

HF2022: Heavy Flavours from small to large systems

Experimental review of open heavy flavour in heavy ion collisions

Barbara Trzeciak

Czech Technical University in Prague

HF2022 Oct 18th, 2022

Introduction: R_{AA}

- D meson yields strongly suppressed in central HI collisions
- Different nuclear modification factor of HF mesons and light-flavour particles at low and intermediate p_{τ}
 - Interplay of several effects

Introduction: v₂

- **D meson, b** \rightarrow e v₂ > 0, mass ordering at lower p_T
- Strong HF quark coupling with the medium

Quantitative understanding: comparisons with model calculations

Open charm v₂ **vs models**

- Models tend to underestimate v_2 data in mid-central collisions at $p_T 2-6$ GeV/c
- Better description for the most central collisions

HFE v₂ vs energy

- Significant non-zero v₂ at 54.4 GeV of c,b → e, similar to v₂ at 200 GeV
- HF(c) quarks interact strongly with the medium in 54.4 GeV Au+Au collisions
- At low p_T models lower than data

Open charm R_{AA} vs models

- Reasonable agreement with many models, especially at intermediate p_T
- Simultaneous description of R_{AA} and v₂ is challenging for the models

Spatial diffusion coefficient

- D_s extraction: data-to-model comparison
- Data prefer strong coupling
- ALICE new constraints: $1.5 < 2\pi D_s T_c < 4.5$ (models that reasonably describe R_{AA} and $v_{2,} v_{3}$)

Open charm R_{AA} vs models (2)

• Radiative energy loss important to describe intermediate and high \mathbf{p}_{T}

Open charm R_{AA} vs models (3)

- Hadronisation via recombination important to describe low and intermediate ${\bf p}_{\tau}$

Separation of charm and beuty

- Beauty $R_{AA} > charm R_{AA}$ at intermediate $p_T \rightarrow suggesting larger en. loss for charm quarks$
- Consistent with quark-mass dependent energy loss and coalescence

Open beauty v₂,v₃

- beauty v₂ > 0 consistent with model predictions
- Non-zero v₃ with weak centrality dependence

Charm hadrochemistry: D

- Enhancement in D_s⁺/D^o ratio compared to pp
- Consistent with models including strangeness enhancement and charm quark coalescence + fragmentation

Charm hadrochemistry: Λ_{c}

- Recombination: enhanced production of baryon w.r.t. mesons
- Enhancement of Λ_c/D^0 w.r.t. pp collisions \rightarrow recombination with light quarks, radial flow push ?
- Centrality dependence described by model with fragmentation and coalescence

Total charm production cross section

- → Total charm production cross section per binary collision in Au+Au at $\sqrt{s_{_{NN}}}$ = 200 GeV.
 - Consistent with p+p collisions.

Collision System	Hadron	dσ _{ոո} /dy [μb]
Au+Au at 200 GeV Centrality: 10-40% 0 < p _τ < 8 GeV/c	D^{0} [1]	$39 \pm 1 \pm 1$
	D^{\pm}	$18 \pm 1 \pm 3^{*}$
	D _s [2]	$15 \pm 2 \pm 4$
	Λ _c [3]	$40 \pm 6 \pm 27^{**}$
	Total	$112 \pm 6 \pm 27$
p+p at 200 GeV [4]	Total	$130 \pm 30 \pm 26$

D^o [1] STAR, Phys. Rev. C 99 (2019) 034908 D_s [2] STAR, Phys. Rev. Lett. 127 (2021) 092301 Λ_c [3]STAR, Phys. Rev. Lett. 124 (2020) 172301 p+p [4] STAR, Phys. Rev. D 86 (2012) 072013

* Preliminary D^{+/-} results

** Λ_c cross section derived from Λ_c/D^0 yield ratio

Radial profile of D in jets

- Diffusion of charm w.r.t jet axis → interaction mechanisms between hq and medium, coll. vs rad. en. loss, sensitivity to D_s
- Hint of broader radial distribution in AA w.r.t. pp

D⁰ directed flow, v₁

- Large D⁰ directed flow v₁ vs y
- Interplay between effects of the rapidly decreasing magnetic field and the initial tilt of the source
- dv₁/dy slope:
 - RHIC: Negative, similar for D⁰ and D^{0bar}
 - LHC: Positive for D⁰ and negative for D^{0bar}
- dAv₁/dy(D⁰-D^{0bar}) slope: negative at RHIC, positive and larger at LHC
- Tilt dominance at RHIC ?
- Trend compatible with hydrodynamic model with EM, but larger v₁ magnitude

ALICE: Phys. Rev. Lett. 125, 022301 (2020)

Summary

- Heavy quarks interact with the medium via collisional and radiative processes
- Indications of mass dependent energy loss
- Strong coupling of heavy-flavour quarks with the medium from 54.4 GeV up to 5.02 TeV, HF quarks participate in the collective motion
- Evidence of charm quark hadronization via coalescence
- Measurements are getting more precise and differential → constraints on theoretical models and extraction of the medium properties

This work was supported by grant from The Czech Science Foundation, grant number: GJ20-16256Y

Backup

D⁰-meson tagged jets

- → R_{CP} : strong suppression at low jet p_T , hint of increasing trend.
- → Ratio of radial distributions consistent with unity hint of broader distribution. Potential to go to lower D⁰ p_T.

HF2022 | Open HF Exp | B.Trzeciak, Oct. 18, 2022

Constraining D_s

21

$\mathbf{D} \mathbf{v}_2$ and \mathbf{v}_3

ALICE, Phys. Lett. B 813 (2021) 136054

HF2022 | Open HF Exp | B.Trzeciak, Oct. 18, 2022

Dv₂EsE

ALICE, Phys. Lett. B 813 (2021)

HF2022 | Open HF Exp | B.Trzeciak, Oct. 18, 2022

Open beauty R_{AA}

Access to low p_T beauty hadron R_{AA}

Charm vs beauty R_{AA} at LHC

• Beauty $R_{AA} > charm R_{AA}$ at intermediate $p_T \rightarrow suggesting larger en. loss for charm quarks$

 \mathbf{B}_{s} , \mathbf{B}_{c} , \mathbf{R}_{AA} in AA

Hint of an enhancement of the B_s⁰/B⁺ ratio in PbPb w.r.t pp

Upcoming LHC Run3,4 will provide more information on beauty quark hadronization

B_s⁰

$\mathbf{B}_{s} \mathbf{R}_{AA}$ in AA

■ Hint of enhancement of the B_s^0 in PbPb w.r.t pp at low $p_T \rightarrow$ beauty-quark hadronisation via coalescence

Upcoming LHC Run3,4 will provide more information on beauty quark hadronization

Heavy flavour in HI collisions

- Heavy-flavour quarks (c,b), m_Q >> Λ_{QCD}, T_{QGP}: produced in initial hard scatterings, no thermal production
 Collisional Radiative
- Interactions with the medium \rightarrow parton energy loss, flow
 - Constraints on energy loss mechanisms (collisional/radiative process)
 - → Direct access to medium transport coefficient: $D_s(2\pi T)$

Anisotropic Flow in Hl

- Collision geometry: initial spacial anisotropy
- Multiple interactions between the constituents of the medium → azimuthal momentum space anisotropy of particle emission, flow

Directed flow, v,

Insights into initial tilt of matter and strong EM field in non-central HI collisions

-0.0002

• formation time comparable to when B is maximum