Quarkonium production at the EIC and LHC Charlotte Van Hulse University of Alcalá de Henares

AdTCM

HF2022: Heavy Flavours from Small to large systems joint with Strong202-Institut Pascal, Orsay, France 03 Oct – 21 Oct 2022

The electron-ion collider

$$\vec{e} + \vec{p}/A$$
, with A=D, ..., Au, Pb
~ 70% polarisation
 $\mathcal{L} = 10^{33-34} \text{cm}^{-2} \text{s}^{-1} \leftrightarrow \mathcal{L}_{\text{int}} = 10 - 100 \text{ fb}^{-1}/\sqrt{s} = 20 - 141 \text{ GeV}$

The electron-ion collider

$$\vec{e} + \vec{p}/A$$
, with A=D, ..., Au, Pb
~ 70% polarisation
 $\mathcal{L} = 10^{33-34} \text{cm}^{-2} \text{s}^{-1} \leftrightarrow \mathcal{L}_{\text{int}} = 10 - 100 \text{ fb}^{-1}/\sqrt{s} = 20 - 141 \text{ GeV}$

The electron-proton/ion collider (ePIC) detector (current status)

The electron-proton/ion collider (ePIC) detector (current status)

hermetic coverage:

hermetic coverage: 0°≤φ≤360° $2^{\circ} \le \theta \le 178^{\circ} \iff -4 < \eta < 4$

The electron-proton/ion collider (ePIC) detector (current status) + far forward ZDC **Roman Pots** Hadron Beam after IP **Off Momentum B0 Trackers + Calorimeter** B1apf Dipole B1pf Dipole Q2bpf quadrupole Q1pf quadrupole Q1apf quadrupole B0apf Diople

The ePIC central detector (current status) (C

The ePIC central detector (current status) $C \in C$

The ePIC central detector (current status) (C

The ePIC central detector (current status) CC

_0___

EM CAL

- Electron-endcap EM cal (EEMC): high-precision PbWO₄+SiPMs
- Barrel EM cal (BEMC): SciGlass/Imaging EM cal
- Forward EM cal (FEMC): Finely segmented W-SciFi

rando and rando

RHC

BEMO

mRICH

Cryostat

HCAL

- Inner+outer HCAL: steel+Sci: control shower leakage (inner) and detection of neutrals
- FHCAL: finally segmented steel+tungsten+Sci for good energy resolution

IMIF

ARA

267

The ePIC central detector (current status) (c

//muRWell/µMegas

			BHCAL
-in [cm] R-	-out [cm] R-J	hicknes	Cryostat AC-LGAD/TOF BEMC muRWell
140	h 170	turn	
134	140		
125.5	134	8.8	
80	125.5	45.5	
79.5	80	0.5	
77	79.5	2.5	
74.5	77	2.5	
71.5	76.6	5.1	
65	71.5	6.5	

PID

- Cherenkov detectors: mRICH/pfRICH, hpDIRC, dRICH
 - ~ 1 GeV/c<p<50 GeV/c
- AC-LGAD/TOF: ~ p < 0.5 – 3 GeV/c

The ePIC central detector (current status) (CC

Physics with EIC

Nucleon spin

Hadronisation

Nucleon multi-dimensional structure

Kinematic coverage for DIS

х

EIC

LHC, pp di-jets at

Quarkonium production (at the EIC)

→ Access to production mechanism of quarkonia, which is not yet understood

- Usual assumption: factorisation between $Q\overline{Q}$ formation and $Q\overline{Q}$ hadronisation
- Different approaches for hadronisation: colour-evaporation model, colour-singlet model, non-relativistic QCD (NRQCD)

NRQCD

Quarkonium production (at the EIC)

→ Access to production mechanism of quarkonia, which is not yet understood

- Usual assumption: factorisation between $Q\overline{Q}$ formation and $Q\overline{Q}$ hadronisation
- Different approaches for hadronisation: colour-evaporation model, colour-singlet model, non-relativistic QCD (NRQCD)

NRQCD

→ Access to gluon distributions

Inclusive J/ψ production

Intrinsic charm at the LHC

Intrinsic charm at the EIC

TMD PDFs in unpolarised protons $e + p \rightarrow e + J/\psi + X$, leading sub-process: $e + g \rightarrow e + [c\bar{c}]$ \rightarrow probe gluon distribution

TMD PDFs in unpolarised protons $e + p \rightarrow e + J/\psi + X$, leading sub-process: $e + g \rightarrow e + [c\bar{c}]$ \rightarrow probe gluon distribution $\rightarrow p_{TJ/\psi,\gamma^*}$: mostly from gluon k_T

LHC: access to linearly polarised gluons

F. Scarpa et al., Eur. Phys. J. C80 (2020) 87

 $M_{\psi\psi} = \begin{array}{ccc} 12 \ {\rm GeV} \\ 21 \ {\rm GeV} \\ 30 \ {\rm GeV} \end{array} \qquad \begin{array}{cccc} b_{T_{\rm lim}} = 2 \ {\rm GeV}^{-1} \\ 4 \ {\rm GeV}^{-1} \\ 8 \ {\rm GeV}^{-1} \\ \end{array} \begin{array}{cccc} --- \\ --- \end{array}$ $0.25 < |\cos(\theta_{\rm CS})| < 0.5$ 8 $J/\psi J/\psi$ production 6 4 2 0 10 128 14 26 $P_{\psi\psi_T}$ (GeV)

Gaussian TMD parametrisation

(in %)

 $2\langle \cos(2\phi_{\rm CS})\rangle$

TMD PDFs in transversely polarised protons

→ gluon Sivers TMD

D. Boer et al., *Physics case for quarkonium* studies at the Electron Ion Collider

TMD PDFs in transversely polarised protons \rightarrow gluon Sivers TMD $A_N = \frac{1}{P} \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}}$

D. Boer et al., *Physics case for quarkonium* studies at the Electron Ion Collider

C.Hadjidakis et al., Phys. Rept. 911 (2021) 1-83

Exclusive measurements on protons

3D longitudinal-momentum + position structure

large mass large mass

Exclusive measurements on protons

p

 \mathcal{C}

 \overline{C}

Ø

 J/ψ

large mass large mass

3D longitudinal-momentum + position structure

Exclusive measurements on protons

Exclusive measurements on p at EIC: detection of the nucleon

Detection of the recoil protons

Reconstruction of J/ψ via electrons and muons

Distribution of electron and muons

EIC: exclusive J/ ψ production on p

- \rightarrow probe gluon saturation (for not too heavy final states)
- \rightarrow nuclear imaging in position space

- \rightarrow probe gluon saturation (for not too heavy final states)
- \rightarrow nuclear imaging in position space

Good separation of coherent and incoherent production. Not easy!

- \rightarrow probe gluon saturation (for not too heavy final states)
- \rightarrow nuclear imaging in position space
- Good separation of coherent and incoherent production. Not easy!
- Coherent production: measurements up to large t:
 - 3D or 2D (x independent) transverse position

$$d\Delta_{\perp} \operatorname{GPD}(x, 0, \Delta_{\perp}) e^{-ib_{\perp}\Delta_{\perp}}$$

Experimentally limited by maximum transverse momentum. Need to extend p_T range as much as possible in measurement. ~third diffractive minimum.

|t| (GeV²)

- \rightarrow probe gluon saturation (for not too heavy final states)
- \rightarrow nuclear imaging in position space
- Good separation of coherent and incoherent production. Not easy!
- Coherent production: measurements up to large t:
 - 3D or 2D (x independent) transverse position

$$d\Delta_{\perp} \operatorname{GPD}(x, 0, \Delta_{\perp}) e^{-ib_{\perp}\Delta_{\perp}}$$

- Experimentally limited by maximum transverse momentum. Need to extend p_T range as much as possible in measurement. ~third diffractive minimum.
- Saturation: determine dip position indirectly via slope and probe its dependence with W_{yp}

Coherent photoproduction in PbPb at the LHC

 $0.7 \times 10^{-2} < x_B < 3.3 \times 10^{-2}$ (dominant) $1.1 \times 10^{-5} < x_{\rm B} < 5.1 \times 10^{-5}$

Results indicate shadowing in gluon PDF:

$$R_g = \frac{g^{Pb}}{A \, g^p} \approx 0.65 \text{ at } x \approx 10^7$$

ALICE, Phys. Lett. B 817 (2021) 136280

-3

EIC: diffractive eA

→ resolving minima

 Need 90%, 99%, and > 99.8% veto efficiency for incoherent production, for the respective minima at increasing t.

veto of events where nuclei break up
 → use entire far-forward detector systems

Need precise determination of t.

 reconstruction via scattered lepton and exclusively produced vector meson/photon

Diffractive eA: study of exclusive J/ψ production in ePb

t via scattered lepton and reconstructed vector meson $p_T^2 \approx (\vec{p}_{J/\psi,T} + \vec{p}_{e',T})^2$

- Simulation: coherent (Sartre)+incoherent (Beagle, normalised to Sartre)
- No background simulation
- No simulation of the beam spread

Summary

- Quarkonium production at the EIC offers:
 - complementary information to probe the quarkonium production mechanism
 - excellent tool to probe the gluon content of nucleon,
 with the advantage of a clean probe, compared to the LHC
- Promising studies based on detector simulation for physics of exclusive measurements
- High potential for non-exclusive physics:
 - next step: further studies using full detector simulation

Back up

Diffractive eA: study of exclusive J/ψ production in ePb

On the importance of the EEMC for the scattered lepton

