Measurements of open and hidden HF flow at LHC

C.Cheshkov (IP2I Lyon)

QGP flow

Flow in heavy-ion collisions

- Initial-state (IS) spatial anisotropies ε_n transferred by pressure gradients into final-state momentum anisotropies ⇒ anisotropic flow of QGP
- Elliptic v₂ ⇔ almond shape of overlap Triangular v₃ and higher ⇔ initial-state fluctuations v_n~ε_n (n=2,3)

Flow in heavy-ion collisions

- Low pT: common velocity boost (radial flow) in hydrodynamically expanding QGP ▷ mass ordering
- Intermediate pT: hadronization via coalescence
 baryon/meson grouping, scaling with # of constituent quarks (NCQ)
- High pT: path-length dependence of parton energy loss in QGP
 anisotropy, similar for all particle species

- Anisotropic flow sensitive to QGP viscosity
 ⇒ flow measurements basic ingredient for extraction of η/s as f(T)
- η/s close to lower bound of 1/4π
 ⇒ QGP almost perfect liquid

Ratio of shear viscosity / entropy density as f(T) extracted via Bayesian analysis of experimental data (yields, spectra, flow) 0.3 -Calibrated to: Pb-Pb 2.76 and 5.02 TeV 90% credible region 0.2 n/s slope (GeV⁻¹) u/s 0.1 150 200 250 300 0.05 0.10 0.15 0.20 Temperature (MeV)

HF flow in Pb-Pb

HQ transport in QGP

- HQ produced in initial hard scatterings (no thermal production)
- Interaction with QGP constituents \Rightarrow collective and energy-loss effects
- Due to large HQ mass ⇒ "Brownian motion" inside QGP
 - incomplete thermalization
 - encoded in a single parameter diffusion coefficient $D_s = (T/m_o)\tau_o$
- Hadronization via coalescence at low and intermediate p_{τ}
- Simultaneous measure of open-HF R_{AA} and v_{2.3}
 ⇒ constrain D_s
- Bottom (vs charm)
 - Relaxation time > QGP lifetime
 - ⇒ less thermalized
 - ⇒ more sensitive probe of HQ transport
 - Better theory control in transport modelling
 - Disentangle collisional and radiative energy loss, because radiative one further suppressed due to dead-cone effect

Charm quark v_2 in Pb-Pb

Low p_T : D v_2 < LF v_2

Significant D-meson flow
 ⇒ close to fully thermalized charm quark?

• High pT: convergence, D $v_2 \approx LF v_2$

Common origin from parton energy loss

Constraining the charm diffusion coefficient

1.5 < 2πT_cD_s < 4.5 Charm themarization time: **3-9 fm/c** ⇒ close to full thermalization in Pb-Pb at LHC

Charm flow: response to initial-state geometry (fluctuations)

- Beyond event-average measurements
- Ways to study response to IS (fluctuations) and compare to LF:
 - **v**₃ vs v₂
 - Flow fluctuations
 - High-order vs low-order correlations v₂{4}/v₂{2}
 - Event-shape engineering
 - Biasing initial-state by selecting more elliptic/isotropic collisions
- In general, charm flow shows similar response as LF, apart from possible:
 - a bit faster damping of v_3
 - bigger v_2 fluctuations in peripheral collisions

J/ψ flow in Pb-Pb

- Two competitive effects in J/ψ production at LHC:
 - Dissociation from colour screening in QGP ⇒ path-length dependence ⇒ anisotropy
 - **Regeneration** via recombination of thermalized charm quarks \Rightarrow J/ ψ flow inherited from charm flow
- Puzzle: TAMU transport model underestimated v_2 (and less R_{AA}) for $p_T > 3$ GeV/c [20]
- Recently, the puzzle is largely solved:
 - Introduction of space-momentum correlations of diffusing charm quarks in QGP (calibrated on open charm data)
 ⇒ regeneration component extends up to higher p_T
 - Dissociation reworked using e-by-e hydro and taking into account density/temperature anisotropy
 - \Rightarrow significantly higher anisotropy at intermediate \textbf{p}_{T}

Alternative simplified coalescence picture of charm flow

- NCQ model:
 - $\circ \quad v_n^{J/\psi}(p_T^{J/\psi}) = 2v_n^{c}(p_T^{J/\psi}/2)$
 - $\circ \quad v_n^{\ \pi}(p_T^{\ \pi}) = 2v_n^{\ q}(p_T^{\ \pi}/2)$
- Then D-meson v_n can be obtained as: $v_n^{D}(p_T^{D}) = v_n^{q}(p_T^{q}) + v_n^{c}(p_T^{c})$
- In coalescence picture, q and c have similar velocities

 $\Rightarrow p_T^{q}/p_T^{D} \approx 0.2$

 Data disfavor this ratio, but works remarkably well (v₂ and v₃ in all centrality bins) with p₁^q/p₁^D = 0.4

JHEP 10 (2020) 141

$\psi(2S)$ flow in Pb-Pb


```
• Hint of \psi(2S) v_2 > J/\psi v_2
```

Data covers mainly high pT where dissociation is dominant

- Dissociation of ψ(2S) down to lower T
 ⇒ longer dissociation distances at the scale of system size ⇒ higher anisotropy ?
- Later ψ(2S) regeneration expected to yield higher flow due to more developed charm flow ?
 -> interesting future measurement at low p_T

Bottom quark flow in Pb-Pb (non-prompt D)

- non-prompt D v_n < prompt D v_n
 - At low p_T ⇒ b significantly less thermalized
 - At high p_T ⇔ smaller parton energy loss (dead cone)
- non-prompt D v₃ small, but > 0 at intermediate p_T
- Reasonable agreement with transport models

Bottom quark flow in Pb-Pb ($b \rightarrow \mu$)

- $b \rightarrow \mu v_2 < c \rightarrow \mu v_2$
- $b \rightarrow \mu v_3$ compatible with 0
- Satisfactory agreement of $R_{AA} + v_2$ with model incorporating collisional + radiative energy losses

PLB 807 (2020) 135595

Bottom quark flow in Pb-Pb (non-prompt J/ ψ)

Y(1S) flow in Pb-Pb

- Regeneration: negligible due to small # of bb-bar pairs
- Dissociation: only at high T at initial collision stages
 dissociation distances << system size
 small anisotropy
- As expected measured $Y(1S) v_2 \approx 0$
- Y(2S) expected to have higher $v_2 \Rightarrow$ important future measurement

HF flow in small systems (pp, p-Pb)

Flow in small systems

Genuine collectivity:
 v₂{4}≈v₂{6}≈v₂{8}

 Mass ordering at low p_T and baryon/meson grouping at intermediate p_T

 Anisotropic flow in small systems correlated to initial-state spatial anisotropies, see for example: Nature Phys.15 (2019) 3, 214-220

Charm flow in small systems

- Smaller and shorter-lived system \Rightarrow charm farther away from equilibrium
- Despite this:
 - Significant open charm v₂ also in pp and p-Pb, similar to Pb-Pb ratio wrt LF particles
 - \circ No significant modification of spectra beyond possible mild shadowing effects at low p_{T}

• Transport model tuned on Pb-Pb: significant charm v₂ in p-Pb, but also sizeable modification of spectra

High-pT and (mini)jet v_2 and R_{pA} in p-Pb

- Sizeable positive v, of high-p, hadrons and (mini)jets observed, while spectra shows no signs of medium-related modification
- In jet quenching and parton energy-loss models: tight relation between $R_{A(p)A}$ and v_2/ϵ_2 , which is in general the case in AA data Indication that this relation is '**broken**' for hard probes in small systems
- Observed anisotropy not driven by parton energy loss?

Bottom flow in small systems

• $\mathbf{b} \rightarrow \mathbf{\mu} \mathbf{v}_2 \approx \mathbf{0}$ in pp and p-Pb

21

Quarkonia flow in p-Pb

- Surprisingly, significant J/ψ v₂ in p-Pb, close to D v₂
- No clear explanation, expected negligible regeneration and dissociation in p-Pb
- CGC-based calcs agree with data, but:
 - In experiment, $J/\psi v_2$ measured via long-range correlations with bulk particles, which flow is driven by IS spatial anisotropies In model v_2 arises from IS momentum correlations, which are uncorrelated with IS spatial anisotropies
- CGC calcs: ≈ same v₂ for Y(1S), while data hints v₂ close to 0

J/ψ flow in pp

• J/ψ flow in pp consistent with 0 within uncertainties, significantly lower than in p-Pb and Pb-Pb

Conclusions

• HF flow in Pb-Pb

- Precise measurements of **open charm flow** ⇒ Bayesian extraction of **charm diffusion coefficient**
- \circ Observed hierarchies at low p_T
 - $\bullet v_n < c v_n < LF v_n$
 - ⇒ partial thermalization of bottom, close to full thermalization of charm
 - open HF v_n > hidden HF v_n > 0 for charmonia, \approx 0 for bottomonia
 - transport model now describes decently J/ψ flow data
- Convergence of v_n at higher p_T for charm (open, hidden, LF), lower anisotropy for bottom
 - ⇒ parton energy loss, smaller in case of bottom due to dead-cone effect
 - \Rightarrow convergence of J/ ψ flow to open charm and LF is still intriguing

• HF flow in small systems

- Open charm flow in p-Pb and pp similar to Pb-Pb
 - ⇒ difficult to explain together with absence of medium-related spectra modifications
- Hidden charm flow > 0 in p-Pb and ≈ 0 in pp
 - \Rightarrow so far no clear explanation of positive v₂ in p-Pb
- Bottom flow ≈ 0 both in p-Pb and pp

Outlook

- Hadronization coalescence vs fragmentation
 - Measurements of HF baryon/meson ratios and their flow

• HQ transport in QGP - diffusion, energy loss

- More precise measurements of bottom production and flow, including B mesons
- DD-bar, BB-bar correlations

Quarkonia production - deconfinement

• Measurements of $\psi(2S)$, Y(2S), ... flow

• Measurement of multi-charm baryons

• Ultimate experimentally-accessible manifestation of deconfinement

Thank you for your attention!

Backup

Phys. Rev. Lett. 125, 192301 (2020)

FIG. 2. The correlator $\hat{\rho}(v_2^2, [p_t])$ (circles) together with estimators based on the initial geometry ($\hat{\rho}_{est}(\varepsilon_2^2, [s])$, stars) and the initial momentum anisotropy ($\hat{\rho}_{est}(\varepsilon_2^2, [s])$, squares) in a) $\sqrt{s} = 200 \text{ GeV}$ p+Au, b) $\sqrt{s} = 5.02 \text{ TeV}$ p+Pb, c) $\sqrt{s} = 200 \text{ GeV}$, and d) $\sqrt{s} = 5.02 \text{ TeV}$ O+O collisions. Lower panels show the Pearson coefficients between v_2 and the initial ellipticity (stars) and the initial momentum anisotropy (gauares), respectively.

