# Review on charmonia in medium at the LHC



**F. Fionda** University & INFN, Cagliari

1

Heavy Flavours from small to large system Oct. 17<sup>th</sup>-21<sup>th</sup>, 2022 – Institut Pascal, Orsay (France)



HF2022



# 0 0.01-1 1-10 -10 10-20 (fm/c) Intrast State

**HF2022** 

#### **Regeneration of charmonia**





#### Nature 448 (2007) 302-309

#### Parton energy loss (at high pT)

M. Gyulassy and M. Plumer, Phys. Lett. B243 (1990) 432
M. H. Thoma and M. Gyulassy, Nucl. Phys. B351 (1991) 491.
E. Braaten and M. H. Thoma, Phys. Rev. D44 (1991) 1298;
Phys. Rev. D44 (1991) 2625



4

## **Production**

HF2022

#### Nuclear modification factor:

$$R_{AA}(p_{T}, y) = \frac{1}{\langle N_{coll} \rangle} \cdot \frac{d^2 N_{AA}/dp_{T} dy}{d^2 N_{pp}/dp_{T} dy}$$

Excited-to-ground state ratios (e.g.  $\psi(2S)/J/\psi$ )

Production inside jets



5



arge undertainties on the models arise nom onarm pross sections and poor constrained m

 $\rightarrow$  Are the observed path influenced by non-prompt contribution ?  $\rightarrow$  How to discriminate between the two pictures ?

TM2: Zhou et al., Phys. Rev. C 89, 054911 (21 May 2014) Comover: Ferreiro E. et al., PLB 731 (2014) 57 SHM: Andronic A. et al., Phys. Lett. B797 (2019) 134836, TM1/TAMU: Du X. and Rapp R., Nucl.Phys.A 943 (2015) 147-158





# **Prompt J/ψ R**<sub>AA</sub>

 $p_{\tau}(\text{GeV}/c)$ 

**HF2022** 



ALI-PREL-509400

– rise of prompt J/ $\psi$  RAA at low pT  $\rightarrow$  compatible with SHMc

 model by Vitev et al, including dissociation, can describe results at highpT

 compatible with ATLAS and CMS in the overlapping pT range

SHMc: A. Andronic et al., JHEP07 (2021) 035 Vitev I. et al. arXiv:1709.02372, arXiv:1906.04186

7

# $\psi(2S) R_{AA}$ and $\psi(2S)$ -to-J/ $\psi$ ratio



 $-\psi(2S)$  more suppressed compared to J/ $\psi$ ; rise of J/ $\psi$  and  $\psi(2S)$  RAA towards low pT

- pT dependent  $\mathbf{R}_{_{AA}}$  in agreement with TAMU for both charmonium states

 $-\psi$ -to-J/ $\psi$  ratio at LHC in agreement with TAMU; tensions visible with SHMc at higher centralities

TAMU: Du X. and Rapp R., Nucl.Phys.A 943 (2015) 147-158 SHMc: A. Andronic et al., JHEP07 (2021) 035



ALI-PREL-523330

**HF2022** 

8



**HF2022** 

**pp collisions:** prompt J/ $\psi$  produced with more jet activity as predicted by PYTHIA8 (LO)

 $\rightarrow$  sizable contribution from **parton shower** 

 $\rightarrow$  later formation than generally assumed! [PRL 119 (2017) 032002]



9

#### J/ψ production inside jets

**HF2022** 



**pp collisions:** prompt J/ $\psi$  produced with more jet activity as predicted by PYTHIA8 (LO)

 $\rightarrow$  sizable contribution from **parton shower** 

 $\rightarrow$  later formation than generally assumed! [PRL 119 (2017) 032002]



#### **Pb-Pb collisions:**

- less suppression for mostly isolated  $J/\psi$
- larger effect in most central collisions
- $\rightarrow$  suppression of J/ $\psi$  through jet quenching mechanisms

10









Decomposed transverse projection of participant region in Fourier series

 $\rightarrow$  low-p<sub>T</sub>: sensitive to bulk QGP properties

 $\rightarrow$  high-p<sub>T</sub>: sensitive to the in medium energy loss (path-lenght dependence)

**HF2022** 





**HF2022** 

– Clear mass hierarchy at low-pT:  $v_2(\pi) > v_2(D) > v_2(J/\psi)$ 

- Specie independent  $v_2$  at high- $p_T$ 

12

# $J/\psi v_2^2$ – comparison with models



- Low  $p_{\tau}$  region described by TAMU, however tensions clearly visible at high  $p_{\tau}$  (>4 GeV/c)

Better agreement with the model thanks to recent improvements (p<sub>T</sub> distribution of regenerated component and improved description of the primordial component)
 agreement further improved including charm quark space-momentum correlations

**HF2022** 

TAMU: Du X. and Rapp R., Nucl.Phys.A 943 (2015) 147-158 TAMU+SMCc: arXiv:2111.13528



– Significant J/ $\psi$  v<sub>3</sub> observed at low p<sub>T</sub>

– Similar hierarchy observed for  $v_3 / v_2 \rightarrow$  higher harmonics are damped faster for heavy quarks than for the light ones

– Nearly species independent for light flavor particles while heavy-flavour hadrons (both J/ $\psi$  and D mesons) deviate from this expectation

**HF2022** 

→ Less sensitivity to initial state fluctuations wrt light flavor species







#### **Polarization**



#### **Reference frames:**

**Helicity (HE):** direction of vector meson in the collision center of mass frame

**Collins-Soper (CS)**: the bisector of the angle between the beam and the opposite of the other beam, in the vector meson rest frame

→ sensitive to production mechanisms

→ difference in Pb-Pb w.r.t. pp expected due to different mechanisms at play



#### J/ψ polarization



 Polarization measured by ALICE in Pb-Pb collisions

–  $2\sigma$  deviation for  $\lambda_{\theta}$  in 2-4 GeV/c w.r.t zero in HE and CS

 – compatible with ALICE in pp colllisions
 [EPJC 78 (2018) 562]

– significant difference w.r.t.
 LHCb pp measurements
 [EPJC 73 (2013) 11]

 $\rightarrow$  difference due to suppression / regeneration in Pb-Pb ?

17

#### J/ψ polarization w.r.t. event plane



 Event Plane based frame (EP): axis orthogonal to the event plane in the collision center of mass frame

– Event Plane normal to  ${\bf B}$  and  ${\bf L}$ 

– Heavy quarks produced early in the collisions  $\rightarrow$  can experience both ~B and L



- Small centrality dependence

– Significant polarization (3.5  $\sigma$ ) in 40-60% and 2 <  $p_{_{T}}$  < 6 GeV/c

 Theoretical description of vector meson polarization in heavy ion collisions still missing

ALI-PUB-521052



#### Summary

- Regeneration mechanism essential at low transverse momentum for describing suppression patterns observed for J/Ψ at the LHC
  - First ψ(2S)-to-J/ψ ratio measurements from ALICE tend to favourite transport model
- Significant non-zero  $v_2$  measured at the LHC for J/ $\Psi$ :
  - Consistent with the regeneration scenario, assuming thermalization of charm quarks in QGP
  - Recent version of transport model is able to reproduce the trend in the whole pT range
- Evidence of jet quenching mechanism contributing to suppression at high pT
- Non-zero J/ψ polarization in Pb-Pb collisions at the LHC
  - Significantly different from pp  $\rightarrow$  difference due to suppression / regeneration
  - Observed as a function of event plane  $\rightarrow$  sensitive to initial state

HF2022

Lacking of theoretical models



#### Summary

- Regeneration mechanism essential at low transverse momentum for describing suppression patterns observed for J/Ψ at the LHC
  - First ψ(2S)-to-J/ψ ratio measurements from ALICE tend to favourite transport model
- Significant non-zero  $v_2$  measured at the LHC for J/ $\Psi$ :
  - Consistent with the regeneration scenario, assuming thermalization of charm quarks in QGP
  - Recent version of transport model is able to reproduce the trend in the whole pT range
- Evidence of jet quenching mechanism contributing to suppression at high pT
- Non-zero J/ψ polarization in Pb-Pb collisions at the LHC
  - Significantly different from pp  $\rightarrow$  difference due to suppression / regeneration
  - Observed as a function of event plane  $\rightarrow$  sensitive to initial state
  - Lacking of theoretical models

# Thank you for your attention!

**HF2022** 

**BACK-UP** 

## X(3872)-to-ψ(2S) ratio

 First evidence of exotic quarkonium state X(3872) in heavy-ion collisions

– Hint of enhanced X(3872) production compared to  $\psi(2S)~(R_{_X}\sim 1)$ 

 Difficult to conclude about the nature of X(3872) (tetraquark or hadron molecule) because of the statistical limitation on the data + disagreement among models

 $\rightarrow$  Future measurements with improved precision can shed light on the nature of X(3872)





# Non-Prompt J/ψ R<sub>AA</sub>



**HF2022** 

F. Fionda

## $v_2$ and $v_3$ : J/ $\psi$ vs $\psi$ (2S)



– Hint at larger prompt  $\psi(2S) v_2$  compared to prompt  $J/\psi v_2 \rightarrow possibility$  of larger contribution from regeneration for  $\psi(2S)$ 

 $-\,\psi(2S)\,v_{_3}$  consistent with zero and with prompt J/ $\psi\,v_{_3}$ , however uncertainties are large for concluding

**HF2022** 

24

