COHERENT J/ψ photoproduction from peripheral to central heavy-ion collisions

Mariola Kłusek-Gawenda

The Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences

 J/ψ photoproduction

M. KŁUSEK-GAWENDA

Centrality (for ²⁰⁸Pb):

- central collisions: $b \approx (0 \text{ fm } + \triangle b);$
- semi-central collisions: $b \approx (5 - 10)$ fm;
- semi-peripheral collisions: $b \approx (10 12)$ fm;
- peripheral collisions: $b \approx (12 \text{ fm} - (R_1 + R_2));$
- ultraperiperal collisions:
 b > (R₁ + R₂);

where $R = R_0 A^{1/3}$.

The strong electromagnetic field is a source of photons that can induce electromagnetic reactions in ion-ion collisions.

Electromagnetism is a long-range force, so electromagnetic interactions occur even at relatively large ion-ion separations.

Photon energy:
$$\omega = \frac{\gamma}{b} \approx \gamma \times 15 \text{ MeV}$$

Virtuality: $Q^2 = \frac{1}{R^2} \approx 0.0008 \text{ GeV}^2$

M. Klusek-Gawenda, A. Szczurek, Photoproduction of J/ψ mesons in peripheral and semicentral heavy ion collisions, Phys. Rev. C93 (2016) 044912.

EPA

EQUIVALENT PHOTON APPROXIMATION - UPC

 J/ψ photoproduction

OCTOBER 21, 2022 FRANCE 3/14

EQUIVALENT PHOTON FLUX VS. FORM FACTOR

EPA

$$N(\omega, b) = \frac{Z^2 \alpha_{em}}{\pi^2 \beta^2} \frac{1}{\omega} \frac{1}{b^2} \times \left| \int d\chi \, \chi^2 \frac{F\left(\frac{\chi^2 + u^2}{b^2}\right)}{\chi^2 + u^2} J_1(\chi) \right|^2$$

$$\beta = \frac{p}{E}, \gamma = \frac{1}{\sqrt{1-\beta^2}}, \boldsymbol{U} = \frac{\omega \boldsymbol{b}}{\gamma\beta}, \chi = \boldsymbol{k}_{\!\perp}\boldsymbol{b}$$

• point-like
$$F(\mathbf{q}^2) = 1$$

 $N(\omega, b) = \frac{Z^2 \alpha_{eff}}{\pi^2 \beta^2} \frac{1}{\omega} \frac{1}{b^2} \times u^2 \left[K_1^2(\omega) + \frac{1}{\gamma^2} K_0^2(\omega)\right]$
• monopole $F(\mathbf{q}^2) = \frac{\Lambda^2}{\Lambda^2 + |\mathbf{q}|^2}$
 $\sqrt{\langle r^2 \rangle} = \sqrt{\frac{6}{\Lambda^2}} = 1 \text{ fm } A^{1/3}$

realistic

$$F\left(\mathbf{q}^{2}\right) = \frac{4\pi}{|\mathbf{q}|} \int \rho(r) \sin(|\mathbf{q}| r) r dr$$

 J/ψ photoproduction

PHOTON FLUX

 ψ ρηοτορroductio

J/ψ photoproduction - UPC

 J/ψ photoproduction

ULTRAPERIPHERAL COLLISION

$UPC \rightarrow \overline{\text{semi-central collision}}$

Impact parameter space

 J/ψ photoproduction for (a) ultraperipheral and (b) central heavy ion collisions.

EFFECTIVE PHOTON FLUX

The inclusion of the absorption effect by modifying effective photon fluxes in the impact parameter space.

$$N^{(1)}(\omega_1, b) = \int N(\omega_1, b_1) \frac{\theta(R_A - (|\mathbf{b}_1 - \mathbf{b}|))}{\pi R_A^2} d^2 b_1$$

$$N^{(2)}(\omega_1, b) = \int N(\omega_1, b_1) \frac{\theta(R_A - (|\mathbf{b}_1 - \mathbf{b}|))(b_1 - R_A)}{\pi R_A^2} d^2 b_1$$

$$\sigma(N^{(0)}, UPC) = \sigma(N^{(1)}, UPC) = \sigma(N^{(2)}, UPC)$$

SEMICENTRAL COLLISION

J/ψ photoproduction - semi-central region

Cross section in [μ b] per rapidity unit for nuclear photoproduction of J/ψ meson in Pb - Pb collision at $\sqrt{s_{NN}} = 2.76$ TeV

		Centrality range [%]					
Flux	$\frac{d\sigma_{tot}}{dy}$ [μ b]	0-10	10-30	30-50	50-70	70-90	UPC
	theory ^{PL}	9 984	579	185	92	58	10 350
$N^{(0)}(\omega, b)$	theory ^{MON}	398	358	158	86	56	2 393
	theory REAL	111	282	196	105	55	947
$N^{(1)}(\omega, b)$	theory REAL	123	201	160	116	84	947
$N^{(2)}(\omega, b)$	theory ^{REAL}	30	88	91	82	72	947
	ALICE (2015)	< 318	< 290	73 ± 52	58 ± 20	59 ± 16	-

Coherent J/ψ cross section at forward rapidity

NEW

- Ratio of the measurements at $\sqrt{s_{\rm NN}}$ = 5.02 TeV and $\sqrt{s_{\rm NN}}$ = 2.76 TeV shows no centrality dependence within uncertainties
- · Fair agreement of the measured ratio to models (except GG-hs) within uncertainties

Quark Matter 2022 - A. Neagu

19

SEMICENTRAL COLLISION

DILEPTON PRODUCTION

 \succ From ultraperipheral to semicentral collisions \rightarrow dilepton sources

> $\gamma\gamma$ fusion mechanism

DIELECTRON INVARIANT-MASS SPECTRA - RHIC

- O EPA in the impact parameter space
- O Ultraperipheral & semicentral heavy-ion collisions
- O Fourier transform of the charge distribution
- O Multidimensional integrals \rightarrow differential cross section
- O Description of experimental data for UPC and semicentral events
 - ALICE data for J/ψ production; centrality < 100%
 - STAR and ALICE data for dilepton production J/ψ contribution is missing

Thank you

BACKUP

EPA in the impact parameter space - the pair transverse momentum ${\cal P}_{\tau}^{\ell^+\ell^-}$ is neglected

$$\sigma_{A_{1}A_{2}\to A_{1}A_{2}\ell^{+}\ell^{-}} = \int N(\omega_{1}, \mathbf{b}_{1}) N(\omega_{2}, \mathbf{b}_{2}) \, \delta^{(2)}(\mathbf{b} - \mathbf{b}_{1} - \mathbf{b}_{2}) \int d^{2}\mathbf{b}_{1} d^{2}\mathbf{b}_{2} d^{2}\mathbf{b} \, dy_{\ell^{+}} dy_{\ell^{-}} dp_{\ell^{+}\ell^{-}}^{2}; \hat{\mathbf{s}}) \frac{d\sigma(\gamma\gamma \to \ell^{+}\ell^{-}; \hat{\mathbf{s}})}{d(-\hat{\ell})} d(-\hat{\ell}) d(-\hat{\ell})$$

\Leftrightarrow k_t-factorization

$$\frac{dN_{ll}}{d^2 \mathbf{P}_{l}^{\ell^+\ell^-}} = \int \frac{d\omega_1}{\omega_1} \frac{d\omega_2}{\omega_2} d^2 \mathbf{q}_{1t} d^2 \mathbf{q}_{2t} \frac{dN(\omega_1, \mathbf{q}_{1t}^2)}{d^2 \mathbf{q}_{1t}} \frac{dN(\omega_2, \mathbf{q}_{2t}^2)}{d^2 \mathbf{q}_{2t}} \delta^{(2)}(\mathbf{q}_{1t} + \mathbf{q}_{2t} - \mathbf{P}_{l}^{\ell^+\ell^-}) \hat{\sigma}(\gamma\gamma \to \ell^+\ell^-) \Big|_{\text{cuts}},$$

Exact calculation

$$\frac{d\sigma[C]}{d^{2}\mathsf{P}_{T}^{\ell+\ell^{-}}} = \int \frac{d^{2}\mathbf{Q}}{2\pi} w(\mathbf{Q}; b_{\max}, b_{\min}) \int \frac{d^{2}\mathbf{q}_{1}}{\pi} \frac{d^{2}\mathbf{q}_{2}}{\pi} \delta^{(2)}(\mathsf{P}_{T}^{\ell^{+}\ell^{-}} - \mathsf{q}_{1} - \mathsf{q}_{2}) \int \frac{d\omega_{1}}{\omega_{1}} \frac{d\omega_{2}}{\omega_{2}} \times E_{i}\left(\omega_{1}, \mathbf{q}_{1} + \frac{\mathbf{Q}}{2}\right) E_{j}^{*}\left(\omega_{1}, \mathbf{q}_{1} - \frac{\mathbf{Q}}{2}\right) E_{k}\left(\omega_{2}, \mathbf{q}_{2} - \frac{\mathbf{Q}}{2}\right) E_{l}^{*}\left(\omega_{2}, \mathbf{q}_{2} + \frac{\mathbf{Q}}{2}\right) \frac{1}{2\hat{s}} \sum_{\lambda \hat{\lambda}} M_{ik}^{\lambda \hat{\lambda}} M_{jl}^{\lambda \hat{\lambda} \dagger} d\Phi(\ell^{+}\ell^{-}) \cdot \frac{1}{2} \sum_{\lambda \hat{\lambda}} M_{ik}^{\lambda \hat{\lambda}} M_{jl}^{\lambda \hat{\lambda} \dagger} d\Phi(\ell^{+}\ell^{-}) \cdot \frac{1}{2} \sum_{\lambda \hat{\lambda}} M_{ik}^{\lambda \hat{\lambda}} M_{jl}^{\lambda \hat{\lambda} \dagger} d\Phi(\ell^{+}\ell^{-}) \cdot \frac{1}{2} \sum_{\lambda \hat{\lambda}} M_{ik}^{\lambda \hat{\lambda}} M_{jl}^{\lambda \hat{\lambda} \dagger} d\Phi(\ell^{+}\ell^{-}) \cdot \frac{1}{2} \sum_{\lambda \hat{\lambda}} M_{ik}^{\lambda \hat{\lambda}} M_{jl}^{\lambda \hat{\lambda} \dagger} d\Phi(\ell^{+}\ell^{-}) \cdot \frac{1}{2} \sum_{\lambda \hat{\lambda}} M_{ik}^{\lambda \hat{\lambda}} M_{jl}^{\lambda \hat{\lambda} \dagger} d\Phi(\ell^{+}\ell^{-}) \cdot \frac{1}{2} \sum_{\lambda \hat{\lambda}} M_{ik}^{\lambda \hat{\lambda}} M_{jl}^{\lambda \hat{\lambda} \dagger} d\Phi(\ell^{+}\ell^{-}) \cdot \frac{1}{2} \sum_{\lambda \hat{\lambda}} M_{ik}^{\lambda \hat{\lambda}} M_{jl}^{\lambda \hat{\lambda} \dagger} d\Phi(\ell^{+}\ell^{-}) \cdot \frac{1}{2} \sum_{\lambda \hat{\lambda}} M_{ik}^{\lambda \hat{\lambda}} M_{jl}^{\lambda \hat{\lambda} \dagger} d\Phi(\ell^{+}\ell^{-}) \cdot \frac{1}{2} \sum_{\lambda \hat{\lambda}} M_{ik}^{\lambda \hat{\lambda}} M_{jl}^{\lambda \hat{\lambda} \dagger} d\Phi(\ell^{+}\ell^{-}) \cdot \frac{1}{2} \sum_{\lambda \hat{\lambda}} M_{ik}^{\lambda \hat{\lambda}} M_{jl}^{\lambda \hat{\lambda} \dagger} d\Phi(\ell^{+}\ell^{-}) \cdot \frac{1}{2} \sum_{\lambda \hat{\lambda}} M_{ik}^{\lambda \hat{\lambda}} M_{jl}^{\lambda \hat{\lambda} \dagger} d\Phi(\ell^{+}\ell^{-}) \cdot \frac{1}{2} \sum_{\lambda \hat{\lambda}} M_{ik}^{\lambda \hat{\lambda}} M_{jl}^{\lambda \hat{\lambda} \dagger} d\Phi(\ell^{+}\ell^{-}) \cdot \frac{1}{2} \sum_{\lambda \hat{\lambda}} M_{ik}^{\lambda \hat{\lambda}} M_{jl}^{\lambda \hat{\lambda} \dagger} d\Phi(\ell^{+}\ell^{-}) \cdot \frac{1}{2} \sum_{\lambda \hat{\lambda}} M_{ik}^{\lambda \hat{\lambda}} M_{jl}^{\lambda \hat{\lambda} \dagger} d\Phi(\ell^{+}\ell^{-}) \cdot \frac{1}{2} \sum_{\lambda \hat{\lambda}} M_{ik}^{\lambda \hat{\lambda}} M_{jl}^{\lambda \hat{\lambda} \dagger} d\Phi(\ell^{+}\ell^{-}) \cdot \frac{1}{2} \sum_{\lambda \hat{\lambda}} M_{ik}^{\lambda \hat{\lambda}} M_{jl}^{\lambda \hat{\lambda} \dagger} d\Phi(\ell^{+}\ell^{-}) \cdot \frac{1}{2} \sum_{\lambda \hat{\lambda}} M_{ik}^{\lambda \hat{\lambda}} M_{jl}^{\lambda \hat{\lambda} \dagger} d\Phi(\ell^{+}\ell^{-}) \cdot \frac{1}{2} \sum_{\lambda \hat{\lambda}} M_{ik}^{\lambda \hat{\lambda}} M_{jl}^{\lambda \hat{\lambda} \dagger} d\Phi(\ell^{+}\ell^{-}) \cdot \frac{1}{2} \sum_{\lambda \hat{\lambda}} M_{ik}^{\lambda \hat{\lambda}} M_{jl}^{\lambda \hat{\lambda} \dagger} d\Phi(\ell^{+}\ell^{-}) \cdot \frac{1}{2} \sum_{\lambda \hat{\lambda}} M_{ik}^{\lambda \hat{\lambda}} M_{jl}^{\lambda \hat{\lambda} \dagger} d\Phi(\ell^{+}\ell^{-}) \cdot \frac{1}{2} \sum_{\lambda \hat{\lambda}} M_{ik}^{\lambda \hat{\lambda}} M_{jk}^{\lambda \hat{\lambda} \dagger} d\Phi(\ell^{+}\ell^{-}) \cdot \frac{1}{2} \sum_{\lambda \hat{\lambda}} M_{ik}^{\lambda \hat{\lambda}} M_{jk}^{\lambda \hat{\lambda} \dagger} d\Phi(\ell^{+}\ell^{-}) \cdot \frac{1}{2} \sum_{\lambda \hat{\lambda}} M_{ik}^{\lambda \hat{\lambda} \dagger} M_{jk}^{\lambda \hat{\lambda} \dagger} d\Phi(\ell^$$

The factorization formula is written in terms of the Wigner function:

$$N_{ij}(\omega, \mathbf{b}, \mathbf{q}) = \int \frac{d^2 \mathbf{q}}{(2\pi)^2} \exp[-i\mathbf{b}\mathbf{Q}] E_i\left(\omega, \mathbf{q} + \frac{\mathbf{q}}{2}\right) E_j^*\left(\omega, \mathbf{q} - \frac{\mathbf{q}}{2}\right) = \int d^2 \mathbf{s} \exp[i\mathbf{q}\mathbf{s}] E_i\left(\omega, \mathbf{b} + \frac{\mathbf{s}}{2}\right) E_j^*\left(\omega, \mathbf{b} - \frac{bs}{2}\right),$$

$$N(\omega, \mathbf{q}) = \delta_{ij} \int d^2 \mathbf{b} N_{ij}(\omega, \mathbf{b}, \mathbf{q}) = \delta_{ij} E_i(\omega, \mathbf{q}) E_j^*(\omega, \mathbf{q}) = \left| \mathbf{E}(\omega, \mathbf{q}) \right|^2,$$

$$N(\omega, \mathbf{b}) = \delta_{ij} \int \frac{d^2 \mathbf{q}}{(2\pi)^2} N_{ij}(\omega, \mathbf{b}, \mathbf{q}) = \delta_{ij} E_i(\omega, \mathbf{b}) E_j^*(\omega, \mathbf{b}) = \left| \mathbf{E}(\omega, \mathbf{b}) \right|^2.$$

 J/ψ photoproduction