collaboration with LiquidO, AM-OTech, CLOUD, EDF, and SuperChooz teams...

SUPERCHOOZ

first pre-release

Seminar @ IJCLab / Université Paris-Saclay June 2022 — Orsay, France

FACULTÉ DES SCIENCES D'ORSAY Université de Paris Anatael Cabrera

CNRS-IN2P3 / IJCLab / Université Paris-Saclay Orsay, France European Innovation Council

~50 years of neutrino oscillations...

huge experimental/theory effort [discovery⊕establishment ⇔ Nobel 2015]

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

ingredients for **neutrino oscillations**...

3

Anatael Cabrera (CNRS-IN2P3 & APC)

status on neutrino oscillation knowledge...

Standard Model(3 families)

[leptons & quarks] & PMNS_{3×3}($\theta_{12}, \theta_{23}, \theta_{13}$) & & ± $\Delta m^2 \& + \delta m^2$

no conclusive sign of any extension so far!!

(inconsistencies vs uncertainties)

must measure all parameters→characterise & test (i.e. over-constrain) Standard Model

	today			≥2030		
	best knowledge		global	foreseen	dominant	source
θ12	3,0 %	sk⊕sno	2,3 %	<1.0%	JUNO	reactor
θ23	5,0 %	NOvA+T2K	2,0 %	≲1.0%	DUNE⊕HK	beam (octant)
θιз	I,8 %	DYB+DC+RENO	I,5 %	I,5 %	DC⊕DYB⊕RENO	reactor
+δm²	2,5 %	KamLAND	2,3 %	≲1.0%	JUNO	reactor
∆m ²	3,0 %	T2K+NOvA & DYB	I,3 %	≲1.0%	JUNO⊕DUNE⊕HK	<u>reactor</u> & beam
Mass Ordering	unknown	SK et al	NO @ ~3σ	@5σ	JUNO⊕DUNE⊕HK	reactor⊕beam
СРУ	unknown	T2K	3/2π @ ≲2σ	@5σ?	DUNE⊕HK⊕ALL	reactor⊕ <u>beam</u>
			(now)			(reactor-beam)

JUNO \oplus DUNE \oplus HK will lead precision in the field (\rightarrow Mass Ordering & CPV) except θ_{13} !

NOTE: ORCA \oplus PINGU \oplus IceCube complementary (Mass Ordering & Δ m² measurements)

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

r	- /

					NuFIT 5.0 (2020)	
		Normal Ord	lering (best fit)	Inverted Ordering ($\Delta \chi^2 = 2.7$)		
without SK atmospheric data		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	
	$\sin^2 \theta_{12}$	$0.304^{+0.013}_{-0.012}$	$0.269 \rightarrow 0.343$	$0.304^{+0.013}_{-0.012}$	$0.269 \rightarrow 0.343$	
	$\theta_{12}/^{\circ}$	$33.44_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.86$	$33.45_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.87$	
	$\sin^2 heta_{23}$	$0.570^{+0.018}_{-0.024}$	$0.407 \rightarrow 0.618$	$0.575_{-0.021}^{+0.017}$	$0.411 \rightarrow 0.621$	
	$ heta_{23}/^{\circ}$	$49.0^{+1.1}_{-1.4}$	$39.6 \rightarrow 51.8$	$49.3^{+1.0}_{-1.2}$	$39.9 \rightarrow 52.0$	
	$\sin^2 \theta_{13}$	$0.02221\substack{+0.00068\\-0.00062}$	$0.02034 \rightarrow 0.02430$	$0.02240\substack{+0.00062\\-0.00062}$	$0.02053 \rightarrow 0.02436$	
	$ heta_{13}/^{\circ}$	$8.57_{-0.12}^{+0.13}$	$8.20 \rightarrow 8.97$	$8.61_{-0.12}^{+0.12}$	$8.24 \rightarrow 8.98$	
	$\delta_{ m CP}/^{\circ}$	195^{+51}_{-25}	$107 \rightarrow 403$	286^{+27}_{-32}	$192 \rightarrow 360$	
	$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.514^{+0.028}_{-0.027}$	$+2.431 \rightarrow +2.598$	$-2.497^{+0.028}_{-0.028}$	$-2.583 \rightarrow -2.412$	
		Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 7.1)$		
with SK atmospheric data		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	
	$\sin^2 \theta_{12}$	$0.304^{+0.012}_{-0.012}$	$0.269 \rightarrow 0.343$	$0.304^{+0.013}_{-0.012}$	$0.269 \rightarrow 0.343$	
	$\theta_{12}/^{\circ}$	$33.44_{-0.74}^{+0.77}$	$31.27 \rightarrow 35.86$	$33.45_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.87$	
	$\sin^2 \theta_{23}$	$0.573\substack{+0.016\\-0.020}$	$0.415 \rightarrow 0.616$	$0.575\substack{+0.016\\-0.019}$	$0.419 \rightarrow 0.617$	
	$\theta_{23}/^{\circ}$	$49.2^{+0.9}_{-1.2}$	$40.1 \rightarrow 51.7$	$49.3^{+0.9}_{-1.1}$	$40.3 \rightarrow 51.8$	
	$\sin^2 heta_{13}$	$0.02219\substack{+0.00062\\-0.00063}$	$0.02032 \rightarrow 0.02410$	$0.02238\substack{+0.00063\\-0.00062}$	$0.02052 \rightarrow 0.02428$	
	$\theta_{13}/^{\circ}$	$8.57_{-0.12}^{+0.12}$	$8.20 \rightarrow 8.93$	$8.60^{+0.12}_{-0.12}$	$8.24 \rightarrow 8.96$	
	$\delta_{ m CP}/^{\circ}$	197^{+27}_{-24}	$120 \rightarrow 369$	282^{+26}_{-30}	$193 \rightarrow 352$	
	$\frac{\Delta m_{21}^2}{10^{-5} \ \mathrm{eV}^2}$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.517^{+0.026}_{-0.028}$	$+2.435 \rightarrow +2.598$	$-2.498^{+0.028}_{-0.028}$	$-2.581 \rightarrow -2.414$	

no flagship neutrino in Europe?

European contributions in all experiments — including technology (LAr, etc)

is this enough?

2 accelerator experiments $\rightarrow \delta \oplus MO \& \theta_{23} \oplus \theta_{13} \oplus \Delta m^2 \& redundancy$

I reactor experiment $\rightarrow MO \& \theta_{12} \oplus \overline{\delta}m^2 \& \theta_{13} \oplus \Delta m^2 \& no cross-check!!$

Anatael Cabrera CNRS-IN2P3 / IJCLab (Orsay) - LNCA (Chooz) Laboratories

Kamiokand

DUNE (USA)

knowns & unknowns...

Mass Neutrinos (3): v(1), v(2), v(3) — <u>assumed</u> ≥3! [cosmology constraints ≤4]

 PMNS matrix (3x3; a la CKM): U, assumed unitarity (→violation?)
 discovery!

 • mixing parameters (3): θ₁₃, θ₁₂, θ₂₃ (octant?) — derived J [Jarkslog invariant]

 • CP-violation parameter (1): δ?

```
Mass Squared Differences (2): \delta m^2 (i.e. \Delta m^2_{12})
\Delta m^2 (i.e. \Delta m^2_{13} or \Delta m^2_{23})
```


7

consider full matrix structure (not just composition)

why shape?

• large mixing but a small one!

largest CP-violation (SM)

•any symmetry behind? [or Nature's caprice?]

U_{3x3} unitary?

[assumed!!, not demonstrated]

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

structure-wise CKM vs PMNS...

PMNS

СКМ

A. De Gouvea, H. Murayama, hep-ph/0301050; PLB, 2015.

L. Hall, H. Murayama, N. Weiner, hep-ph/9911341.

elegance (symmetry)

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

PMNS triangle (\rightarrow CP violation)...

J(PMNS)≈3.33±0.06x10-2

J(CKM)≈3.18±0.15x10-5

PMNS

CKM

neutrino last modification of the Standard Model... more discoveries?

somewhere in the middle of Europe, there is Chooz...

maybe Chooz?

Gimnée

<u>Chooz</u> is tiny cute little village in the Ardennes Chooz = super-powerful reactor(s) \oplus overburden

EDF CNPE Chooz-B

Chooz-B 2x N4 Reactors [since 1990's]

EDF CNPE Chooz-A Dismantling

CNPE Chooz-B... (up to ~ 2050)

Anatael Cabrera CNRS-IN2P3 / IJCLab (Orsay) - LNCA (Chooz) Laboratories

Chooz-B = 2x N4 Reactors: 8.4GW(thermal)→ ~10²¹v/s

the reactor (source)...

Chooz-B nuclear reactor plant: 2x N4 reactors [4.2GWthermal each]

LNCA-ND-Hall (CNRS/CEA)

Chooz-B 2x N4 Reactors [since 1990's]

LNCA-FD-Hall (CNRS/CEA)

EDF CNPE Chooz-A Dismantling

Europe's best reactor neutrino site...

EDF DP2P Chooz-A

EDF CNPE Chooz-B

LNCA-ND-Hall (CNRS/CEA)

Chooz-B 2x N4 Reactors [since 1990's]

LNCA — Near & Far Detector Hall ND baseline: 400m: ≤40v/day•ton FD baseline: 1100km: ≤6v/day•ton

EDF DP2P Chooz-A

EDF CNPE Chooz-A Dismantling

Double Chooz' site (well known)...

Hervé de Kerret's vision since CHOOZ' experiment

CNIS

2018-2019 more science @ Chooz?

17

...after Double Chooz

underground laboratories facilities are...

•too small?

18

•too shallow?

• **baselines OK?** (designed past experiments)

note: all known issues in "Double Chooz" (today's state of the art)

Chooz several limitations...

reactor underground challenge...

reactor underground challenge...

civil-construction near a reactor?

lesson: don't...!

physics at Chooz: finished?

22

new underground laboratories exploration...

- •too small & bad baseline? → new laboratories!
- •too shallow? → new technology!
- •new structure at Chooz:

 $[A.Cabrera; 2014-2021] \rightarrow LNCA (CNRS)$ $[J-F Le Du; \geq 2022]$

2018-2019

science @ Chooz: yes!

23

new era of cooperation between...

Constant of the second second

an underground secret...

Chooz-A former nuclear reactor

Anatael Cabrera CNRS-IN2P3 / IJCLab (Orsay) - LNCA (Chooz) Laboratories

²⁷ Super-Kamiokande (50kton)

~50m

Super-KamiokaNDE @ Japan (Nobel prize 2015)

recycling Chooz-A for science?

two huge caverns already built of the size of **Super-Kamiokande** just next to **Chooz reactors**! (unique site in France / Europe / World?)

construction caverns [1962-1967]

Notre Dame de Chooz?

SuperChooz cavern since the 60's...

historical opportunity!! one of the largest underground laboratories in Europe — free?

Anatael Cabrera CNRS-IN2P3 / IJCLab (Orsay) - LNCA (Chooz) Laboratories

Super Cool

CNIS

SUPERCHOOZ

EDF CNRS exploring...

CNIS

SUPERCHOOZ

3 main challenges...

- new laboratories
- new detector technology
- new physics program

 \Rightarrow must demonstrate ALL are feasible at once by \leq 2028

IJCLab leading the way...

Super Cool

if exploration was successful \rightarrow experiment >2030...?

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)
CNIS

SUPERCHOOZ

experimental configuration

Double Chooz config...

SuperChooz config...

"Ultra Near"? [≤20m]

Chooz-B = 2x N4 Reactors: 8.4GW(thermal) $\rightarrow \sim 10^{21} v/s$

CNIS

Super Chooz [30 000m³] •≥50m overburden •LiquidO: 0(≤10 000m³)

les montagnes des Ardennes (overburden: ≤100m rock)

Europe's best reactor V site...

CNIS

SUPERCHOOZ

challenge I: **new detector technology** (goal: <u>major background reduction</u>)

today's version of similar technology...

extremely low overburden → **new technology needed** (several experimental requirements impossible with today's technology)

by the **LiquidO** consortium...

LIQUID

the needed new technology...

LiquidO Consortium*

J. dos Anjos^a, L. Asquith^r, J.L. Benev^q, T.J.C. Bezerra^r, M. Bongrand^q, C. Bourgeois^{f^{\alpha}}, D. Brasse^g, D. Breton^{f^{\alpha}}, M. Briere^{f^{\alpha}}, J. Busto^b, <u>A. Cabrera[†]f^{\alpha}</u>, A. Cadiou^q, E. Calvo^c, H. Carduner^q, V. Chaumat^{f^{\alpha}}, E. Chauveau^h, M. Chenⁿ, P. Chimenti^e, F. Dal Corso^{k^{α}}, A. Dahmane^g, J.-F. Le Du^{f^{α}}, S. Dusini^{k^{α}}, A. Earle^r, C. Frigerio-Martins^e, J. Galán^s, J.A. García^s, R. Gazzini^{f^{α}}, A. Gibson-Foster^r, D. Giovagnoli^g, P. Govoni^{j^{α}, j^{β}}, M. Grassi^{k^{β}}, W.C. Griffith^r, F. Haddad^q, J. Hartnell^r, A. Hourlier^g, G. Hull^{f^{\alpha}}, I.G. Irastorza^s, L. Koch^{i^{α}}, P. Laniéce^{f^{α , f^{β}},} C. Lefebvreⁿ, F. Lefevre^q, P. Loaiza^{f^{α}, f^{β}}, G. Luzón^s, J. Maalmi^{f^{α}}, F. Mantovani^{d^{α}, d^{β}}, C. Marquet^h, M. Martínez^s, L. Ménard^{f^{α}, f^{β}}, D. Navas-Nicolás^{f^{α}}, H. Nunokawa^m, M. Obolensky^{f^{α}, f^{β}}, J.P. Ochoa-Ricoux^o, C. Palomares^c, P. Pillot^q, J.C.C. Porter^r, M. S. Pravikoff^h, M. Roche^h, B. Roskovec¹, M.L. Sarsa^s, S. Schoppmann^{i^β}, A. Serafini^{k^{α},k^{β}}, W. Shorrock^r, L. Simard^{f^{α}}, M. Sisti^{j^{α}}, D. Stocco^q, V. Strati^{d^{α},d^{β}}, J.-S. Stutzmann^q, F. Suekane^{$\ddagger p$}, M.-A. Verdier^{f^{\alpha}, f^β}, A. Verdugo^c, B. Viaud^q, A. Weber^{i^α}, and F. Yermia^q ^aCentro Brasileiro de Pesquisas Físicas (CBPF), Rua Xavier Sigaud 150, Rio de Janeiro, 22290-180, Brazil ^bUniversité d'Aix Marseille, CNRS/IN2P3, CPPM, Marseille, France ^cCIEMAT, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Av. Complutense 40, E-28040 Madrid, Spain ^{d^α}INFN, Ferrara Section, Via Saragat 1, 44122 Ferrara, Italy ^{d^β}Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy ^eDepartamento de Física, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, PR 445 Km 380, Campus Universitário Cx. Postal 10.011, CEP 86.057-970, Londrina – PR, Brazil ^{f^α}Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France

^{f^β}Université de Paris Cité, CNRS/IN2P3, IJCLab, 91405 Orsay, France ^gUniversité de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France ^hUniversité de Bordeaux, CNRS, LP2I Bordeaux, UMR 5797, F-33170 Gradignan, France ^{i^α}Johannes Gutenberg-Universität Mainz, Institut für Physik, Staudingerweg 7, 55128 Mainz, Germany ^{i^β}Johannes Gutenberg-Universität Mainz, Detektorlabor, Exzellenzcluster PRISMA⁺, Staudingerweg 9, 55128

Mainz, Germany

^{j^α}INFN, Sezione di Milano-Bicocca, I-20126 Milano, Italy
^{j^β}Dipartimento di Fisica, Università di Milano-Bicocca, I-20126 Milano, Italy
^{k^α}INFN, Sezione di Padova, via Marzolo 8, I-35131 Padova, Italy

^{k^β}Dipartimento di Fisica e Astronomia, Università di Padova, via Marzolo 8, I-35131 Padova, Italy
 ¹Institute of Particle and Nuclear Physics Faculty of Mathematics and Physics, Charles University,
 V Holešovičkách 2 180 00 Prague 8, Czech Republic

^mDepartment of Physics, Pontifícia Universidade Católica do Rio de Janeiro, C.P. 38097, 22451-900, Rio de Janeiro, Brazil

ⁿDepartment of Physics, Engineering Physics & Astronomy, Queen's University, Kingston, Ontario K7L3N6, Canada

^oDepartment of Physics and Astronomy, University of California at Irvine, 4129 Frederick Reines Hall, Irvine, California 92697, USA

^pRCNS, Tohoku University, 6-3 AzaAoba, Aramaki, Aoba-ku, 980-8578, Sendai, Japan ^qSubatech, CNRS/IN2P3, Nantes Université, IMT-Atlantique, 44307 Nantes, France ^rDepartment of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom ^sCentro de Astropartículas y Física de Altas Energías (CAPA), Universidad de Zaragoza, Calle Pedro Cerbuna 12, 50009 Zaragoza, Spain

invention/conception 2012-2013 — since 2016 consortium (~20 institutes & 10 countries)

our first publication...

nature communications physics

Artice Open Access Published: 21 December 2021

Neutrino physics with an opaque detector

LiquidO Consortium

Communications Physics4, Article number: 273 (2021)Cite this article1867Accesses1Citations10AltmetricMetrics

Abstract

In 1956 Reines & Cowan discovered the neutrino using a liquid scintillator detector. The neutrinos interacted with the scintillator, producing light that propagated across transparent volumes to surrounding photo-sensors. This approach has remained one of the most widespread and successful neutrino detection technologies used since. This article introduces a concept that breaks with the conventional paradigm of transparency by confining and collecting light near its creation point with an <u>opaque scintillator</u> and a dense array of optical fibres. This technique, called LiquidO, can provide high-resolution imaging to enable efficient identification of individual particles event-by-event. A natural affinity for adding <u>dopants at high concentrations</u> is provided by the use of an opaque medium. With these and other capabilities, the potential of our detector concept to unlock opportunities in neutrino physics is presented here, alongside the results of the first experimental validation.

proof-of-concept: simulation & data [µ-LiquidO]

physics potential — appetiser

www.nature.com/articles/s42005-021-00763-5

latest results: a few weeks ago

https://liquido.ijclab.in2p3.fr/ under construction

on behalf of the **LiquidO consortium**...

LIQUIDO

XXX Neutrino Conference June 2022 — Seoul, South Korea

Anatael Cabrera CNRS/IN2P3 IJCLab/Université Paris-Saclay (Orsay)

FACULTÉ DES SCIENCES D'ORSAY

universite

Université de Paris

major release with the latest experimental results @ Neutrino 2022 conference (June 2022)

https://media.neutrino2022.org/talk/talk_session_apply/108/20220603220651_33.pdf

stochastic light confinement

Topology (X,Y) direct & native (PID)→ possible sub-mm vertex precision

Vanilla LiquidO: ID lattice (fibres along Z-axis only)

LiquidO can have up 3 orthogonal fibre lattice orientations (3D)

v discovery pioneers (1950's)...

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

unprecedented PID@MeV...

potential: reduce overburden/shielding

 $opacity \rightarrow$ (native) self-segmentation

needless segmentation: problematic @ IMeV (pollution, cost \oplus complex, etc)

~IMeV: reactor, geoneutrino, solar, ββ-decay, etc ⁵⁰

Anatael Cabrera (CNRS-IN2P3) — IJCLab / Université Paris-Saclay (Orsay)

multi-MeV improves (more light too)...

IOMeV: Michel-et (µ-decay), supernovae (remnant, core-collapse), low energy atmospherics, etc

Anatael Cabrera (CNRS-IN2P3) — IJCLab / Université Paris-Saclay (Orsay)

LiquidO's prototype MINI-II (upgrade)

data taking since 2021

overall view

64 channels readout (pitch ξ≈1.5cm)

single electrons

[0.4, I.8]MeV mono-energetic

~IOL multi-media

water (transparent)
scintillator (transparent)
scintillator (transparent↔opaque)

top view

topology's PID (no timing)

Neutrino physics with an opaque detector

Cherenkov / Scintillation ID...

Cherenkov time-only ID — threshold

LiquidO's timing potential — under quantification & optimisation

CNIS

SUPERCHOOZ

challenge II: new laboratories

- •2x ultra-near-detectors
- | x super-far-detector

Europe's best reactor V site...

CLOUD = "Chooz LıquıdO Ultranear Detector [project:"AntiMatter-OTech"]

CLOUD background control...

CLOUD @ LNCA...

(well known signal & backgrounds)

ultra-near @ Chooz...

nature physics

ARTICI F

First Double Chooz θ_{13} Measurement via Total Neutron Capture Detection

CedF

Potential: "background-less" reactor-v detection?

a new era of science @ Chooz — Europe's most powerful reactor neutrino underground laboratory

vast scientific programme...

European Innovation Council

UK Research and Innovation

scientific programme to be released soon — innovation (protected)

Innovation Programme (confidential for now) — "Antimatter-OTech" Fundamental Science Programme (soon)

- **CODE** (France) **first time in neutrinos!**
 - •CIEMAT (Spain)
 - •IJCLab/Université Paris-Saclay (France)
 - •J-G Universität Mainz (Germany)
 - Subatech/Nantes Université (France)
 - $\bullet \textbf{Sussex University} (\text{UK})$
 - Charles University (Czech Republic)
 - INFN-Padova (Italy)
 - •UC-Irvine (US)
 - •Universidade Estadual de Londrina (Brasil)
 - **PUC-Rio** de Janeiro (Brasil)
 - Queen's University (Canada)
 - •University of Zaragoza (Spain)
- Tohoku University / RCNS (Japan)

CLOUD collaboration (EDF
13 institutions over 10 countries)

"Ultra Near"? [≤20m]

Super Chooz [30 000m³] •≥50m overburden •LiquidO: 0(≤10 000m³)

CNIS

les montagnes des Ardennes (overburden: ≤100m rock)

Europe's best reactor V site...

one of the largest reactor neutrino labs...

-R-R-18-18-18-19

Chooz-A Reactor Cavern (≤100m underground & 30,000 m³)

• preliminary **analysis: all OK!** (size, access, etc)

•EDF CNRS run full engineering feasibility studies

→new laboratory construction — mainly a water pool
→studies for extra constraints for Chooz-A dismantling, etc

super far-detector design...

Anatael Cabrera CNRS-IN2P3 / IJCLab (Orsay) - LNCA (Chooz) Laboratories

LIQUID

can we make BIG?

much demonstrated by **NOvA** (~|4kton)...

SuperChooz very similar dimensions as NOvA

SINGAPORE AIRLIN

~16m

16m

SuperChooz : ~9 700 m³

66

common technology but not methodology

- scintillator: ✓ (yield improvement)
- •fibres: ✓
- light collection system: ✓ (improvement?)
- •photo-detector: ✓ (APD→ SiPM OK?)
- different optimisation: **R&D**

GeV OK!! But ~I MeV physics @ 10kton? $(\mathbf{R} \otimes \mathbf{D})$

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

CNIS

SUPERCHOOZ

challenge III: new flagship experiment physics programme

rationale...

• high precision SM's neutrino oscillation \implies synergise with JUNO & HK \oplus DUNE

neutrinos as probe BSM→ discoveries? ⇒ beyond today's paradigm?

today's menu...

- $\theta_{13} \& |\Delta m^2| high precision SM$
- $\theta_{12} \& \delta_{m^2} high precision SM$
- new families/interactions test(s) [BSM]
- CPT violation SM coherence? [BSM]
- unitarity violation SM completeness?
 ⇒ neutrino & anti-neutrino [BSM]
- proton decay search: multi-channel! [BSM]
- supernovae: core-collapse & remnant (both)

Anatael Cabrera CNRS-IN2P3 / IJCLab (Orsay) - LNCA (Chooz) Laboratories

reactor underground challenge...

EDF CNPE Chooz-B

"Ultra Near"? [≤20m]

Chooz-B = 2x N4 Reactors: 8.4GW(thermal) $\rightarrow \sim 10^{21} v/s$

Super Chooz [30 000m³] •≥50m overburden •LiquidO: 0(≤10 000m³)

CNrs

72

les montagnes des Ardennes (overburden: ≤100m rock)

Europe's best reactor V site...
experimental setup...

- •**reactor:** extreme source of neutrino (commercial \rightarrow | GW \approx 2x | 0²⁰/s) no running cost.
- •3 measurement regimes: depending on baseline (L):
 - •[UND] zero-baseline (L \rightarrow ~0km): ϕ (reactor) and/or new physics?
 - •[SFD] short-baseline (L→~ | km): θ | 3⊕Δm² [multi-detector: φ(reactor)]
 - •[JUNO] **long baseline** (L→≥50km): θI2⊕δm² and θI3⊕Δm², if enough resolution

summary on today's θ 3 knowledge/experiments...

reactor-θI3 experiments: DC⊕DYB⊕RENO

statistics: ≥10⁵ (far) [<10⁶] systematics: ~0.1% (each) energy control: ~0.5%

	<2010	reacto	r-013 [2010	cancellation		
	total	total	rate-only	shape-only	methodology	
statistics	few %	~0.1%			~100/day @ ≤1.5km	
flux	~2.2%	~0.1%	~0.1%	<0.1%	near-to-far monitor (ideal: iso-flux)	
BG	few %	~0.1%	~0.1%	<0.1%	overburden→few/day	
detection	2,0 %	~0.1%	~0.1%		identical detectors	
energy	few %	~0.5%		~0.5%	identical detectors	

review reactor Θ | 3 sensitivity evolution...

reactor sensitive has potential to go well beyond today [DC+DYB+RENO]

76

of art knowledge

state

20

Today

•statistics: ≥10⁷ (far) [≥20x today]
•detection systematics (~today: ~0.1%)
•energy control (≤0.5% precision — today)
⇒ flux & BG systematics → new techniques!!!

translator: | kton implies $\sim 2 \times 10^6$ IBD/year $\rightarrow \sim 4$ IBD/min [$\sim 50 \times$ today]

overall θ | 3 $\oplus \Delta$ m²(ee) sensitivity...

[first time] sub-percent measurement of $\theta | 3 \oplus \Delta m^2$ (ee)

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

77

leptonic sector unitarity with LiquidO?

Conference @ HEP-European Physics Society (July 2019 @ Ghent Belgium) Web: https://indico.cern.ch/event/577856/contributions/3421609/

why $\theta_{13} \& |\Delta m^2|$?

79

- world most precise $\theta_{13}!! [~10x better]$
- CP violation synergy HK & DUNE
- Mass ordering key input for JUNO
- PMNS' shape: the smallest term?
- measure $\theta z_3? synergy HK & DUNE$
 - \implies resolve the "octact" [unknown!]
 - ⇒ PMNS' shape: the largest term!
- unique cross-check JUNO's ∆m² info?

measure CP-violation...

CPV phase vs θI3

[constrained by reactor]

nature

Explore our content 🗸

Journal information \checkmark

Subscribe

nature > articles > article

Article | Published: 15 April 2020

Constraint on the matter-antimatter symmetryviolating phase in neutrino oscillations

The T2K Collaboration

Nature 580, 339–344(2020) | Cite this article 16k Accesses | 23 Citations | 986 Altmetric | Metrics

CPV phase vs θ23 [octant ambiguity]

Anatael Cabrera (CNRS-IN2P3) — IJCLab / Université Paris-Saclay (Orsay)

Super Chooz potential under investigation...

81

Plot: hacked version from original in Ellis, Kelly & Weishi-Li at arXiv:2008.01088

synergy: SC θ I 3 may help to resolve the " θ 23 octant" ambiguity (HK and DUNE) measured the combined effect of θ I 3 \oplus θ 23 (harder to disentangle)

Super Chooz: the smallest but powerful...

$$\frac{du}{dt} = \frac{dt}{dt} \left[\frac{dt}{dt} = \frac{dt}{dt} \left[\frac{dt}{dt} = \frac{dt}{dt} \right] \left[\frac{dt}{dt} = \frac{dt}{dt} = \frac{dt}{dt} = \frac{dt}{dt} \right] \left[\frac{dt}{dt} = \frac{dt}{dt} = \frac{dt}{dt} = \frac{dt}{dt} \right] \left[\frac{dt}{dt} = \frac{dt}$$

reactor underground challenge...

all that, IF you controlled purity ≤le-l8 g/g U/Th [extreme radio-purity & deep underground→hard and expensive]

today's challenge...

neutrino elastic scattering: too hard.

Anatael Cabrera CNRS-IN2P3 / IJCLab (Orsay) - LNCA (Chooz) Laboratories

Anatael Cabrera CNRS-IN2P3 / IJCLab (Orsay) - LNCA (Chooz) Laboratories

neutrino: inner-most Sun's sight...

2 main reactions...

•pp chain (dominant in Sun still)

•**CNO cycle** (older stars dominant)

spectral precision of the "Solar-SM"

- •extreme ≤% precision
- •beyond today's knowledge with neutrino?

solar's Indium coincidence...

¹¹⁵In + v(e) → e- + ¹¹⁵Sn* [CC]

coincidence: $^{15}Sn^* \rightarrow \beta$ - or γ (E=116keV) γ (E=497keV)

E(threshold): II4keV [→up to **pp neutrinos**]

Neutrino physics with an opaque detector

LiquidO Consortium

<u>Communications Physics</u> **4**, Article number: 273 (2021) Cite this article

3D coincidence (like IBD) @ 90% efficiency

•time-based rejection: ~ 10^{-5}

• position-based rejection: ~ 10^{-6} (vertex: few mm)

• energy-delay rejection: $\leq 10^{-2}$ (≥ 100 PE/MeV)

Bremsstrahlung: worsen selection (understudy)

Loading In in scintillator studied for long — 10% OK!!

Signal to BG ≥10! ≤0.5MeV [past: LENS R&D ~3]

 \Rightarrow essentially **background-less solar-neutrino detection** (radio-purity only ~10⁻¹⁵g/g)

Anatael Cabrera CNRS-IN2P3 / IJCLab (Orsay) - LNCA (Chooz) Laboratories

solar spectra extraction...

Signal to BG \geq I0x (BG only \leq 0.5MeV)

[missing Bremsstralung]

Full Spectral Information:

- •Neutrino Energy (CC interaction)
- •High Statistics: 10% (In loading) \times 10 years
- •Light level: ≥I00PE/MeV (thershold: 0. | MeV)

Anatael Cabrera CNRS-IN2P3 / IJCLab (Orsay) - LNCA (Chooz) Laboratories

solar spectra knowledge...

higher light levels expected — 100PE/MeV considered as most pessimistic scenario

light yield IOOPE/MeV (pessimistic)

light yield 500PE/MeV (too optimistic?)

higher light yield optimisation (>100PE/MeV) — scintillator R&D

- better selection: <u>even higher Signal-to-BG</u> even pp may go ''BG-less''?
- •better spectral resolution \rightarrow better <u>CNO direct sensitivity</u> (else under pp \oplus^7 Be \oplus pep)

solar spectra knowledge potential...

low systematics (fiducial volume, efficiency, energy, In-fraction, etc) → **under final evaluation**

ISSUE: exclusive In cross-section knowledge? Possible ~I%? [a la Ga]

solar oscillation transition...

In-interaction: neutrino energy scan (impossible for elastics scattering)

solar neutrinos: longest baseline neutrino with few % precision→ new physics?

use φ(SNO-NC) for ⁸B control [1.5,10] MeV — ultimate limitation?

Anatael Cabrera CNRS-IN2P3 / IJCLab (Orsay) - LNCA (Chooz) Laboratories

improving transition precision...

Indium loading: 10% [→LENS]

Indium loading: 30% [→R&D]

(light yield I00PE/MeV)

(light yield I00PE/MeV)

using SNO-NC: φ(⁸B) [≤5%] instead of SMM prediction [12%]

inner most (fusion) solar neutrinos...

• first map (sample) MSW shape (few %)

 \implies new interactions? [BSM]

 \implies unique cross-check of JUNO

why solar neutrino's A12 & Sm2?

• world most precise neutrino $\theta_{12}! [\delta_{m^2}?]$

· compare to anti-neutrino A12 (JUNO)

• cross-check of JUNO's Sm²

$$\frac{du}{dt} \left(p \left[\log \left[b_{1} + i\pi \right] \int_{1}^{\infty} \frac{du}{dt} \int_{1}^{\infty} \left[\frac{(\pi - \pi)t}{2t} \int_{1}^{\infty} \frac{du}{dt} \int_{1}^{\infty} \frac{du}{d$$

Anatael Cabrera CNRS-IN2P3 / IJCLab (Orsay) - LNCA (Chooz) Laboratories

Super Chooz potential under investigation...

97

Plot: hacked version from original in Ellis, Kelly & Weishi-Li at arXiv:2008.01088

Super Chooz: the smallest but powerful...

combining solar (Preactor info

98

· compare to JUNO's anti-neutrino AIZ ⇒ direct CPT violation (BSM) discovery potential • PP for unitarity violation (BSM) \implies flux known to ~0.6% discovery potential • improve reactor flux <1%? => prove unitarity violation (BSM)

discovery potential

Unitarity

(violation?)

unitarity is behind all our definitions...

UNITARITY implies...

• **IF 3 neutrino standard states** — non-standard cases? [in agreement with quark's **3 families**]

 \Rightarrow **2** mass difference: $\Delta m^2 \& \delta m^2$

 \Rightarrow 3 independent mixing angles: $\theta_{12}, \theta_{23}, \theta_{13}$

 \Rightarrow (Dirac) CP-Violating phase: δ_{CP}

[i.e. a 3x3 unitarity matrix may be complex]

if 4 families, expect more Δm^2 's, θ 's or δ_{CP} 's $\rightarrow 3x3$ <u>effective approximation</u>

testing **UNITARITY** → **testing for new families** + **more!!**

(regardless of kinematics)

Anatael Cabrera (CNRS-IN2P3 & APC)

100

since no CPV (yet) ⇒ test Unitarity <u>norm</u> of "each row"

$$U_{l1}|^{2} + |U_{l2}|^{2} + |U_{l3}|^{2} = 1$$

 $|U_{e1}|^2 + |U_{e2}|^2 + |U_{e3}|^2 = 1 \Rightarrow$ explore "electron top-row"

a priori only " θ_{12} " and " θ_{13} "...

today's (e-row) unitarity knowledge...

H. Nunokawa et al (arXiv:1609.08623v2)

102

unitary explorations limited by absolute flux uncertainty

(reactor flux)

reactor flux discrepancy...

generally excellent agreement <u>among all experiments</u>

until 2011, excellent agreement to ILL-based (i.e. data) prediction

now <7.0% mismatch between ILL-prediction and data

Anatael Cabrera (CNRS-IN2P3 & APC)

reactor flux uncertainty...

ARTICLE

First Double Chooz θ_{13} Measurement via Total Neutron Capture Detection

≥2020 improvements...

≥2011 → large difference: ≤7%

more data to tune/test the prediction?

≥2020 ab initio estimation →uncertainties fully understood?

≥2020 conversion (ILL-data based) estimation

status on neutrino oscillation knowledge...

SuperChooz was will improve the **SM picture** (3 families) [synergy]

107

SuperChooz geared to explore the SM's <u>consistency/completeness</u> \rightarrow BSM discovery?

		today		≥2030			
	best knowledge		global	foreseen	dominant	source	
θ12	3,0 %	SK⊕SNO	2,3 %	≤0.5%	JUNO ®SC	reactor⊕solar	
θ ₂₃	5,0 %	NOvA+T2K	2,0 %	≲ .0%?	DUNE⊕HK [SC]	beam (octant)	
θιз	1,8 %	DYB+DC+RENO	I,5 %	≤0.5 %	SuperChooz (SC)	reactor	
+δm²	2,5 %	KamLAND	2,3 %	<0.5%	<u>juno</u> ⊕ sc ?	reactor⊕solar	
Δm ²	3,0 %	T2K+NOvA & DYB	I,3 %	<0.5%	<u>juno</u> @Dune@hk@ <mark>sc</mark>	reactor⊕beam	
Mass Ordering	unknown	SK et al	NMO @ <u>≤</u> 3σ	@5σ	<u>JUNO</u> ⊕DUNE⊕HK (<u>NOvA⊕T2K</u>)	reactor⊕beam	
СР	violation?	T2K+NOvA	3/2π @ <mark>≤2</mark> σ	@5σ?	DUNE⊕HK [SC]	beam driven	
СРТ	violation?			< %?	SuperChooz	reactor⊕solar	
Unitarity	violation?			< %?	SuperChooz	reactor⊕solar	

reactor • **beam** & **solar** again via SC — SC's atmospherics under study... nice!!

$$\frac{du^{n}}{dt} \leq \frac{1}{2} \ln \left(\frac{1}{2}\right) + \frac{1}{2} \ln \left(\frac{1}{2}\right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2}\right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2}\right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2}\right) + \frac{1}{2} + \frac{1}$$
discovery channels too...

m(proton)~IGeV

free-H per unit of mass:

water: ~10% scintillator: up to 20%

Anatael Cabrera (CNRS-IN2P3) — IJCLab / Université Paris-Saclay (Orsay)

supernovae @ SuperChooz...

neutrinos back to Europe?

historical opportunity for Europe's neutrino science (fundamental & innovation)..

Anatael Cabrera CNRS-IN2P3 / IJCLab (Orsay) - LNCA (Chooz) Laboratories

S U P E R C H O O Z

pathfinder (i.e. experimental exploration)

collaboration with LiquidO, AM-OTech, CLOUD, EDF, and SuperChooz teams...

edf cnrs

Дякую... merci... 고맙습니다... ありがとう... danke... obrigado... спасибі... grazie... 谢谢... hvala... gracias... ...شکرا thanks...

SUPERCHOOZ pathfinder

https://liquido.ijclab.in2p3.fr/ under construction

SuperChooz⊕LiquidO a new framework for new physics opportunities — in Europe? [≥2019]

• SuperChooz: a possible new neutrino flagship experiment in Europe ["Pathfinder": exploration starting...]

•new laboratory under consideration: studies EDF@CNRS — EDF within neutrino science

• new technology: LiquidO — performance proving readiness (→results @ Nu2022 conference)

•CLOUD / AM-OTech (innovation): first demonstrator experiment -> fundamental physics programme [synergy with $JUNO \& HK+DUNE] \rightarrow$ several publication in preparation