Heavy quark hadronization: Coalescence and fragmentation

S. Plumari

Dipartimento di Fisica e Astronomia 'E. Majorana', Università degli Studi di Catania

INFN-LNS

Thanks to: V. Minissale, A. Arena, S. K. Das, Y. Sun, M.L. Sambataro, V. Greco

HF2022: Heavy Flavours from small to large systems

Oct 3 – 21, 2022 Institut Pascal

Transport coefficient

Models not really tested at $p \rightarrow 0$ The new data \rightarrow determine D_s(T) more properly, i.e. $p \rightarrow 0$ where it is defined and computed in IQCD

							2018-2019
	Catania	Duke	$\operatorname{Frankfurt}(\operatorname{PHSD})$	LBL	Nantes	TAMU	Concerci Collab in inint activities
Initial HQ (p)	FONLL	FONLL	pQCD	pQCD	FONLL		Several Collab. In joint activities:
Initial HQ (x)	binary coll.	binaryy coll.	binary coll.	binary coll.		binary coll.	- EMMI-RRTF:
Initial QGP	Glauber	Trento	Lund		EPOS		R. Rapp et al., Nucl. Phys. A 979 (2018)
QGP	Boltzm.	Vishnu	Boltzm.	Vishnu	EPOS	2d ideal hydro	
partons	mass	m=0	m(T)	m=0	m=0	m=0	- HQ-JEIS:
formation time QGP	$0.3~{ m fm/c}$	$0.6~{\rm fm/c}$	$0.6~{\rm fm/c}$ (early coll.)	0.6 fm/c	0.3 fm/c	0.4 fm/c	S. Cao et al.,Phys. Rev. C 99 (2019)
interactions in between	HQ-glasma	no	HQ-preformed plasma	no		no	- Y. Xu et al., Phys. Rev. C 99 (2019)

ALI-PREL-319549

Transport coefficient

the extraction of the charm quark diffusion coefficient **New joint activity is starting**

2018-2019 Several Collab. in joint activities:

- EMMI-RRTF:

R. Rapp et al., Nucl. Phys. A 979 (2018) - HQ-JETS:

S. Cao et al., Phys. Rev. C 99 (2019)

- Y. Xu et al., Phys. Rev. C 99 (2019)

HF Hadronization schemes

• Independent fragmentation

 $q \rightarrow \pi, K, p, \Lambda ..$ $c \rightarrow D, D_s, \Lambda_c, ...$

• String fragmentation (PYTHIA)

• In medium hadronization with Cluster decay

A. Beraudo et al., arXiv:2202.08732v1 [hep-ph]

• Coalescence/recombination

P.B. Gossiaux, R. Bierkandt and J. Aichelin, PRC 79 (2009) 044906.
S. Plumari, V. Minissale et al, Eur. Phys. J. C78 no. 4, (2018) 348
S. Cao et al., Phys. Lett. B 807 (2020) 135561

Resonance Recombination model

L. Ravagli and R. Rapp, Phys. Lett. B 655, 126 (2007).

L. Ravagli, H. van Hees and R. Rapp, Phys. Rev. C 79, 064902 (2009).

• Statistical hadronization model (SHM)

A. Andronic et al, JHEP 07 (2021) 035

Indipendent fragmentation

Inclusive hadron production from hard-scattering processes (large Q²):

Factorization of: PDFs, partonic cross section (pQCD), fragmentation function

 $\frac{dN_h}{d^2p_h} = \sum_f \int dz \frac{dN_f}{d^2p_f} D_{f \to h}(z) \qquad \begin{array}{l} \mathbf{q} \to \mathbf{\pi}, \, \mathbf{K}, \, \mathbf{p}, \, \mathbf{\Lambda} \, .. \\ \mathbf{c} \to \mathbf{D}, \, \mathbf{D}_{\mathrm{s}}, \, \mathbf{\Lambda}_{\mathrm{c}}, \, ... \end{array}$

Fragmentation function

Fragmentation functions $D_{f \rightarrow h}$ are phenomenological functions to parameterize the *non-perturbative parton-to-hadron transition* z = fraction of the parton momentum taken by the hadron h**Fragmentation functions**assumed**universal**among energyand collision systems and constrained from e⁺e⁻and ep

Indipendent fragmentation

Inclusive hadron production from hard-scattering processes (large Q²):

Factorization of: PDFs, partonic cross section (pQCD), fragmentation function

 $\frac{dN_h}{d^2p_h} = \sum_f \int dz \frac{dN_f}{d^2p_f} D_{f \to h}(z)$

$$q \rightarrow \pi, K, p, \Lambda ..$$

 $c \rightarrow D, D_s, \Lambda_c, ...$

Fragmentation function

Fragmentation functions $D_{f \rightarrow h}$ are phenomenological functions to parameterize the *non-perturbative parton-to-hadron transition* z = fraction of the parton momentum taken by the hadron h**Fragmentation functions**assumed**universal**among energyand collision systems and constrained from e⁺e⁻and ep

W. Ke and I. Vitev, arXiv:2204.00634 [hep-ph]

Evolution softens HQ fragmentation functions

Hadronization: fragmentation and coalescence

Baryon to Meson Ratios

Proton to pion ratio Enhancement:

In vacuum from fragmentation functions the ratio is small $\frac{D_{q \to p}(z)}{D_{q \to \pi}(z)} < 0.25$

Elliptic flow splitting:

For p_T >2 GeV Both hydro and fragmentation predicts similar v_2 for pions and protons

Another hadronization mechanism is by coalescence:

Formalism originally developed for light-nuclei production from coalescence of nucleons on a freezeout hypersurface.

Extended to describe meson and baryon formation in AA collisions from the quarks of QGP through $2\rightarrow 1$ and $3\rightarrow 1$ processes

V. Greco, C.M. Ko, P. Levai PRL 90, 202302 (2003).
V. Greco, C.M. Ko, P. Levai PRC 68, 034904 (2003).
R.J. Fries, B. Muller, C. Nonaka, S.A. Bass PRL 90, 202303 (2003).
R.J. Fries, B. Muller, C. Nonaka, S.A. Bass PRC 68,044902 (2003).

Coalescence model

$$\frac{dN_{Hadron}}{d^2 p_T} = g_H \int \prod_{i=1}^n p_i \cdot d\sigma_i \frac{d^3 p_i}{(2\pi)^3} f_q(x_i, p_i) W(x_1, \dots, x_n; p_1, \dots, p_n) \,\delta\left(p_T - \sum_i p_{iT}\right)$$

Coalescence model

$$\frac{dN_{Hadron}}{d^2 p_T} = g_H \int \prod_{i=1}^n p_i \cdot d\sigma_i \frac{d^3 p_i}{(2\pi)^3} f_q(x_i, p_i) W(x_1, \dots, x_n; p_1, \dots, p_n) \,\delta\left(p_T - \sum_i p_{iT}\right)$$

Meson

Coalescence model

$$\frac{dN_{Hadron}}{d^2 p_T} = g_H \int \prod_{i=1}^n p_i \cdot d\sigma_i \frac{d^3 p_i}{(2\pi)^3} f_q(x_i, p_i) W(x_1, \dots, x_n; p_1, \dots, p_n) \delta\left(p_T - \sum_i p_{iT}\right)$$

Meson

$$W(r,p) = \int d^4 y e^{-ipy} \psi(r + \frac{y}{2}) \psi(r - \frac{y}{2}) \qquad \qquad \frac{8}{(2\pi\hbar c)^3} e^{-\frac{2x_1^2}{\sigma_r^2}} e^{-\frac{p^2}{2\sigma_p^2}}$$

Baryon

Coalescence in AA: Catania

S. Plumari, V. Minissale, S.K. Das, G. Coci, and V. Greco, EPJC 78 (2018) 4, 348, V. Minissale, S. Plumari, V. Greco, PLB 821 (2021) 136622.

$$\frac{dN_{Hadron}}{d^2 p_T} = g_H \int \prod_{i=1}^n p_i \cdot d\sigma_i \frac{d^3 p_i}{(2\pi)^3} f_q(x_i, p_i) f_W(x_1, \dots, x_n; p_1, \dots, p_n) \delta\left(p_T - \sum_i p_{iT}\right)$$

Wigner function <-> Wave function

$$\Phi_M^W(\mathbf{r},\mathbf{q}) = \int d^3r' e^{-i\mathbf{q}\cdot\mathbf{r}'} \varphi_M\left(\mathbf{r}+\frac{\mathbf{r}'}{2}\right) \varphi_M^*\left(\mathbf{r}-\frac{\mathbf{r}'}{2}\right)$$

 $\varphi_M(\mathbf{r})$ meson wave function Assuming gaussian wave function

$$f_M(x_1, x_2; p_1, p_2) = A_W \exp\left(-\frac{x_{r1}^2}{\sigma_r^2} - p_{r1}^2 \sigma_r^2\right)$$

For baryon $N_q=3$

$$f_H(...) = \prod_{i=1}^{N_q-1} A_W \exp\left(-\frac{x_{ri}^2}{\sigma_{ri}^2} - p_{ri}^2 \sigma_{ri}^2\right)$$

Normalization $f_H(...)$ fixed by requiring $P_{coal}(p>0)=1$ which fixes A_w , additional assumption wrt standard coalescence which does not have confinement

Wigner function width fixed by root-mean-square charge radius from quark model C.-W. Hwang, EPJ C23, 585 (2002); C. Albertus et al., NPA 740, 333 (2004)

$$\langle r^2 \rangle_{ch} = \frac{3}{2} \frac{m_2^2 Q_1 + m_1^2 Q_2}{(m_1 + m_2)^2} \sigma_{r1}^2$$

$$+ \frac{3}{2} \frac{m_3^2 (Q_1 + Q_2) + (m_1 + m_2)^2 Q_3}{(m_1 + m_2 + m_3)^2} \sigma_{r2}^2$$
(8)

 $\sigma_{ri} = 1/\sqrt{\mu_i \omega}$ Harmonic oscillator relation

$$\mu_{1} = \frac{m_{1}m_{2}}{m_{1} + m_{2}}, \quad \mu_{2} = \frac{(m_{1} + m_{2})m_{3}}{m_{1} + m_{2} + m_{3}}$$

$$\boxed{Meson} \qquad \langle r^{2} \rangle_{ch} \quad \sigma_{p1} \quad \sigma_{p2}$$

$$D^{+} = [c\bar{d}] \qquad 0.184 \quad 0.282 \quad -$$

$$D^{+}_{s} = [\bar{s}c] \qquad 0.083 \quad 0.404 \quad -$$

$$\boxed{Baryon} \qquad \langle r^{2} \rangle_{ch} \quad \sigma_{p1} \quad \sigma_{p2}$$

$$\Lambda^{+}_{c} = [udc] \qquad 0.15 \quad 0.251 \quad 0.424$$

$$\Xi^{+}_{c} = [usc] \qquad 0.2 \quad 0.242 \quad 0.406$$

$$\Omega^{0}_{c} = [ssc] \qquad -0.12 \quad 0.337 \quad 0.53$$

Coalescence in AA: Catania

S. Plumari, V. Minissale, S.K. Das, G. Coci, and V. Greco, EPJC 78 (2018) 4, 348, V. Minissale, S. Plumari, V. Greco, PLB 821 (2021) 136622.

The Λ_c/D^0 ratio is smaller at LHC energies: fragmentation play a role at intermediate p_T

Coalescence in pp: Catania

Data taken from: ALICE coll. JHEP 04 (2018) 108

Other models:

He-Rapp, Phys.Lett.B 795 (2019) 117-121:

Increase ≈ 2 to Λ_c production: SHM with resonance not present in PDG

PYTHIA8 + color reconnection

CR with SU(3) weights and string length minimization

Error band correspond to $< r^2 >$ uncertainty in quark model Reduction of rise-and-fall behaviour in Λ_c / D^0 ratio:

- -Confronting with AA: Coal. contribution smaller w.r.t. Fragm.
- -FONLL distribution flatter w/o evolution trough QGP
- -Volume size effect

ALICE Coll., Physical Review Letters 128, 012001 (2022)

Coalescence : Duke

Y. Xu, S. Cao, M. Nahrgang, W. Ke, G. Qin, J. Auvinen, and S. Bass, Nucl.Part.Phys.Proc. 276 (2016) 225. S. Cao, G. Qin, and S. Bass, PRC92, 024907 (2015).

6

 $\boldsymbol{p}_{HQ}\left(\text{GeV}\right)$

Instantaneous coalescence model

0.0

Hadron Wigner functions are averaged over the position space

Mesons $\frac{dN_M}{d^3p_M} = \int d^3p_1 d^3p_2 \frac{dN_1}{d^3p_1} \frac{dN_2}{d^3p_2} f_M^W(\vec{p}_1, \vec{p}_2) \delta(\vec{p}_M - \vec{p}_1 - \vec{p}_2)$	$f_M^W(q^2) = g_M \frac{(2\sqrt{\pi}\sigma)^3}{V} e^{-q^2\sigma^2} \vec{q} \equiv \frac{E_2^{\mathrm{cm}}\vec{p}_1^{\mathrm{cm}} - E_1^{\mathrm{cm}}\vec{p}_2^{\mathrm{cm}}}{E_1^{\mathrm{cm}} + E_2^{\mathrm{cm}}}$
Baryons $ \frac{dN_B}{d^3p_B} = \int d^3p_1 d^3p_2 d^3p_3 \frac{dN_1}{d^3p_1} \frac{dN_2}{d^3p_2} \frac{dN_3}{d^3p_3} f_B^W(\vec{p}_1, \vec{p}_2, \vec{p}_3) \\ \times \delta(\vec{p}_M - \vec{p}_1 - \vec{p}_2 - \vec{p}_3). $	$f_B^W(q_1^2, q_2^2) = g_B \frac{(2\sqrt{\pi})^6 (\sigma_1 \sigma_2)^3}{V^2} e^{-q_1^2 \sigma_1^2 - q_2^2 \sigma_2^2}$ $\vec{q}_1 \equiv \frac{E_2^{\rm cm} \vec{p}_1^{\rm cm} - E_1^{\rm cm} \vec{p}_2^{\rm cm}}{E_1^{\rm cm} + E_2^{\rm cm}},$ $\vec{q}_2 \equiv \frac{E_3^{\rm cm} (\vec{p}_1^{\rm cm} + \vec{p}_2^{\rm cm}) - (E_1^{\rm cm} + E_2^{\rm cm}) \vec{p}_3^{\rm cm}}{E_1^{\rm cm} + E_2^{\rm cm} + E_3^{\rm cm}}.$
1.0 1.0 $1.65 \text{ MeV} \sim 0.0 \text{ c}$ $1.85 \text{ MeV} \sim 0.79 \text{ c}$ $- 205 \text{ MeV} \sim 0.91 \text{ c}$ 0.8 0.8 0.6	$\sigma_{ri} = 1/\sqrt{\mu_i \omega} \text{Harmonic oscillator relation}$ $\mu_1 = \frac{m_1 m_2}{m_1 + m_2}, \ \mu_2 = \frac{(m_1 + m_2)m_3}{m_1 + m_2 + m_3}.$

These two parameters are obtained by requiring the coalescence probability through all possible hadronization channels to be unity for a zero momentum heavy quark.

Coalescence : Duke

Y. Xu, S. Cao, M. Nahrgang, W. Ke, G. Qin, J. Auvinen, and S. Bass, Nucl.Part.Phys Proc. 276 (2016) 225 S. Cao, G. Qin, and S. Bass, PRC92, 024907 (2015).

Coalescence: LBT

S. Cao, K. Sun, S. Li, S. Liu, W. Xing, G. Qin, and C. Ko, PLB 807 (2020) 135561. F. Liu, W. Xing, X. Wu, G. Qin, S. Cao, and X. Wang, EPJC 82 (2022) 4, 350.

$$f_h(\boldsymbol{p}'_h) = \int \left[\prod_i d\boldsymbol{p}_i f_i(\boldsymbol{p}_i)\right] W(\{\boldsymbol{p}_i\}) \delta(\boldsymbol{p}'_h - \sum_i \boldsymbol{p}_i)$$

- The quark wave functions in the meson is assumed to be those of a harmonic oscillator potential
- The Wigner functions for mesons are in the s and p-wave states

$$W_s = g_h \frac{(2\sqrt{\pi}\sigma)^3}{V} e^{-\sigma^2 \mathbf{k}^2},$$
$$W_p = g_h \frac{(2\sqrt{\pi}\sigma)^3}{V} \frac{2}{3} \sigma^2 \mathbf{k}^2 e^{-\sigma^2 \mathbf{k}^2}.$$

The oscillator frequency is fixed to impose that the total coalescence probability for zero-momentum charm quark is equal to 1 when s and p states are included.

 p_{T} (GeV)

p_T (GeV)

Coalescence: LBT

S. Cao, K. Sun, S. Li, S. Liu, W. Xing, G. Qin, and C. Ko, PLB 807 (2020) 135561. F. Liu, W. Xing, X. Wu, G. Qin, S. Cao, and X. Wang, EPJC 82 (2022) 4, 350.

Recent improvements of the coalescence model Wigner

function modified including both s and p wave states

Coalescence : NANTES

M. Nahrgang, J. Aichelin, P.B. Gossiaux, and K. Werner, PRC 93 (2016) 4, 044909. P.B. Gossiaux, R. Bierkandt and J. Aichelin, PRC 79 (2009) 044906.

The heavy quarks form hadrons (D and B mesons) either by coalescence or by fragmentation.

• The coalescence mechanism is based on the model of C. B. Dover et al., PRC 44, 1636 (1991) $N_{\Phi=D,B} = \int p_Q \cdot d\sigma_1 p_q \cdot d\sigma_2 \frac{d^3 p_Q}{(2\pi\hbar)^3 E_Q} \frac{d^3 p_q}{(2\pi\hbar)^3 E_q} \times f_Q(x_Q, p_Q) f_q(x_q, p_q) f_{\Phi}(x_Q, x_q; p_Q, p_q)$

Coalescence : PHSD

T. Song, H. Berrehrah, D. Cabrera, J. M. Torres-Rincon, L. Tolos, W. Cassing and E. Bratkovskaya, PRC 92, no.1, 014910 (2015). T. Song, H. Berrehrah, D. Cabrera, W. Cassing and E. Bratkovskaya, PRC 93, no.3, 034906 (2016).

$$\frac{dN_{Hadron}}{d^{2}p_{T}} = g_{H} \int \prod_{i=1}^{n} p_{i} \cdot d\sigma_{i} \frac{d^{3}p_{i}}{(2\pi)^{3}} f_{q}(x_{i}, p_{i}) W(x_{1}, \dots, x_{n}; p_{1}, \dots, p_{n}) \delta\left(p_{T} - \sum_{i} p_{iT}\right) \\
W_{s}(r, p) = \frac{8(2S+1)}{36} e^{-\frac{r^{2}}{\sigma^{2}} - \sigma^{2}p^{2}}, \\
W_{p}(r, p) = \frac{2S+1}{36} \left(\frac{16}{3}\frac{r^{2}}{\sigma^{2}} + \frac{16}{3}\sigma^{2}p^{2} - 8\right) e^{-\frac{r^{2}}{\sigma^{2}} - \sigma^{2}p^{2}} \\
r = |\mathbf{r}_{1} - \mathbf{r}_{2}|, \\
p = \frac{|m_{2}\mathbf{p}_{1} - m_{1}\mathbf{p}_{2}|}{m_{1} + m_{2}} \\
\langle r_{M}^{2} \rangle = \frac{1}{2} \langle (\mathbf{R} - \mathbf{r}_{1})^{2} + (\mathbf{R} - \mathbf{r}_{2})^{2} \rangle \\
= \frac{1}{2} \frac{m_{1}^{2} + m_{2}^{2}}{(m_{1} + m_{2})^{2}} \langle r^{2} \rangle = \frac{3}{4} \frac{m_{1}^{2} + m_{2}^{2}}{(m_{1} + m_{2})^{2}} \sigma^{2}$$
Pb+Pb at LHC
Pb+Pb at

Coalescence : PHSD

T. Song, H. Berrehrah, D. Cabrera, J. M. Torres-Rincon, L. Tolos, W. Cassing and E. Bratkovskaya, PRC 92, no.1, 014910 (2015). T. Song, H. Berrehrah, D. Cabrera, W. Cassing and E. Bratkovskaya, PRC 93, no.3, 034906 (2016).

$$\frac{dN_{Hadron}}{d^2 p_T} = g_H \int \prod_{i=1}^n p_i \cdot d\sigma_i \frac{d^3 p_i}{(2\pi)^3} f_q(x_i, p_i) W(x_1, \dots, x_n; p_1, \dots, p_n) \delta\left(p_T - \sum_i p_{iT}\right)$$

$$W_s(r, p) = \frac{8(2S+1)}{36} e^{-\frac{r^2}{\sigma^2} - \sigma^2 p^2},$$

$$W_p(r, p) = \frac{2S+1}{36} \left(\frac{16}{3}\frac{r^2}{\sigma^2} + \frac{16}{3}\sigma^2 p^2 - 8\right) e^{-\frac{r^2}{\sigma^2} - \sigma^2 p^2}$$

$$r = |\mathbf{r}_1 - \mathbf{r}_2|,$$

$$p = \frac{|m_2\mathbf{p}_1 - m_1\mathbf{p}_2|}{m_1 + m_2}$$

$$\langle r_M^2 \rangle = \frac{1}{2} \langle (\mathbf{R} - \mathbf{r}_1)^2 + (\mathbf{R} - \mathbf{r}_2)^2 \rangle$$

$$= \frac{1}{2}\frac{m_1^2 + m_2^2}{(m_1 + m_2)^2} \langle r^2 \rangle = \frac{3}{4}\frac{m_1^2 + m_2^2}{(m_1 + m_2)^2} \sigma^2$$

$$\frac{dN_{Hadron}}{d^2 p_T} \int \left(\frac{16}{3}\frac{q}{\sigma^2} + \frac{16}{3}\sigma^2 p^2 - 8\right) e^{-\frac{r^2}{\sigma^2} - \sigma^2 p^2}$$

Resonance Recombination Model (RRM)

Alternative dynamical realization of the coalescence approach

Hadronization proceeds via formation of resonant states when approaching the critical temperature

Starting point is the Boltzmann equation for the meson

$$\left(\frac{\partial}{\partial t} + \vec{v} \cdot \vec{\nabla}\right) F_M(t, \vec{x}, \vec{p}) = -\frac{\Gamma}{\gamma_p} F_M(t, \vec{x}, \vec{p}) + \beta(\vec{x}, \vec{p})$$

The gain term

$$g(\vec{p}) = \int \mathrm{d}^3 x \beta(\vec{x}, \vec{p}) = \int \frac{\mathrm{d}^3 p_1 \mathrm{d}^3 p_2}{(2\pi)^6} \int \mathrm{d}^3 x \ f_q(\vec{x}, \vec{p}_1) \ f_{\bar{q}}(\vec{x}, \vec{p}_2) \ \sigma(s) \ v_{\mathrm{rel}}(\vec{p}_1, \vec{p}_2)$$

The cross section $(q+q \rightarrow M)$ is approximated by a relativistic Breit-Wigner

By imposing the stationarity condition at the equilibrium

$$f_M(\vec{x}, \vec{p}) = \frac{\gamma_M(p)}{\Gamma_M} \int \frac{d^3 \vec{p_1} d^3 \vec{p_2}}{(2\pi)^3} f_q(\vec{x}, \vec{p_1}) f_{\bar{q}}(\vec{x}, \vec{p_2}) \ \sigma_M(s) v_{\rm rel}(\vec{p_1}, \vec{p_2}) \delta^3(\vec{p} - \vec{p_1} - \vec{p_2})$$

L. Ravagli and R. Rapp, Phys. Lett. B 655, 126 (2007).L. Ravagli, H. van Hees and R. Rapp, Phys. Rev. C 79, 064902 (2009).

Baryons in Resonance Recombination Model (RRM)

The 3-body hadronization process in RRM are conducted in 2 steps

STEP 1

quark-1 and quark-2 recombine into a diquark, $q1(p1) + q2(p2) \rightarrow dq(p12)$ The diquark spectrum in analogy to meson formation

STEP 2

the diquark recombines with quark-3 into a baryon $dq1(p12) + q3(p3) \rightarrow B$

The baryon spectrum in analogy to meson formation

- low-p_T(0-1GeV) c quarks preferentially populate the inner regions of the fireball
- higher-p_T (3-4GeV) c quarks populate the outer regions of the fireball

Baryons in Resonance Recombination Model (RRM)

The 3-body hadronization process in RRM are conducted in 2 steps

STEP 1

quark-1 and quark-2 recombine into a diquark, q1(p1) + q2(p2) \rightarrow dq(p12) The diquark spectrum in analogy to meson formation

STEP 2

the diquark recombines with quark-3 into a baryon $dq1(p12) + q3(p3) \rightarrow B$

The baryon spectrum in analogy to meson formation

$$f_B(\vec{x}, \vec{p}) = \frac{\gamma_B}{\Gamma_B} \int \frac{d^3 \vec{p}_1 d^3 \vec{p}_2 d^3 \vec{p}_3}{(2\pi)^6} \frac{\gamma_{dq}}{\Gamma_{dq}} f_1(\vec{x}, \vec{p}_1) f_2(\vec{x}, \vec{p}_2) \\ \times f_3(\vec{x}, \vec{p}_3) \sigma_{dq}(s_{12}) v_{\rm rel}^{12} \sigma_B(s) v_{\rm rel}^{dq3} \delta^3(\vec{p} - \vec{p}_1 - \vec{p}_2 - \vec{p}_3)$$

HF hadro-chemistry improved by employing a large set of "missing" HF baryon states not listed by PDG, but predicted by the relativistic-quark model

M. He, R. Rapp, Phys. Rev. Lett. **124** (2020) no.4, 042301

In-medium hadronization of heavy quarks

HQ hadronization in the presence of a reservoir of lighter thermal particles:

Recombination of the HQ with light antiquark or diquarks:

- Color-singlet clusters with low invariant mass M (M<4 GeV) are assumed to undergo an isotropic 2-body decay in their local rest-frame.
- Heavier clusters are instead fragmented as Lund strings.
- Recombination with light diquarks -> enhances the yields of charmed baryons.
- The local color neutralization -> strong space-momentum correlation -> enhancement of the collective flow of the final charmed hadrons

Conclusions

- Charm hadronization in AA different than in e^+e^- and ep collisions
 - -Coalescence+fragmentation/Resonance Recombination Model enhancement of A production at intermediate $n \rightarrow A/(D^0 \approx 1 \text{ for } n \approx 2 \text{ Co})/(D^0 \approx 1 \text{ for } n \approx 2 \text{ for } n \approx 2$
 - Λ_c production at intermediate $p_T \rightarrow \Lambda_c/D^0 \sim 1$ for $p_T \sim 3$ GeV
- In p+p assuming a medium:
 - Coal.+fragm. good description of heavy baryon/meson ratio (closer to the data for $\Lambda_{\rm c}/{\rm D^0}$, $\Xi_{\rm c}/{\rm D^0}$, $\Omega_{\rm c}/{\rm D^0}$)

Comparing different models is very useful for further understanding the hadronization mechanism