

Heavy flavor dynamics in the parton-hadron-String dynamics (PHSD) transport approach

Taesoo Song (GSI)

with Elena Bratkovskaya, Pierre Moreau, Wolfgang Cassing, Hamza Berrehrah, Olga Soloveva, Laura Tolos, Juan Torres-Rincon, Jörg Aichelin, Pol-Bernard Gossiaux

HF2022: Heavy Flavours from small to large systems

Schematic diagram of PHSD for heavy flavor

1. Partonic interactions of HF

- What we know about QGP is EoS as a function of T, μ_B from IQCD: (energy density, pressure, entropy density,...)
- Dynamical Quasi-Particle Model (DQPM) describes QGP by thermal partons which have T, μ_B -dependent pole mass and spectral width
- The form of pole mass and that of spectral width are inspired by the HTL calculations

$$M_{q(\bar{q})}^{2}(T,\mu_{B}) = \frac{N_{c}^{2}-1}{8N_{c}}g^{2}(T,\mu_{B})\left(T^{2}+\frac{\mu_{q}^{2}}{\pi^{2}}\right),$$
$$\gamma_{q(\bar{q})}(T,\mu_{B}) = \frac{1}{3}\frac{N_{c}^{2}-1}{2N_{c}}\frac{g^{2}(T,\mu_{B})T}{8\pi}\ln\left[\frac{2c}{g^{2}(T,\mu_{B})}+1\right]$$

• But the strong coupling is fitted to lattice EoS

Dynamical Quasi-Particle Model (DQPM)

T-dependent running coupling

 $g^{2}(s/s_{SB}) = d((s/s_{SB})^{e} - 1)^{f}$

s: entropy density $s_{SB} = 19/9\pi^2 T^3$: Stefan-Boltzmann entropy density d=169.934, e=-0.178434, f=1.14631 **3.0**

Dynamical Quasi-Particle Model (DQPM)

Lattice EOS is well reproduced both at $\mu_B = 0$ and $\mu_B \neq 0$

Pierre Moreau, et al. PRC 100 (2018) 014911

Parton spectral function

For charm scattering, spectral function is simply approximated into Breit-Wigner form

HF interacts with the dynamical quasi-particles

■ Elastic cross section uc→uc

Charm & bottom quark cross section

Total cross sections

differential cross sections

Total cross sections are similar, but bottom cross section is more highly forward peaked, because it is heavier.

T. Song et al. PRC 96 (2017) 014905

2. Hadronization of HF

• Peterson's fragmentation function for transverse momentum

$$D_Q^H(z) \sim \frac{1}{z[1 - 1/z - \epsilon_Q/(1 - z)]^2},$$

 $\epsilon_Q = 0.01$ for charm and 0.004 for bottom

Chemical fractions: D⁺, D⁰, D^{*+}, D^{*0}, D_s, Λ_c 15, 15, 24, 24, 10, 9 %

 Wigner function for S state coalescence probability

$$\Phi(\mathbf{r}, \mathbf{p}) = 8 \exp\left[-\frac{r^2}{\sigma^2} - \sigma^2 p^2\right]$$

 $r = r_1 - r_2$

0.9 fm

$$\mathbf{p} = (m_2 \mathbf{p_1} - m_1 \mathbf{p_2}) / (m_1 + m_2).$$

in center-of-mass frame

$$\begin{split} \left< r_M^2 \right> &= \frac{1}{2} \langle (\mathbf{R} - \mathbf{r}_1)^2 + (\mathbf{R} - \mathbf{r}_2)^2 \rangle \\ &= \frac{1}{2} \frac{m_1^2 + m_2^2}{(m_1 + m_2)^2} \langle r^2 \rangle = \frac{3}{4} \frac{m_1^2 + m_2^2}{(m_1 + m_2)^2} \sigma^2, \end{split}$$

multiplied by 4 (=1+3) to include D* and divided by 36(=6*6) Wigner function for P state coalescence probability

$$\left(\frac{16}{3}\frac{y_i^2}{\sigma_i^2} - 8 + \frac{16}{3}\sigma_i^2 k_i^2\right) \exp\left(-\frac{y_i^2}{\sigma_i^2} - k_i^2 \sigma_i^2\right)$$

multiplied by 8 (=3+5)to include J^p=1⁺, 2⁺ and divided by 36(=6*6)

 We assume P states decay to D(D*) + π as soon as hadronized
D_s is similarly treated

Model Study: total coalescence probability of thermal charm

Charm can be projected into all possible states with different coalescence radii \rightarrow too complicated !!

T. Song, G. Coci, arXiv:2104.10987

• Ground state from the coalescence model

 Heavier states from the statistical model

 $\frac{\text{number density of all charm hardons}}{\text{number density of } D^0} = 7.47,$

at T_c

The total coalescence probability is much lower than 1 There must be correlations in color, momentum, coordinate spaces

Hadronization of heavy quarks in A+A

T. Song et al. PRC 93 (2016) 034906

3. Hadronic interactions of HF

- Basic transition amplitude V is obtained from the effective chiral Lagrangian with heavy quark spin symmetry
- D=(D⁰,D⁺,D⁺_s) or D^{*}=(D^{*0},D^{*+},D^{*+}_s) interacts with
- flavor octet meson (π,K,Kbar,η) or
- nucleon octet J^P=1/2⁺ and Delta decuplet J^P=3/2⁺
- V is unitarized through T = V + VGT,
- where G is propagators of heavy meson and light meson(baryon)

• **T** is unitarized transition amplitude

D-meson scattering in the hadron gas

1. D-meson scattering with mesons

1a) cross sections with $m=\rho$, $\omega, \phi, K*,...$ taken as

 $\sigma(D,D*+m)=10mb$

→Strong isospin dependence and complicated structure due to the resonance coupling of D+m, D+B cross sections!

2. D-meson scattering with baryons

4. What is distinguished in PHSD

- Partonic matter (QGP) is described with massiveoffshell (anti)quarks and gluons which reproduce lattice EoS
- Coalescence is repeatedly tried from 0.75 GeV/fm³ to 0.4 GeV/fm³ of energy density such that coalescence probability is large enough at low p_T
- Hadronic scattering has nonnegligible effects on HF based on the calculations in the effective Lagrangian with unitarization

Thank you for your attention

contents

- 1. partonic interactions of HF in PHSD
- 2. hadronization of HF in PHSD
- 3. hadronic interactions of HF in PHSD

• 4. summary

Differential cross sections

DQPM: $M \rightarrow 0$, $\gamma \rightarrow 0 \rightarrow$ reproduces pQCD limits

Differences between DQPM and pQCD : less forward peaked angular distribution le ads to more efficient momentum transfer

P. Moreau et al., PRC100 (2019) 014911 ²⁰