidity distribution \rightarrow acceptance & fiducial distributions
 - The valence distributions polarize the W decay, with corresponding uncertainties.
 - For W⁺ :

- The valence and sea distributions
 - Determine the W-boson rapidity distribution \rightarrow acceptance & fiducial distributions
 - The valence distributions polarize the W decay, with corresponding uncertainties:

Constraining PDFs: W charge asymmetry

• vs rapidity:
$$A(y) \approx \frac{u_V - d_V}{u_V + d_V + 2 r_s c}$$
 $(r_s \approx \bar{s}/\bar{d} \text{ and assuming } \bar{u} \approx \bar{d} \text{ and } s \approx \bar{s}).$

• Experiments only access η_{lep} : effect blurred by V-A. Still very discriminating information: probes a mixture of u_V/d_V and second generation quark PDFs

Implications: Valence distributions

- Strategy (largely common to ATLAS and CMS): use HERA data by necessity; ad only collider data
 - · Avoid data subject to larger theoretical uncertainty
- Impact of asymmetry measurement: most significant improvement in d_V
 - d_V has more freedom as u_V is better constrained by HERA data

Phys. Rev. Lett. 109 (2012) 111806

- Transverse momentum distribution
 - Initial state radiation involves large corrections, and is in part non-perturbative. W events are only partly measured (neutrino!)
 - Approach : adjust model parameters using Z events, which are close to W's and can be measured precisely; extrapolate to W production

- Transverse momentum distribution
 - Z-based model tuning + $Z \rightarrow W$ extrapolation uncertainties
 - Problem : measurements are inclusive in initial parton configurations.
 Heavy-flavour contributions "kick" the p_T distribution, and are different in W and Z

- Transverse momentum distribution
 - Comparison between selected theoretical predictions:

After all is said and done...

• CDF, D0

After all is said and done...

• ATLAS

After all is said and done...

Experimental situation

Experimental situation

- Last measurements:
 - ATLAS 2017

 $m_w = 80370 \pm 7 \text{ (stat.)} \pm 11 \text{ (exp.)} \pm 10 \text{ (theory)} \pm 9 \text{ (PDF)}$

- LHCb 2021 $m_w = 80354 \pm 23 \text{ (stat.)} \pm 10 \text{ (exp.)} \pm 17 \text{ (theory)} \pm 9 \text{ (PDF)}$

- CDF 2022 $M_w = 80433 \pm 6.4$ (stat.) ± 4.5 (exp.) ± 3.5 (theory) ± 3.9 (PDF)

Conclusions

- The W boson mass is arguably the most difficult measurement in HEP
 - Partial event reconstruction, incomplete kinematics
 - Calibrations
 - Physics modelling
 - Precision goal
 - \rightarrow so mistakes can be made..
- The limit of these measurements is the limit of our understanding of QCD.
- Ultimate goals of ATLAS, CMS, LHCb ~10 MeV each, with different experimental conditions and methods