Discussion section:

Heavy flavor hadronization mechanism in Heavy ion collisions

13/10/2022

Propositions in Tuesday:

Guiseppe:

take the standard hadronization procedure of your code (with the from us provided hypersurface) and calculate dn/dpt of D- mesons produced by a c-quark of 3 GeV/c and 10 GeV/c

Elena/Pol:

for all codes which use Wigner densities: do the calculation with the standard hadronization procedure with our hypersurface and c-quark distribution after fixing the parameters, which enter the Wignerdensity, to a common value.

Ivan:

v_2 calibration by comparing the light meson v_2 with experiment

Pol:

test of momentum space- space correlations of the c-qaurks by providing such a correlated c-quark distribution

Model comparison for hadronization

Descriptions:

	Frag.	Recom.	NOTE
Catania	Peterson	Wigner function	S-wave, D+,D0,Ds, D*+,D*0,D*s,\Lambda_c,\Sigma_c
Duke	Pythia 6.4	Wigner function S-wave,D,D*,\Lambda_c,\Sigma_c,\Xi_c,\C	
LBT	Pythia 6.4	Wigner function	S-wave,P-wave,D,Ds,D*,\Lambda_c
Nantes	Extracted from e⁺e⁻data	Wigner function S-wave, D+,D0	
Nantes(new)	Extracted from e⁺e⁻data	Wigner function S-wave, D+,D0	
PHSD	Peterson	Wigner function	S-wave, P-wave(S=1,2) D+,D0,Ds, D*+,D*0,D*s
TAMU	thermal density correlated HQET	RRM D+,D0,Ds, D*+missing baryons	
Turin	Pythia 6.4	Invariant mass S-wave, D+,D0,Ds,\Lambda_c,\Sigma_c,\On	
Vitev	HQET with energy loss	– S-/P-wave, D+,D0,Ds, c-baryons	

Recombination/coalescence probability

Low pT heavy flavor hadronize via the recombination, while high pT through the fragmentation!

Wigner function used in each model

Catania
$$W(x,p) = \prod_{i=1}^{N_q-1} A_W \exp\left(-\frac{x_i^2}{\sigma_{ri}^2} - p_i^2 \sigma_{ri}^2\right).$$

Duke

$$W(p) = g_h \frac{(2\sqrt{\pi}\sigma)^3}{V} e^{-\sigma^2 p^2},$$

LBT

$$W_{s}(p) = g_{h} \frac{(2\sqrt{\pi}\sigma)^{3}}{V} e^{-\sigma^{2}p^{2}},$$

$$W_{p}(p) = g_{h} \frac{(2\sqrt{\pi}\sigma)^{3}}{V} \frac{2}{3} \sigma^{2}p^{2} e^{-\sigma^{2}p^{2}}.$$

Nantes
$$W(x_Q, x_q, p_Q, p_q) = \exp\left(\frac{(x_q - x_Q)^2 - [(x_q - x_Q) \cdot u_Q]^2}{2R_c^2}\right) \exp\left(-\alpha_d^2(u_Q \cdot u_q - 1)\right),$$

PHSD

$$W_s(r,p) = \frac{8(2S+1)}{36}e^{-\frac{r^2}{\sigma^2}-\sigma^2 p^2},$$

$$W_p(r,p) = \frac{2S+1}{36}\left(\frac{16}{3}\frac{r^2}{\sigma^2}+\frac{16}{3}\sigma^2 p^2-8\right)e^{-\frac{r^2}{\sigma^2}-\sigma^2 p^2},$$

Some groups use momentum space Wigner function, some use phase space Wigner function

Wigner function used in each model

Catania	$W(x,p) = \prod_{i=1}^{N_q - 1} A_W \exp\left(-\frac{x_i^2}{\sigma_{ri}^2} - p_i^2 \sigma_{ri}^2\right).$	$r = \mathbf{r}_1 - \mathbf{r}_2 ,$ $p = \frac{ m_2\mathbf{p}_1 - m_1\mathbf{p}_2 }{m_1 + m_2}.$
Duke	$W(p) = g_h \frac{(2\sqrt{\pi}\sigma)^3}{V} e^{-\sigma^2 p^2},$	$r = \mathbf{r}_1 - \mathbf{r}_2 $ $p = \frac{ E_2\mathbf{p}_1 - E_1\mathbf{p}_2 }{E_1 + E_2},$
LBT	$W_{s}(p) = g_{h} \frac{(2\sqrt{\pi}\sigma)^{3}}{V} e^{-\sigma^{2}p^{2}},$ $W_{p}(p) = g_{h} \frac{(2\sqrt{\pi}\sigma)^{3}}{V} \frac{2}{3} \sigma^{2}p^{2} e^{-\sigma^{2}p^{2}}.$	$r = \mathbf{r}_1 - \mathbf{r}_2 $ $p = \frac{ E_2\mathbf{p}_1 - E_1\mathbf{p}_2 }{E_1 + E_2},$
Nantes	$W(x_Q, x_q, p_Q, p_q) = \exp\left(\frac{(x_q - x_Q)^2 - [(x_q - x_Q) \cdot u_Q]^2}{2R_c^2}\right) \exp\left(-\frac{(x_q - x_Q) \cdot u_Q}{2R_c^2}\right) \exp\left(-\frac{(x_q - x_Q) \cdot u_Q}{2R_c^2}\right)$	$-lpha_d^2(u_Q\cdot u_q-1)\big),$
PHSD	$W_s(r,p) = \frac{8(2S+1)}{36}e^{-\frac{r^2}{\sigma^2}-\sigma^2 p^2},$ $W_p(r,p) = \frac{2S+1}{36}\left(\frac{16}{3}\frac{r^2}{\sigma^2}+\frac{16}{3}\sigma^2 p^2-8\right)e^{-\frac{r^2}{\sigma^2}-\sigma^2 p^2},$	$r = \mathbf{r}_1 - \mathbf{r}_2 ,$ $p = \frac{ m_2\mathbf{p}_1 - m_1\mathbf{p}_2 }{m_1 + m_2}.$

The definition of relative momentum is also different.

Wigner function used in each model

$$\begin{array}{ll} \textbf{Catania} & W(x,p) = \prod_{i=1}^{N_g-1} A_W \exp\left(-\frac{x_i^2}{\sigma_{ri}^2} - p_i^2 \sigma_{ri}^2\right). & \textbf{Different } \sigma \ \text{for } D, D_s, \Lambda_c \end{array} \\ \\ \textbf{Duke} & W(p) = g_h \frac{(2\sqrt{\pi}\sigma)^3}{V} e^{-\sigma^2 p^2}, & \textbf{Same } \sigma \ \text{for all charmed hadrons} \end{array} \\ \\ \textbf{LBT} & W_s(p) = g_h \frac{(2\sqrt{\pi}\sigma)^3}{V} e^{-\sigma^2 p^2}, & \textbf{Same } \sigma \ \text{for all charmed hadrons} \\ W_p(p) = g_h \frac{(2\sqrt{\pi}\sigma)^3}{V} \frac{2}{3} \sigma^2 p^2 e^{-\sigma^2 p^2}. & \textbf{Same } \sigma \ \text{for all charmed hadrons} \\ \\ \textbf{Nantes} & W(x_Q, x_q, p_Q, p_q) = \exp\left(\frac{(x_q - x_Q)^2 - [(x_q - x_Q) \cdot u_Q]^2}{2R_c^2}\right) \exp\left(-\alpha_d^2(u_Q \cdot u_q - 1)\right), & \textbf{PHSD} & W_s(r,p) = \frac{8(2S+1)}{36} \left(\frac{16}{3} \frac{r^2}{\sigma^2} + \frac{16}{3} \sigma^2 p^2 - 8\right) e^{-\frac{r^2}{\sigma^2} - \sigma^2 p^2}, & \textbf{Same mean radius,} \\ \end{array}$$

The choice of the sigma in the Wigner function is different.

Light quark distribution and masses used in each model

$$\begin{array}{ll} \mathbf{Catania} & f_q = \frac{g\tau m_T}{(2\pi)^3} \exp\left(-\frac{\gamma_T(m_T-p_T\cdot\beta_T)}{T}\right), & \mbox{Uniform distribution in coordinate} \\ \\ \hline \mathbf{Duke} & f_q = \frac{V}{(2\pi)^3} \frac{g_i}{e^{E_i/T}+1}. & \mbox{No coordinate information} \\ \\ \hline \mathbf{LBT} & f_q = \frac{V}{(2\pi)^3} \frac{g_i}{e^{E_i/T}+1}. & \mbox{No coordinate information} \\ \\ \hline \mathbf{Nantes} & f_q = g_i \exp(-\sqrt{m^2+p^2}/T). & \mbox{Uniform distribution in coordinate} \\ \\ \hline \mathbf{PHSD} & f_q = \frac{g_i}{e^{E_i/T}+1}. & \mbox{Uniform distribution in coordinate} \\ \end{array}$$

Momentum distribution is almost same for different groups.

Light quark distribution and masses used in each model

Different light quark mass in each group.

Fragmentation process

Fragmentation function

Catania	Peterson
Duke	Pythia 6.4
LBT	Pythia 6.4
Nantes	Extracted from e⁺e⁻ data
PHSD	Peterson

Different value even in the same fragmentation function.

Backup

Model comparison for hadronization

Fix the freeze-out hypersurface and charm distribution at freeze-out hypersurface. We prepared four tasks:

- 1. Description of the hadronization scheme in your model
- 2. Final yield of charm hadrons with given charm distribution at hadronization hypersurface.
 - For pure fragmentation (assuming all c quarks proceed through fragmentation)
 - For pure coalescence / recombination
 - For your genuine hadronization model

For each cases, calculate the H_{AA} of D ($D^+ + D^0$), D_s and Λ_c .

$$H_{AA} = \frac{dN_D/dp_T}{dN_c/dp_T}$$

- 3. Same as the second one but in p+p collisions.
- 4. Elliptic flow v_2 with and without the c-quark flow.

$$\frac{dN}{d^2\mathbf{p}_T dy} = \frac{1}{\pi dp_T^2 dy} \left[1 + 2\sum_{n=1}^{\infty} v_n \cos\left(n\left(\phi - \Psi_n\right)\right) \right]$$

Model comparison for hadronization

We prepared four tasks, but so far only two tasks are finished :

- 2. Yield (H_{AA}) via fragmentation, recombination, and both with given c-quark distribution in HIC.
- 4. Elliptic flow v_2 with and without the *c*-quark flow.

	Frag.	Recom.	Mix	$D(D^0 + D^+)$	D_s	Λ_c
Catania						
Duke					X	X
LBT		X				
Nantes					X	×
Nantes(new)					X	×
PHSD						X
TAMU						
Turin	X	X				
Vitev		X	X			c-baryons

Model comparison – Recombination probability

! TAMU: pT of charm quark in the local rest frame; Others in the Lab frame.

- Huge difference at high pT region (pT>3 GeV)
- Total recombination probability ~1.0 at zero pT required by all charm quarks hadronized via recombination at pT~0.
- $P_{frag.}(p_T) = 1 P_{coal.}(p_T)$

Model comparison – H_{AA}

Include strong decays

PHSD

LBT (New)

TAMU

Model comparison – H_{AA}

What we learned:

• Nothing but the sequence $H_{AA}(D) > H_{AA}(D_s) > H_{AA}(\Lambda_c)$

The large difference may come from the branching ratios between various charmed-hadrons

$$R = \left(\int \frac{dN_c}{dp_T} \times H_{AA} dp_T \right) / \left(\int \frac{dN_c}{dp_T} dp_T \right)$$

Frag.	D	D_s	Λ_c
Catania	99%	8%	13%
Duke	277%	-	-
LBT	37.8%	5.4%	3%
Nantes	100%	-	-
Nantes (new)	100%	-	-
PHSD	81%	10%	-
TAMU	5.1%	1.4%	2.9%
Vitev	42.1%	5.5%	6%

Recom.	D	D_s	Λ_c
Catania	37.5%	7.3%	19%
Duke	367%	-	-
LBT	-	-	-
Nantes	100%	-	-
Nantes (new)	100%	-	-
PHSD	67%	33%	-
TAMU	30%	13%	22%
Vitev	-	-	-

Mixed.	D	D_s	Λ_c
Catania	76.1%	10.4%	24.2%
Duke	257%	-	-
LBT	54.7%	12.1%	15.3%
Nantes	100%	-	-
Nantes (new)	100%	-	-
PHSD	75%	20%	-
TAMU	35%	15%	25%
Vitev	-	-	-

Model comparison – H_{AA}

TAMU model gives a larger Λ_c/D^0 ratio than others; may cause by "missing" baryons Similar D_s/D , Λ_c/D ratio from fragmentation (except TAMU)

 Λ_c/D ratio from recombination is much larger than fragmentation — — baryon/meson enhanced

Model comparison – v2

Model comparison – v2

We take an isotropic c-quark distribution (eliminate the elliptic flow)

• v2 from the fragmentation is zero. Elliptic flow fully comes from the recombined light quark/quarks.

Many thanks to : Catania, Duke, LBT, Nantes, PHSD, TAMU, Turin, Vitev group

S. Plumari, V. Minissale, S.K. Das, G. Coci, and V. Greco, Eur.Phys.J.C 78 (2018) 4, 348, V. Minissale, S. Plumari[,] V. Greco, Phys.Lett.B 821 (2021) 136622.

Y. Xu, S. Cao, M. Nahrgang, W. Ke, G. Qin, J. Auvinen, and S. Bass, Nucl.Part.Phys.Proc. 276-278 (2016) 225-228. S. Cao, G. Qin, and S. Bass, Phys. Rev. C92, 024907 (2015).

S. Cao, K. Sun, S. Li, S. Liu, W. Xing, G. Qin, and C. Ko, Phys.Lett.B 807 (2020) 135561. F. Liu, W. Xing, X. Wu, G. Qin, S. Cao, and X. Wang, Eur.Phys.J.C 82 (2022) 4, 350.

M. Nahrgang, J. Aichelin, P.B. Gossiaux, and K. Werner, Phys.Rev.C 93 (2016) 4, 044909, P.B. Gossiaux, R. Bierkandt and J. Aichelin, Phys.Rev.C 79 (2009) 044906.

T. Song, H. Berrehrah, D. Cabrera, J. M. Torres-Rincon, L. Tolos, W. Cassing and E. Bratkovskaya, Phys. Rev. C 92, no.1, 014910 (2015). T. Song, H. Berrehrah, D. Cabrera, W. Cassing and E. Bratkovskaya, Phys. Rev. C 93, no.3, 034906 (2016).

M. He, R. Rapp, Phys.Rev.Lett. 124 (2020) 4, 042301. M. He, R. J. Fries, and R. Rapp, Phys. Rev. C86, 014903 (2012)

A. Beraudo, A. De Pace, M. Monteno, M. Nardi and F. Prino, Eur. Phys. J.C 82 (2022) 7, 607. JHEP 05 (2021) 279.

H.T.Li, Z.L.Liu and I.Vitev, Phys. Lett. B 816,136261(2021), Z.B.Kang, R.Lashof Regas, G.Ovanesyan, P.Saad and I.Vitev, Phys. Rev. Lett. 114,no.9,092002(2015)

Thanks for your attention!