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Hydrodynamic equations

1) hydrodynamics of ideal fluid
@ equations of motion come from local energy-momentum conservation:
™" = (e+p)utu’ —p- gt

2) viscous fluid dynamics:

@ there are corrections to the energy-momentum tensor and new equations of motion:

™ = (e +p+Mut'u’ — (p+10) - "V + WHu" + WY 4 ¥

ideal part viscous corrections
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A way to model heavy-ion collisions with hydrodynamics

Hydrodynamic evolution
ahy _ghv
DtV =N = _ 45 u%*ghv
T 3%




A way to model heavy-ion collisions with hydrodynamics

Initial conditions (initial state)
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Boxes framed in black are all inputs to the hydrodynamic phase!



A way to model heavy-ion collisions with hydrodynamics

Initial conditions (initial state)
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Hydrodynamic evolution - .
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Observables | - - - = Compare to the experimental data

Boxes framed in black are all inputs to the hydrodynamic phase!
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Hydrodynamics circa 2001 vs SPS data

Elliptic flow v, in /snn = 17.3 GeV Pb-Pb vs hydro calculation by Kolb, Huovinen, Heinz, Heiselberg,
Phys.Lett.B500:232-240,2001
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— hydrodynamic model overshoots the data, LDL (low density limit) works much better.
(this all changed in 2015, see one of the next slides)
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https://doi.org/10.1016/S0370-2693(01)00079-X

First \/snn = 130 GeV RHIC results
Before RHIC start-up: two scenarios possible:

@ asymptotic freedom = weakly interacting
system

@ stongly interacting system
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Elliptic flow v, in \/sxn = 130 GeV Au-Au minimum-bias
vs hydro calculation by Kolb,Huovinen,Heinz,Heiselberg,
Phys.Lett.B500:232-240,2001
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Gluon Matter

APS NEWS

RHIC Detects Liquid State of Quark-Gluon Matter

EEEED

By Ernie Tretkoff

Analysis of the weird quark-gluon matter produced at RHIC shows that the substance is more like a liquid than a gas,
researchers reported at the APS April Mesting. The researchers from the Relativistic Heavy lon Collider at Brookhaven
National Laboratory announced the results of recent analysis of the quark gluon matter they have been producing for
years-a state many scientists expected would be the "quark gluon plasma.”

“Theorists expected this phase to exist. The properties of this phase are surprising. The big surprise is that its a liquid,"
said Brookhaven theorist Dmitri Kharzeev.

The RHIC made this ata press
will also publish a set of papers in the journal Nuclear Physics A.

\g the APS April Meeting in Tampa. They

from all four RHIC , STAR, PHOBOS, and BRAHMS-participated in the
announcement. The new results are based on analysis of data from the 2000-2003 run.

RHIC creates the blob of quark-gluon matter by smashing gold nuclei together at very high energies. Under these
extreme condiions, the quarks and gluons normally bound in nucleons can become unbound. The quark gluon matter is
extremely hot and dense, nearly 150,000 times as hot as the sun's core and 100 times the density of a nucleus, said the
researchers. The blob lasts for only about 102 seconds.

Ingredients for the hydrodynamic calculation:
@ initial & profile from Glauber formula
@ ideal 2+1D hydrodynamic expansion
o EoS Q: HG+QGP phases, 1% order PT
o freeze-out at T = 120,140 MeV
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https://doi.org/10.1016/S0370-2693(01)00079-X

Hydrodynamics circa 2002 vs early RHIC data [“Gen 1" calculations]

T. Hirano, K. Tsuda, Phys.Rev.C 66, 054905 (2002), nucl-th/0205043
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Note: 1/s =0 (relativistic viscous hydro were non-existent in the field at the time).

Ideal hydrodynamics works!
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(a) CE EoS
(b) PCE EoS


https://arxiv.org/abs/nucl-th/0205043

However, HBT observables didn’t work:
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T. Hirano, K. Tsuda, Phys.Rev.C 66, 054905 (2002), nucl-th/0205043
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Large Rout/Rside Was predicted

as a signature of system

passing the QGP formation
threshold. (e.g. Soff, Bass,
Dumitru, nucl-th/0012085)
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Fast-forward to 2010s [“Gen 2" calculations]

H. Song, S. Bass, U. Heinz, T. Hirano, C. Shen, Phys.Rev.Lett. 106, 192301 (2011), arXiv:1011.2783
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Ideal hydrodynamics strongly overshoots the data'??? What happened?

What happened is that the inputs to the hydro have changed:

@ The initial state here is Monte Carlo Glauber / Monte Carlo KLN (a flavour of CGC), which results in
steeper initial energy density profiles.

@ The equation of state now has a crossover-type transition between the hadronic and the QGP phases.

14The data” here is v2/€ measured by experiment, whereas ¢ itself is completely impossible to measure.
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Resolution of the “HBT puzzle” in the “Gen 2" calculations

With improved inputs to the fluid dynamical modelling, the discrepancy with the RHIC data simply

disappeared.
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The baseline (= to the early hydro calculations):

1%-order PT EoS, no pre-thermal flow, no viscosity — open black

squares
The updated ingredients:

@ pre-thermal flow — red squares

@ crossover EoS — green triangles
@ viscosity — blue circles
@ a more compact initial state — open black circles

Scott Pratt, Nucl.Phys.A830:51c-57¢,2009, arXiv:0907.1094
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https://arxiv.org/abs/0907.1094

New observables'2010
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STAR collab, 0909.0191 (PRC 80, 064912)

None of those could be reproduced in most of the hydrodynamic models circa 2008-2009.
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Fluctuating initial state is required to describe the new observables

One of the inputs had to change: there have to be fluctuations in the initial state!

Initial nucleon distribution is irregular = initial state triangularity &3 = hydrodynamics = final state vs.
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Note in the middle column of the right figure: the splitting between “ideal hydro” and “n/s =0.16"
cases is stronger for v3 than for v = “triangular flow is more sensitive to shear viscosity”.
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IP-Glasma and bulk viscosity [“Gen 3" calculations]

Bernhard, Moreland, Bass, Liu, Heinz, Phys. Rev. C 94, 024907 (2016) arXiv:1605.03954
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https://arxiv.org/abs/1605.03954

Gen 3: More observables involved,

Yields dN/dy, dNg,/dn
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Bernhard, Moreland, Bass, Liu, Heinz, Phys. Rev. C 94, 024907 (2016) arXiv:1605.03954
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https://arxiv.org/abs/1605.03954

pr spectra of identified hadrons play an important role to constrain the bulk viscosity!
(= imporance of non-exciting non-smoking-gun observables)
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S. Ryu, J.-F. Paquet, C. Shen, G. S. Denicol, B. Schenke, S. Jeon, C. Gale, Phys. Rev. Lett. 115, 132301 (2015)
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https://arxiv.org/abs/1502.01675

Towards lower energies: “Gen 2+" works for SPS!

The inputs:

@ 3D IS from UrQMD
e1n/s=0.08...0.2

@ crossover EoS

@ event-by-event
hydrodynamics

@ +final-state hadronic
cascade
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It is understood now that a mélange of QGP and hadronic matter is created in heavy-ion collisions at
energies lower than 200 GeV RHIC.

PHSD: Au+Au with b =2 fm
1.0 e a)20 :
syx = 200 GeV o ©

0.8 —39 GeV
e 2T GeV r
19.6 GeV
0.6 115 GeV 1
7.7 GeV [

0.4

QGP energy fraction g,p/e, at [y| < 0.5

t [fm/c] Vsnn [GeV]

Moreau, Soloveva, Grishmanovskii, Voronyuk, Oliva,
Song, Kireyeu, Coci, Bratkovskaya,
Astronomical Notes, 2021, 13988

Hybrid UrQMD: Auvinen, Petersen,
Phys. Rev. C 88, 064908 (2013)
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https://onlinelibrary.wiley.com/doi/full/10.1002/asna.202113988
https://arxiv.org/abs/1310.1764

What worries (some of) us

When going from ideal to viscous fluid dynamics, a microscopic scale emerges (mean free path),
so there is a Knudsen number Kn = Lyicro/Imacro and the viscous fluid dynamics is generally applicable
when Kn < 1.
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Niemi, Denicol, arXiv:1404.7327 Right plot: Knudsen number is mostly OK in a heavy-ion simulation.
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https://arxiv.org/pdf/1404.7327.pdf

What worries (some of) us
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Niemi, Denicol, arXiv:1404.7327 Left plot: Knudsen number is on the edge in a p+Pb simulation.

Right plot: ‘maximum allowed’ 71/s from the Knudsen number. Viscous hydrodynamics is running close to the
limit of its validity already for a ‘large’ Pb+Pb system.
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https://arxiv.org/pdf/1404.7327.pdf

“Cavitation” due to bulk pressure
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Gabriel S. Denicol, Charles Gale, Sangyong Jeon, arXiv:1503.00531
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https://arxiv.org/abs/1503.00531

Initial state: approach to equilibrium

Hydrodynamic attractors

M. Heller and M. Spaliriski, Phys. Rev. Lett. 115, 072501 (2015)
Miiller-Israel-Stewart (MIS) theory for boost invariant conformal fluid
“system relaxes to an attractor regardless of when an initial condition is set”

A particular example here:
X. Du, M. Heller, S. Schlichting, V. Svensson,
Phys. Rev. D 106, 014016 (2022)
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Many more (toy) models and examples of attractors discovered by now.
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https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.072501
https://arxiv.org/abs/2203.16549

Inputs and outputs: entangled dependencies S. Bass, Quark Matter 2017

Determining the QGP Properties via a
Model to Data Comparison

Model Parameter: experimental data:
eqn. of state TK/P spectra
shear viscosity yields vs. centrality & beam
elliptic f ow
HBT
charge correlations & BFs
density correlations

initial state
pre-equilibrium dynamics

thermalization time
quark/hadron chemistry

particlization/freeze-out

e evaluating model output for single point in the parameter space requires many CPU hours.
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Summary of summary

There's no need for that.
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Thank you for your attention!

lurii Karpenko, Modelling heavy-ion collisions with relativistic fluid dynamics 23/23



