Quarkonium production in pp collisions at LHC

Valeriia Zhovkovska

HF2022: Heavy Flavours from small to large systems 20 Oct 2022, Institut Pascal (Orsay, France)

Qarkonium: What and Where from?

- No consensus on the quarkonium production mechanism
- Nearly all approaches assume factorisation between the QQ formation and its hadronization into a meson
- Three common models with the different **description of the hadronization**:
 - Colour evaporation model (CEM): application of quark-hadron duality; only the invariant mass matters;
 - Colour-singlet model (CS): intermediate QQ state is colourless and has the same J^{PC} as the final-state quarkonium;
 - Colour-octet model (CO) (encapsulated in NRQCD): all viable colours and J^{PC} allowed for the intermediate QQ state;

- Two scales of production: hard process of QQ formation and soft scale hadronization of QQ
- Factorization: $d\sigma_{A+B\to H+X} = \sum_{n} d\sigma_{A+B\to Q\bar{Q}(n)+X} \times \langle O^{H}(n) \rangle$
 - Short distance: perturbative cross-sections + pdf for the production of a $Q\overline{Q}$ pair
 - Long distance matrix elements (LDMEs), non-perturbative part
 - Both CS and CO states are allowed with varying probabilities; LDMEs from experimental data

- **Universality**: same LDMEs for different \sqrt{s} , prompt production and production in b-decays
- Heavy-Quark Spin-Symmetry: links between CS and CO LDMEs of different quarkonium states

 $egin{aligned} &\langle \mathcal{O}_{1,8}^{\eta_c}(^1S_0)
angle &= rac{1}{3} \langle \mathcal{O}_{1,8}^{J/\psi}(^3S_1)
angle \ &\langle \mathcal{O}_8^{\eta_c}(^3S_1)
angle &= \langle \mathcal{O}_8^{J/\psi}(^1S_0)
angle \ &\langle \mathcal{O}_8^{\eta_c}(^1P_1)
angle &= 3 \langle \mathcal{O}_8^{J/\psi}(^3P_0)
angle \end{aligned}$

Quarkonium production: Current status

Existing challenges:

- simultaneous description of J/ψ production and polarization – "polarization puzzle"
- simultaneous description of η_c+ J/ψ together with J/ψ photoproduction - "HQSS puzzle"
- negative contribution in the cross-section
- tension with J/ψ+Z production
- CEM does not describe P-waves production
- • •

• New sources of input:

- Study of pseudoscalar states
- Asociated quarkonia production
- Production in heavy-ion collisions
- Non-conventional qurakonium

• ...

Associated production: DPS and SPS

The production of two particles in the same pp collision can be due to

- Single-Parton Scattering (SPS):
 - the two particles are produced a single interaction of two partons
 - expected to be "back-to-back" in transverse plane
- Double-Parton Scattering (DPS):
 - simultaneous interaction of two pairs of partons, assumed to be uncorrelated
 - DPS "Pocket formula":

$$\sigma_{DPS}^{pp \to \psi_1 \psi_2} = \frac{m}{2} \frac{\sigma_{SPS}^{pp \to \psi_1 X} \sigma_{SPS}^{pp \to \psi_2 X}}{\sigma_{eff, DPS}}$$

- Di-J/ψ production:
 - expected small SPS CO contribution (strongly depends on LDMEs)
 - DPS contribution is important at large J/ ψ Δy
 - Feed-down contribution depends on the production mechanism

LHC detectors hunting for quarkonium

• ATLAS and CMS: mid-rapidity region, with muons in final state

- LHCb: forward-rapidity region, with muons and hadrons in final state
- ALICE: both mid- and forward-rapidity regions, with muons and electrons in final state

Experiments provide complementary measurements

Qarkonium @ LHC

• Final states:

- hadrons or yy
- µ+µ-/e+e- or hadrons
- ${}^3S_1\gamma$, ${}^3S_1\pi^+\pi^-$ or hadrons
- ${}^{1}S_{0}\gamma$ or hadrons
- Existing measurements:
 - **n**_c production
 - **n_c(2S)** production in b-decays
 - J/ψ , $\psi(2S)$ and Y(nS) production and polarization
 - $J/\psi+J/\psi/jet/Z/W^{\pm}$, $J/\psi+J/\psi+J/\psi$ and Y(1S)+Y(1S) production
 - χ_c production and polarization
 - χ_b production

J/ψ : Differential production cross-sections

- **EXPERIMENT** prompt and from-b @ 13 TeV $60 < p_T < 360 \ GeV/c, |y| < 2.0$
- Data compared with low-p_T CMS results

prompt and from-b @ 5.02 TeV $0 < p_T < 20 \ GeV/c$, 2.0 < y < 4.5

- J/ ψ production: $\sigma_{\psi(2S)}^{prompt} = 8.154 \pm 0.010_{stat} \pm 0.283_{syst} \, \mu b$
- Reasonable agreement between NRQCD and data for high- \mathbf{p}_{T}
- Small tension with CGC+NRQCD
- Good agreement between data and FONLL at low-p_T, with theory exceeding prediction at high-p_T

J/ ψ : Ratios between energies and R_{pPb}

Single J/ψ hadroproduction production has been studied in all possible configurations

$\psi(2S)$: Differential production cross-sections

ATLAS-CONF-2019-047 EPJC 80 (2020) 185

prompt and from-b @ 7 and 13 TeV $p_T < 20$ GeV/c, 2.0 < y < 4.5

- Complementary measurements in different rapidity regions
- Reasonable agreement between NRQCD and data for p_T > 7 GeV/c
- Good agreement with FONLL for production in bdecays for both experiments
- The cross-section ratios computed for 8 and 13 TeV

Same situation as for single J/ψ hadroproduction

Quarkonium production in pp collisions at LHC

$\eta_c(1S)$: Differential production at $\sqrt{s}=13$ TeV

- Results may provide important link between J/ψ production and polarization
- η_c(1S) production can be described by CS contribution only; measurement in extended p_T is required: larger slope would indicate possible CO contribution

Interpretation of $\eta_c(2S)/\psi(2S)$ much cleaner than for $\eta_c(1S)/J/\psi$ due to absence of feed-down contributions: dedicated LHCb trigger in 2018

Quarkonium production in pp collisions at LHC

$\chi_{c1,2}\,production\,\,using\,\,\chi_{c1,2}\,\rightarrow\,J/\psi\gamma$

$\chi_{c1,2}\,production\,\,using\,\,\chi_{c1,2}\,\rightarrow\,J/\psi\mu^{+}\mu^{-}$

PRL 119 (2017) 22, 221801

First observation of $\chi_{c1,2} \rightarrow J/\psi\mu\mu$ decay modes Extremely clean signals

 $\chi_{c1,2}$ resonance parameters measured with world average precision

Quantity [MeV]	LHCb measurement	Best previous measurement	World average
$m(\chi_{c1})$	3510.71 ± 0.10	3510.72 ± 0.05	3510.66 ± 0.07
$m(\chi_{c2})$	3556.10 ± 0.13	3556.16 ± 0.12	3556.20 ± 0.09
$\Gamma(\chi_{c2})$	2.10 ± 0.20	1.92 ± 0.19	1.93 ± 0.11

- New channel for production measurement
- Promising channel for χ_c hadroproduction at low p_T
- Similar studies can be done at CMS?

$\text{Di-J}/\psi$: Search for resonanses

9000

First observation of fully heavy tetraquark candidate X(6900)

• One BW, combination of two BWs, feed-down...

	m [GeV/c²]	Γ[GeV/c²]
LHCb	$6.89 \pm 0.01 \pm 0.01$	$0.17 \pm 0.03 \pm 0.07$
CMS	$6.93 \pm 0.01 \pm 0.01$	$0.12 \pm 0.02 \pm 0.02$
ATLAS	$6.87 \pm 0.03 {}^{+0.06}_{-0.01}$	$0.12\pm0.04\ {}^{+0.03}_{-0.01}$

7000

8000

 $M_{\rm di-J/\psi}~({\rm MeV}/c^2)$

LHCb

Weighted candida

6200

 Additional study together with spin-parity measurement required to explain nature of threshold structure

More studies of J/ψ +quarkonium will arrive soon

Quarkonium production in pp collisions at LHC

Di-Y(1S): Production and search for resonances

PLB 808 (2020) 135578


```
• CMS

Y(1S) pair production for unpolarized case

\sigma_{\Upsilon(1S)\Upsilon(1S)} = 79 \pm 11_{stat} \pm 6_{syst} \pm 3_{\mathfrak{B}} pb, |y| < 2.0
```

• Charging λ_{θ} in range[-1, +1] production varies from -60% to +25%

- First measurement of DPS contribution to $\sigma_{\Upsilon(1S)\Upsilon(1S)}$ $f_{DPS} = (39 \pm 14)\%$
- No excess of events compatible with signal is observed in 4-µ invariant mass spectrum

First observation of triple-J/ ψ production

• Cross-section:

$$\sigma_{3J/\psi} = 272^{+141}_{-101stat} \pm 16_{syst} fb, |y_{J/\psi}| < 2.4$$

Contributions of DPS and TPS:

 $f_{DPS} \sim 76\%$ and $f_{TPS} \sim 20\%$ $\sigma_{eff,TPS} = (0.82 \pm 0.11) \times \sigma_{eff,DPS}$ $\sigma_{eff,DPS} = 2.7^{+1.4}_{-1.0stat} {}^{+1.5}_{-1.0syst}mb$

Triple-J/ ψ production

- Measured $\sigma_{eff,DPS}$ is consistent with di-J/ ψ results, but lower that jet/W/Z results

Prospects

- Single quarkonium production:
 - $\eta_c(2S)$, h_c and $\eta_b(1S)$ production
 - simultaneous study of $\psi(2S)$ and $\eta_c(2S)$
 - > no feed-down from higher stated, clean interpretation
 - decays to ΛΛ, Λ*Λ*, ΣΣ, ΞΞ final states
 - > access to new quarkonium states
- Double quarkonium production:
 - J/ψ+η_c
 - > NRQCD predicts suppressed yield w.r.t. $J/\psi+J/\psi$
 - J/ψ+Y
 - ➢ dominant SPS CO
 - J/ψ+ψ(2S), ψ(2S)+ψ(2S)
 - > will help to understand feed-down contribution

Summary

- Recent LHC results on quarkonium production will be useful input to understand quarkonium production mechanism in pp and heavy-ion collisions
- Comprehensive HF production model is missing
 - new inputs are necessary to improve understanding: asociated production, production of η_c and h_c ...
- Upcoming interesting results on single and asociated quarkonium production
 - would it be possible to have new theory constraints?
 - new models?

Thanks for your attention!

