Heavy-flavour production in small systems and its dependence on event multiplicity

Shreyasi Acharya

Laboratoire de Physique de Clermont, CNRS UMR6533

Clermont-Ferrand, France

Heavy Flavours from small to large system 2022 03-21, Oct, 2022 – Institut Pascal, Orsay, France

Heavy quarks (charm, beauty), due to their large masses (m $_{\rm c}\sim 1.3~GeV/c^2$, m $_{\rm b}\sim 4.2~GeV/c^2$)

- ▷ produced at the early stages of the collision via hard scattering
- $\triangleright\,$ production cross-section calculated using factorization theorem

 $\begin{aligned} d\sigma^{hard}_{AB \rightarrow C} = \sum_{a,b} f_{a/A}(x_a, Q^2) \otimes f_{b/B}(x_b, Q^2) \otimes d\sigma^{hard}_{ab \rightarrow c}(x_a, x_b, Q^2) \otimes D_{c \rightarrow C}(z, Q^2) \\ \text{Parton Distribution Function} & \text{Partonic hard scattering} \\ \text{(PDF)} & \text{cross-section} & \text{Fragmentation} \\ \end{aligned}$

Heavy quarks (charm, beauty), due to their large masses ($m_c \sim 1.3 \text{ GeV}/c^2$, $m_b \sim 4.2 \text{ GeV}/c^2$)

- ▷ produced at the early stages of the collision via hard scattering
- $\triangleright\,$ production cross-section calculated using factorization theorem

 $\begin{aligned} d\sigma^{hard}_{AB \rightarrow C} &= \sum_{a,b} f_{a/A}(x_a, Q^2) \otimes f_{b/B}(x_b, Q^2) \otimes d\sigma^{hard}_{ab \rightarrow c}(x_a, x_b, Q^2) \otimes D_{c \rightarrow C}(z, Q^2) \\ \text{Parton Distribution Function} & \text{Partonic hard scattering} \\ (PDF) & \text{cross-section} & \text{Fragmentation} \\ \end{aligned}$

pp collisions:

- Test perturbative QCD calculations
- Baseline reference for heavy-ion studies
- Study hadronization mechanisms in vacuum

Heavy quarks (charm, beauty), due to their large masses ($m_c \sim 1.3 \text{ GeV}/c^2$, $m_b \sim 4.2 \text{ GeV}/c^2$)

- $\triangleright\,$ produced at the early stages of the collision via hard scattering
- $\,\triangleright\,$ production cross-section calculated using factorization theorem

 $\begin{aligned} d\sigma^{hard}_{AB \rightarrow C} &= \sum_{a,b} f_{a/A}(x_a, Q^2) \otimes f_{b/B}(x_b, Q^2) \otimes d\sigma^{hard}_{ab \rightarrow c}(x_a, x_b, Q^2) \otimes D_{c \rightarrow C}(z, Q^2) \\ \text{Parton Distribution Function} & \text{Partonic hard scattering} \\ (PDF) & \text{cross-section} & \text{Fragmentation} \\ \end{aligned}$

pp collisions:

- Test perturbative QCD calculations
- Baseline reference for heavy-ion studies
- Study hadronization mechanisms in vacuum
 - $\rightarrow\,$ Fragmentation functions assumed universal among collision systems and constrained from e^+e^- collisions
 - $\rightarrow~$ Ratios of particle species $\rightarrow~$ ratios of fragmentation fractions, sensitive to HF quark hadronization

Why multiplicity dependent studies in small systems?

 High multiplicity pp, p-Pb events at LHC energy have revealed unexpected features similar to heavy-ion collisions, such as:

Why multiplicity dependent studies in small systems?

- High multiplicity pp, p-Pb events at LHC energy have revealed unexpected features similar to heavy-ion collisions, such as:
 - ▷ Ridge formation [JHEP 09 (2010) 091]

Why multiplicity dependent studies in small systems?

- High multiplicity pp, p-Pb events at LHC energy have revealed unexpected features similar to heavy-ion collisions, such as:
 - ▷ Ridge formation [JHEP 09 (2010) 091]

 \Rightarrow Collectivity

▷ Anisotropic Flow [Phys. Lett. B 765 (2017) 193]

Why multiplicity dependent studies in small systems?

• High multiplicity pp, p-Pb events at LHC energy have revealed unexpected features similar to heavy-ion collisions, such as:

 \implies Collectivity

- ▷ Ridge formation [JHEP 09 (2010) 091]
- ▷ Anisotropic Flow [Phys. Lett. B 765 (2017) 193]
- ▷ Strange baryon enhancement [Nature Physics 13 (2017) 535-539]

⊳

Why multiplicity dependent studies in small systems?

- High multiplicity pp, p-Pb events at LHC energy have revealed unexpected features similar to heavy-ion collisions, such as:
 - ▷ Ridge formation [JHEP 09 (2010) 091]

Anisotropic Flow [Phys. Lett. B 765 (2017) 193

 \Rightarrow \Rightarrow Collectivity

▷ Strange baryon enhancement [Nature Physics 13 (2017) 535-539]

Open question: In small systems, are mechanisms similar to those observed in heavy-ion collisions at play?

[Not discussed in this presentation; Flow in small systems discussed on Wed 19 by Cvetan. (link)]

⊳

Why multiplicity dependent studies in small systems?

- High multiplicity pp, p-Pb events at LHC energy have revealed unexpected features similar to heavy-ion collisions, such as:
 - ▷ Ridge formation [JHEP 09 (2010) 091]

Anisotropic Flow [Phys. Lett. B 765 (2017) 193

 \Rightarrow Collectivity

▷ Strange baryon enhancement [Nature Physics 13 (2017) 535-539]

Open question: In small systems, are mechanisms similar to those observed in heavy-ion collisions at play?

[Not discussed in this presentation; Flow in small systems discussed on Wed 19 by Cvetan. (link)]

• Give insight into multiple-parton-interaction (MPI) and color reconnection(CR) in the hadronization mechanisms

Why multiplicity dependent studies in small systems?

- High multiplicity pp, p-Pb events at LHC energy have revealed unexpected features similar to heavy-ion collisions, such as:
 - ▷ Ridge formation [JHEP 09 (2010) 091]
 ▷ Anisotropic Flow [Phys. Lett. B 765 (2017) 193]

 $\} \Longrightarrow \mathsf{Collectivity}$

▷ Strange baryon enhancement [Nature Physics 13 (2017) 535-539]

Open question: In small systems, are mechanisms similar to those observed in heavy-ion collisions at play?

[Not discussed in this presentation; Flow in small systems discussed on Wed 19 by Cvetan. (link)]

- Give insight into multiple-parton-interaction (MPI) and color reconnection(CR) in the hadronization mechanisms
- Understand the interplay of hard and soft processes
 - \rightarrow to search possible connections between small and extended interacting systems.

D-meson production cross section

- Precise measurement down to $p_{\rm T} = 0$ for prompt D⁰, D⁺
- FONLL (Fixed Order with Next-to-Leading Log resummation):
 - ightarrow Factorization approach with universal fragmentation functions from e^+e^- of LEP [EPJC 75 (2015) 1, 19]
 - \rightarrow For non-prompt D mesons : <code>PYTHIA8</code> used to describe $H_{\rm b} \rightarrow$ D+X decays and branching ratio

Charm meson-over-meson ratio

 D^{+}/D^{0} :

- Meson-to-meson ratios independent of $p_{\rm T}$ and collision system
- Agreement with FONLL calculations which uses the universal fragmentation functions
- $D_s^+/(D^0 + D^+)$ higher for non prompt mesons \rightarrow substantial \mathbf{B}_s^0 decay contribution

Charm baryon-over-meson ratio (Λ_c^+/D^0)

 Λ_c^+/D^0 :

[Alice Collaboration, Phys. Rev. Lett. 127, 202301]

- Strong $p_{\rm T}$ dependence
- Higher than value measured in e⁺e[−] collisions → fragmentation may not be universal

Data is well described by models :

- PYTHIA 8 color reconnection mechanisms beyond the leading color approximation (CR-BLC) [Mode 2]
 - $\rightarrow \text{ Enhances production of baryons thanks to new CR topologies} \\ \xrightarrow{\text{No CR}} Old CR \\ \xrightarrow{\text{No INTERACTION}} Old CR \\ \xrightarrow{\text{Internation}} Old CR \\ \xrightarrow{\text{Inter$

Catania Model

- \rightarrow Light quarks (u,d,s) and gluons assumed as thermalised system.
- \rightarrow Mixed hadron formation: fragmentation + coalescence
- Statistical Hadronization Model and Relativistic Quark Model
 - \rightarrow Hadronization driven by statistical weights governed by hadron masses at a hadronization temperature

 \rightarrow Strong feed down from augmented set of (not yet observed) excited charm baryon states

[Alice Collaboration, Phys.Lett.B 829 (2022) 137065]

- D^+/D^0 : low and high multiplicity are compatible with PYTHIA with Monash and CR-BLC tunes.
- Λ_c^+/D^0 : Significant increase from lowest to highest multiplicity
- *p*_T and multiplicity dependence qualitatively described by **PYTHIA CR-BLC** and by a statistical hadronization model

Beauty baryon-over-meson ratio (non-prompt Λ_c^+ /non-prompt D^0)

Non-prompt Λ_c^+ / **non-prompt** D^0 : Access to the fragmentation of beauty quark via non-prompt ratio

- \bullet FONLL + Pythia 8 and fragmentation fraction f(b $\rightarrow \Lambda_b^0)$ measured by LHCb
- ightarrow Predictions with f(b $ightarrow \Lambda_b^0$) measured at e^+e- underestimate data
 - Similar trend vs $p_{\rm T}$ as for prompt $\Lambda_c/D^0 \to$ hint of larger enhancement at low $p_{\rm T}$
 - Similar $p_{\rm T}$ shape as measured by LHCb for Λ_b/B

Strange charmed baryons yield ratio

ALICE Collaboration, PRL 127, 272001

- $\equiv_c^{0,+}/D^0$: p_T dependence and underestimated by models describing Λ_c^+/D^0
- $\rightarrow~D_s^+/(D^0+D^+)$ compatible with expectations from $e^+e^- \rightarrow$ Baryons ?
 - Catania (fragm . + coal.) predictions gets close to the measurements

• Ω_c/Ξ_c is better described by coalescence model

[Detailed discussion on hadronization by A.Rossi on Oct 3 (link)]

Heavy-flavour self-normalised yields

Self-normalised yields defined as:

Heavy-flavour self-normalised yields

Self-normalised yields defined as:

$$\frac{\mathrm{d}^2 N/\mathrm{d} \boldsymbol{\rho}_{\mathrm{T}} \mathrm{d} \eta}{\langle \mathrm{d}^2 N/\mathrm{d} \boldsymbol{\rho}_{\mathrm{T}} \mathrm{d} \eta \rangle} = \frac{N_{\mathrm{HF}}^i / (\epsilon^i \times n_{\mathrm{events}}^i)}{(N_{\mathrm{HF}}^{\mathrm{total}}) / (\epsilon^{\mathrm{total}} \times n_{\mathrm{events}}^{\mathrm{total}})}$$

Faster than linear increasing trend and $p_{\rm T}$ dependence, influenced by momentum dependence of :

- $\rightarrow~$ jet fragmentation affecting the measured multiplicity
- $\rightarrow\,$ fraction of electrons from charm and beauty hadron decays.

High momentum partons \rightarrow accompanied by larger number of fragments \rightarrow contribute to high multiplicity

Self-normalised yield

Comparison of self-normalized D-meson yield with model expectations

- EPOS3 without hydro
 → underestimates data
- EPOS3 + Hydro
 → fairly reproduces data
- 3-Pomeron CGC prediction
 - \rightarrow overestimates the yield compared to data

3-Pomeron CGC[arXiv:1910.13579] EPOS [Phys. Rev. C 89, 064903 (2014)]

ALI-PREL-488879

 \bullet Enhancement of baryon-over-meson ratio $(\Lambda_c^+/D^0) \to$ in pp compared to e^+e^- collisions and with multiplicity

pQCD models based on factorization approach assuming **universal fragmentation functions** among collision systems **do not describe** charm baryon production in hadronic collisions at the LHC

Additional charm hadronisation mechanisms could happen in pp compared toe⁺e⁻ collisions \rightarrow models including enhanced baryon production better describe the ALICE data \rightarrow more studies are needed to discriminate among different theoretical descriptions

• HF self-normalised yield vs. multiplicity in pp at \sqrt{s} = 13 TeV

- Faster than linear increasing trend, with strong $p_{\mathrm{T}}~$ dependence
- Compared with model expectation
 - PYTHIA 8.2 (includes MPI and CR),
 - EPOS3.4 (with and without hydro calculation)
 - 3-Pomeron CGC (includes multigluon fusion mechanism) models

Back-up

Colour Reconnection (CR) scenario

- strings rearranged between partons, so as to reduce the total string length
- Partons from different PI can become connected to each other

Partons created in different MPIs do not interact each other Old CR $\overline{q_2}$ $\overline{q_2}$ \leftarrow CR \rightarrow $\overline{q_1}$ $\overline{q_2}$ $\overline{q_2}$ New CR

partons from lower p_T MPI systems are added to the dipoles defined by the higher p_T MPI system \rightarrow in a way that minimizes the total string length $\begin{array}{l} \mbox{Minimization of string length over all} \\ \mbox{possible configurations} \\ \mbox{Reconnections of dipoles} \rightarrow \mbox{junctions} \\ \mbox{structure produces} \rightarrow \mbox{enhances} \\ \mbox{production of baryons} \end{array}$

(Monash tune)

(CR Mode 'X' tune)

CR Mode 2 (Gluon-move model) : Similar to default but only gluons are considered for reconnection. For each gluon all the reconnections to all MPI systems are considered. [ATL-PHYS-PUB-2017-008]