Discussion session 03/10 Monday afternoon

RECEIVED QUESTIONS (THANKS !)

- How well is quarkonium production understood in exclusive production?
- ptQ>>M as criterion to define fragmentation regime: no other limits from "hadronic environment"?

Other inputs

QUARKONIA: STILL NO SINGLE CONSISTING PICTURE OF PRODUCTION MECHANISMS

Maxim Nefedov, morning talk

WANTED, BIASED LIST

•

Cover largest possible **pT and**

LDMEs	J/ψ hadropr.	J/ψ photopr.	J/ψ polar.	η_c hadropr.
Butenschön et al.	 Image: A set of the set of the	1	×	×
Chao et al. + η_c	 Image: A set of the set of the	×	1	1
Zhang et al.	 Image: A set of the set of the	×	1	1
Gong et al.	 Image: A set of the set of the	×	 Image: A second s	×
Chao et al.	1	×	1	×
Bodwin et al.	 Image: A set of the set of the	×	1	×

- rapidity ranges, or at least match TH (simultaneous or, at least, matching description over the entire range; x-checks using c-cbar, b-bbar and Bc ?) vs. EXP (overlap between experiments; access to low-pT ?) coverages
- **More data** from (HL-)LHC, more efficient data collection, however, higher trigger thresholds + competition for a bandwidth ... dedicated triggers ?
- Measure linked observables: charmonia with linked LDMEs; charmonia from different sources; ...
- Further development of **combined or global fits**
- Test factorisation, universality and HQSS ... which data wanted ?
- How to reduce **scale uncertainties** limiting the precision ?
- (Too) much experience that LO is not sufficient. How to cope with **NLO**, **NNLO** calculation challenges, where they are needed ... what are perspectives ?
- How to interpret **negative x-sections at large pT**?

HADRONISATION: OPEN POINTS AND NEXT STEPS

- Can the expected validity range of factorisation approach in pQCD-based calculation be well defined?
- D_s^+/D^0 does not change much from e^+e^- to pp, contrary to $\Xi_c^{0,+}/D^0$ and $\Sigma_c^{0,+,++}/D^0$, both increasing more than Λ_c^+/D^0 , with $\Sigma_c^{0,+,++}/\Xi_c^{0,+}$ staying not far from e^+e^-
 - Higher-mass states
 - Diquark-formation suppression in e^+e^- or easier diquark-formation in hadronic collisions?
 - diquark role in Pb-Pb for EoS?
 - how much the production rate of a given hadronic state can depend on its internal structure?
- Relativistic Quark Model: several baryon states not yet observed
 - o which collision system better suited for searching them? why not seen in e⁺e⁻?
 - expected rates? (e.g. SHM expectation as a baseline?)
 - which decays? (mostly strong decays to lower-mass states + pions)
- Low-mult pp vs. e⁺e⁻
 - Modification of hadronisation mechanisms
 - Yields vs. mult, MPI vs. edge effects
- Different models may describe differently similar effects, adopting different point of views
 - PYTHIA with CR beyond LC, Coalescence, SHM all imply departure from "standard" fragmentation and universality assumption
 - Can we connect them?
- Models including both fragmentation and coalescence often assume that fragmentation kicks in when coalescence probability results small ("leftover" c-quarks are fragmented): is there a foundation behind this?
- p_{T} -integrated vs. p_{T} -differential multiplicity evolution of Λ_{c}^{+}/D^{0}
 - Flow? Unnecessary coincidence of getting p_{T} -int =1... or not?
 - Hadronic part expected small, theory + femto studies

QUARKONIUM PRODUCTION - DISCUSSION/BRAINSTORMING SELECTED QUESTIONS ON STATUS, PROBLEMS AND PROSPECTS

CORE MEASUREMENTS:

- differential x-sections: pT, rapidity, event topology/multiplicity, ... ?
- x-section ratios (states with the linked LDMEs, e.g. J/ψ/ηc, χ_ci/χ_cj, ratios at different sqrt(s), experimentally useful ratios directly measured, x-check ratios e.g. ψ(2S)/J/ψ, J/ψ/Y(1S), …), double ratios (e.g. J/ψ/ηc / ψ(2S)/ηc(2S), J/ψ/ηc / Y(1S)/ηb), … are the ratios useful (TH vs EXP) ?

- vector-state polarizations ... how many independent observables ?
- ???

QUARKONIUM PRODUCTION - DISCUSSION/BRAINSTORMING SELECTED QUESTIONS ON STATUS, PROBLEMS AND PROSPECTS

Whom to measure:

- charmonia, JPC = 1 -, but also other using decays to hadronic final states
- charmonium-like states, X(3872), but also others ... what is the added value ?
- bottomonia, Y(iS), η b and χ_{bi} , ... sufficient x-section @ LHC ? significant BRs and EXP-friendly decays ?
- ???

Where to measure:

- e+e-, ep, hadronic collisions, heavy ions, ...
- hadroproduction, b-decay production, photoproduction, diffractive processes and CEP
 - CEP: only CS present; link between the quantum number of final state and virtually exchanged states (gamma, odderon, pomeron) -> study nature of exchanged states; quantum numbers of final state particles, parton distributions of colliding objects; ?
 - (Natural) Link between CEP and photoproduction. How straightforward is the contribution to understanding of other production mechanisms ?
 - EXP friendly signature: rapidity gap and pT spectrum. However, becomes difficult at higher mu values
- multiple and associated production, ... -> x-checks and/or complementary information ?

QUARKONIUM PRODUCTION - DISCUSSION/BRAINSTORMING SELECTED QUESTIONS ON STATUS, PROBLEMS AND PROSPECTS

Associated production, links to single hadroproduction

• Double- or triple- charmonia (SPS vs DPS vs TPS)

•DPS triple J/ψ production

arXiv:2111.05370

• a mixture of $(J/\psi+J/\psi)_{sps} + J/\psi_{sps}$

TPS triple J/ψ production
a mixture of J/ψ_{sps} + J/ψ_{sps} + J/ψ_{sps}

- How to interpret the effective x-section from triple charmonia ?
- Should we study associated production as a function of pT/M(Q-Q)?

SERVICE MEASUREMENTS / CALCULATIONS

Input BRs:

- Charmonia decays to lower charmonium states (for feeddown accounting)
- b-decays to charmonia (production in b-decays, also EXP x-feed)
- 1 - charmonia to di-muons (already sufficient accuracy ?); charmonia to hadronic channels (ideally significant BRs for several charmonia, however, at LHC largely limited to LHCb)
- x-checks or independent valuable measurements:
 e.g. ratio of ηc -> 2φ / ηc -> ppbar
- ???

Feeddowns, production of higher states:

- ψ(2S), χ_ci, hc + X(3872)
- Also b-production affecting via EXP x-feed between hadroproduction and b-decays
- ???

$\psi(2S)$ decay BR

$\gamma \chi_{c0}(1P)$	$(9.79 \pm 0.20)\%$		
$\gamma \chi_{c1}(1P)$	$(9.75 \pm 0.24)\%$		
$\gamma \chi_{c2}(1P)$	$(9.52 \pm 0.20)\%$		
$\gamma\eta_c(1S)$	$(3.4\pm0.5) imes10^{-3}$		
$\gamma\eta_c(2S)$	$(7\pm5) imes10^{-4}$		
hc decay BR			
$\gamma\eta_c(1S)$	$(50\pm9)\%$		

PDG live

COMBINED MODEL TESTS

Linked measurements, improve precision and/or test assumptions:

• Linked LDMEs, e.g. J/ ψ and ηc (1 CS and 3 CO LDMEs), χ _ci (1 CS and 1 CO LDMEs)

- Hadroproduction vs. b-decays
- e+e- vs. ep vs. pp(pbar) vs. ...; pp vs heavy ions
- Global fits
- ???
- Simultaneous measurement of charmonia with linked LDMEs from different sources constrains theory under assumptions of factorization, universality and HQSS.
- Once the complete set of measurements is available, can the above assumptions be tested quantitatively
 ?

HADRONISATION: OPEN POINTS AND NEXT STEPS

- What can we learn from
 - correlation measurements (production yields, angular and momentum correlations)
 - of HF-signal pairs
 - HF light flavour (e.g. Λ_c^+ -p vs. Λ_c^+ p)
 - HF jets, in particular: momentum fraction and radial profile of D-tagged, Λ_c^+ tagged jets?
- Exotic states (X(3872), pentaquarks):
 - how can we further understand their nature?
 - which additional information can the measurement of their production yields in different collision systems add?
 - could femtoscopy measurements help? (= could femtoscopy measurements of D-pion, D-p, Λ_c -pion, Σ_c -pion constrain the hadronic potential in such a way to provide information useful also for the molecular picture of these states?)

questions during 1st talk

ptQ>>M as criterion to define fragmentation regime: no other limits from "environment"?